ebook img

Imaging pain: a potent means for investigating pain mechanisms in patients. PDF

2013·0.28 MB·English
by  LeeM. C.
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Imaging pain: a potent means for investigating pain mechanisms in patients.

BritishJournalofAnaesthesia111(1):64–72(2013) doi:10.1093/bja/aet174 Imaging pain: a potent means for investigating pain mechanisms in patients M.C.Lee*andI.Tracey NuffieldDivisionofAnaestheticsandCentreforFunctionalMRIoftheBrain(FMRIB), UniversityofOxford,Oxford,UK *Correspondingauthor.E-mail:[email protected] Summary. Chronic pain is a state of physical suffering Editor’skeypoints strongly associated with feelings of anxiety, depression and † Neuroimagingcanimproveourunderstandingofpain despair. Disease pathophysiology, psychological state, and mechanisms,analgesicactionandtheplaceboeffect. social milieu can influence chronic pain, but can be difficult to diagnose based solely on clinical presentation. Here, we † Newmodellingapproachescanexplorethedynamicprocesses review brain neuroimaging research that is shaping our influencingpainperception. understanding of pain mechanisms, and consider how such † Neuralmechanismsoftheeffectsofpersonalityandexpectancy knowledge might lead to useful diagnostic tools for the onpainperceptionandanalgesiahavebeenexplored. management of persistent pain in individual patients. † Futuredevelopmentswillcontinuetoexpandourknowledgeof Keywords: chronic pain; neuroimaging, magnetic resonance painmechanisms,allowingtranslationfromlaboratorytoclinic. imaging, functional Pain is an unpleasant sensation that is associated with, or much later (two decades ago) with the demonstration of described in terms of, a bodily injury.1 Clinicians have long increased and localized brain activation during pain in regarded pain as a symptom or warning of disease that humans.4Wenowacceptthatpainmaybecausedbybodily shouldbeinvestigatedtoexpeditetreatmentofpathology.Un- injury,butasaconsciousness,mustbegeneratedinthebrain. fortunately, medicine does not yet possess every cure, or Functional magnetic resonance imaging (fMRI), positron indeedknowledgeofeverypathophysiologythatcangenerate emissiontomography(PET),magnetoencephalography(MEG), pain. Pain can persist despite the best efforts of physicians. and scalp electroencephalography (EEG) are commonly used Chronic pain is currently defined by the duration of physical tostudytheneuralbasesofpain.Researchersarealsoincreas- symptomsbutis,inreality,sufferingstronglyassociatedwith ingly using other magnetic resonance-based measures (e.g. feelingsofanxiety,depression,anddespair.2 diffusion tensor imaging, spectroscopy, and volumetric In the individual, chronic pain is highly influenced by imaging)toassesspain-relatedchangesinthebrain’swiring, disease pathophysiology, psychological state, and social chemistry,andstructureinordertogainfurtherinsightsinto milieu.Thepathogenesisofchronicpainsyndromesisoften theneurobiologyofpain,particularlychronicpain.Thereareex- unclear.Researchcontinuestosuggestspecificpathophy- cellentreviewswritten recentlytosummarize the findings of siologies that may distinguish between different chronic neuroimagingstudiesinhealthyindividualsandinpatients.56 painsyndromes,forexample,fibromyalgia,complexregional Here, we focus on recent neuroimaging studiesthat continue painsyndrome.Whethertheseclinicalsyndromescanbedis- to shape our understanding of pain in health, disease, and tinguishedasdiseasesintheirownrightwithspecifictreat- illness.Wereviewtheprogressinneuroimagingresearchthat ments, orconsidered as acollection of symptoms that are is contributing to the development of clinically relevant tools drivenbysharedmechanisms,remainsunclear.Regardless, forthemanagementofpaininpatients. psychosocialfactorscansupervenetoinfluencehowpainis perceived or reported by patients, and these factors can Thepain‘neuromatrix’ operate unconsciously. Their contribution to the chronic pain state further determines appropriate and holistic Neuroimaging studies have now identified several cortical management of the patient. Hence, there is a desperate regions in humans that are considered to be important for needforadditionalmethodsthatcanquantifydiseaseload theperceptionofpain.Theprimaryandsecondarysomatosen- or psychosocial contributions to the chronic pain state in sorycortices(insularandanteriorcingulate)andtheprefrontal patients. cortices (PFCs) are commonly activated, often bilaterally, and InthefifthcenturyBC,Hippocratesdeclaredthatpain,like duringpainfulexperiences.Furthermore,alteredactivityinsub- all consciousness, must emerge from brain activity.3 Robust corticalareas(e.g.brainstemperiaqueductalgrey(PAG),hypo- scientific evidence for that philosophical intuition arrived thalamus, amygdala, hippocampus, and cerebellum) is also & TheAuthor[2013].PublishedbyOxfordUniversityPressonbehalfoftheBritishJournalofAnaesthesia. ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAttributionNon-CommercialLicense (http://creativecommons.org/licenses/by-nc/3.0/),whichpermitsnon-commercialre-use,distribution,andreproductioninanymedium, providedtheoriginalworkisproperlycited.Forcommercialre-use,[email protected] BJA Imagingpain observedduringpain.Thus,activitywithinseveraldiverseregions understoodcomparedwithcentralneuronesontowhichthey ofthebrainseemtobenecessaryforthemultidimensionalex- projecttotransmitinformationtothebrain.26 perience that is pain.7–9 Some of these regions comprise the Investigatorshaveattemptedtotracetheflowofnocicep- so-called‘painneuromatrix’,10atermthatisoftenmisused,in tive information by examining the temporal sequence of whichmultipleinputsareprocessedtoproduceanoutput(neuro- brainactivationsevokedbynoxiousstimulation.Inhumans, signature)thatisbespokeforanindividualdependingoncontext, theearliestintra-corticalelectricalpotentialsthatareevoked moodandcognitivestate.8Hence,painistheproductofawidely bynoxiouslaserstimuliappliedtothehandoccursimultan- distributedandvariablyaccessibleneuralnetworkinthebrain, eously within theposterior insularregion and mid-cingulate ratherthananinevitableconsequenceofnoxiousstimulation. cortex.27 28 These regions receive nociceptive input via Current research suggests that parts of this network can be spino-thalamocortical pathways and are thought to provide accessedbynon-nociceptiveeventsorinputstoproduce‘pain- a primary interoceptive representation of the physiological like’experiences(e.g.duringempathyforothers,11romanticre- condition of the body.29 Activation of the posterior insula jection,12 and social exclusion).13 Hypnotically induced pain in duringnociceptioninhumanshasbeenshowntobesomatopi- susceptible individuals14 and central post-stroke pain are callyorganized.30 The importance of the posterior insulafor furtherexamplesthatillustratethelatentcapacityofthebrain nociceptive pain is further suggested by functional imaging toelicitpainwithoutconcomitantperipheralnociceptiveinputs. studies of pain empathy,11 hypnotically induced pain,14 and Remarkably, none of the brain regions identified above is recalledpainexperiences.3132Neuralactivationsduringsuch uniquelyassociated with pain; theyare also involved in many pains may be similar to that of physically induced pain but othersensory,motor,cognitive,andemotionalfunctions.Some there is often attenuation of activation within the posterior regions within the so-called pain neuromatrix exhibit signifi- insulawhenpainisreportedintheabsenceofnociceptivestimu- cantlycorrelatedactivitywithsensoryoremotionaldescriptions lation.14Researchersfromindependentgroupshaveshownthat ofthepainfulexperience,suggestingthattheyhaveasignifi- directelectricalstimulationoftheposteriorinsularregioncan cant role in pain generation but no brain region has been leadtopainfulsensationsbeingreported.3334Thesamedoes showntobeexclusivelyactivatedduringpainexperiences.15– notappeartobetrueofothercorticalregionsthatarealsocon- 18Disruptionofthespecificregionswithinthispainmatrixby sidered part of the pain neuromatrix.23 34 Additionally, the corticallesionsveryrarelyremoveor‘numb’paincompletely.19 insularcortexhasbeenidentifiedasthemostconsistentlyacti- 20Surgicalcingulotomies,performedforintractablepainsyn- vatedregionduringpainthatisinducedbynociceptivestimuli.9 dromes,mayreduceemotionalormotivationalaspectsofthe Theseconvergingdatasuggestthattheposteriorinsularregion clinicalpainstatebutleavesintactthecapacityfornociceptive mightrepresentacriticalneuralnodethroughwhichnocicep- pain.21Infact,priorfailuretoassociatecorticalactivityorcor- tive information must be processed. Hence, a ‘nociceptive tical lesions to the experience of pain had encouraged the cortex’ within the operculo-insula region may be postulated, view that pain had little true cortical representation.22 23 akintoothermajorsenses. These observations suggest that there is no critical or fixed brainregionforpain. Braindynamics Despite extensive research, an area of the brain that is analogous to the primary visual cortex (i.e. ‘primary pain As discussed above, the experience of pain requires activity cortex’) has not been identified. Todate, there is no pattern within various regions of the brain. Nevertheless, how pain ofbrainactivityindicatingpaininanindividualwithabsolute arises from the flow of information between these different certaintyforusebymedical,legal,orotherregulatorybodies. brainregionsislargelyunknown,asinvestigatingthisphenom- Forexample,‘pain-related’brainactivityfromnoxiousstimula- enonrequiresamultimodalapproach,ofwhichfewpublished tioncanoccurinpatientsinminimallyconsciousstates24but studiesexist.35MoststudiesinvolveEEGorMEGalone,which such activations do not necessarily prove pain perception in recordbrainactivitywithhightemporalresolutionbutrelative- theseindividuals.Nonetheless,theysuggestthattheneuro- lypoorspatialresolutionwhencomparedwithfMRI.Ahuman anatomical substrates for pain are functionally intact and scalpEEGstudyofcorticalpotentialsevokedbyhighlynoxious raisethepossibilityofpainintheseuncommunicativesubjects stimulihasrevealedthatlate,ratherthanearly,laser-evoked withobviousclinicalimplications. responsesareassociatedwithconsciousdetectionofnoxious stimuli.36 Hence, the consciousness of pain appears to emergeatlaterstagesofsuchprocessingwhenneuralinfor- Imagingnociception mationisbeingintegratedacrossmultiplecorticalregions. Nociception is defined as the ‘neural process of encoding Theprocessesbywhichthebrainprioritizesnociceptivein- noxious stimuli’. Although nociception is neither necessary formationovercompetingsensorystimuliforconsciousaware- norsufficientforpain,itisrequiredforprotectiveautonomic ness should also be examined.37 This may explain how the orreflexiveresponsesthatareessentialforoursurvival.Noci- perceptionofpainarisesfromnociceptiveinput.Synchronous ceptorsareperipheralsensoryneuroneswhichareevolvedto neuronal oscillations at gamma-band frequency (.40 Hz) respond specifically to high-intensity environmental stimuli are known to occur when the relevant sensory stimulus is that threaten the physical integrity of the organism.25 The selected for neural representation and perception.38 Using neurobiologyofthese first-orderafferents isarguably better MEG, Gross andcolleagues39 demonstrated that painfullaser 65 BJA LeeandTracey stimuliwereassociatedwithstrongergamma-bandoscillations descending control from supraspinal regions. This powerful (GBO)thanunperceivedstimuliofequalstimulusintensity,sug- modulatoryinput,emanatingfromthefrontal-limbicregions, gestingthattheperceptionofpainemergeswhennociceptive is integrated within the rostral ventromedial medulla (RVM) input is prioritized in the brain. A more recent EEG study andPAG;activitywithintheseregionsinthebrainstemdeter- furtherrevealedthat,unlikeevokedpotentials,GBOisnotsup- mineswhetherthenociceptiveinformationisprioritized.60De- pressed with repetitive noxious (laser) stimulation.40 In that pendingwhatthesituationdemands,thesebrainstemregions study, healthysubjectsperceivedand reported that repeated co-ordinatetheinhibitionorfacilitationofnociception.Classic- stimuliwerejustaspainfulastheoriginalstimulus.However, al ‘fight or flight’ responses engage immediate inhibitory the laser-evoked potentials tended to diminish in amplitude effects for survival in battlefield or success in competitive witheachstimulusrepetition.Hence,thesepotentialsappear sports.Afterretreat,thesamebrainstemnetworkcanfacilitate tosignalthenovelty,ratherthantheintensity,ofpainexperi- nociceptionifphysicalinjuriesaresustained.Heightenedsen- enced.41RepetitionsuppressiondoesnotoccurwithGBO;this sitivitytonoxiousstimuli(hyperalgesia)isprotectiveduringre- observationlendsfurthersupportfortheroleofGBOindeter- covery,promotingtissuehealing. miningtheemergenceofpainfromanoxiousstimulus. Dynamiccausalmodellingandstructuralequationmodel- Hyperalgesicstates lingareanalyticalmethodsthathavethepotentialtofurther We have demonstrated that, in healthy volunteers, the our understanding of pain. These techniques use data from mescencephalo-pontine reticular formation (MPRF), which EEG,MEG,fMRI,orPETstudiestoinvestigatebraindynamics projectstotheRVM,regulatestheexpressionofhyperalgesia andcorticalcoupling,42–44andarenowbeingappliedinthe indifferentcentralsensitizationstates.Forexample,cutane- fieldofpain.45Suchanalysestakeusbeyondasimplespatial ous capsaicin initiates central sensitization by activation of representationofpaintowardsanetwork-basedunderstand- peripheralnociceptors.Theresultishyperalgesiaanditsmain- ing of thiscondition thatbetter reflectsthedynamic nature tenanceinvolvesMPRFactivity.61Cessationofremifentanil,a ofthepainexperience. potenti.v.opioidcanalsoinduce62–64hyperalgesia.6566This opioid-inducedphenomenonwasinvestigatedinacombined Prefrontal-limbiccontrol psychophysical-fMRIstudy.64MPRFactivationwassignificantly NumerousimagingstudiesdemonstratethatthePFCcanregu- increasedonlyinhyperalgesicsubjectsandcorrelatednega- late the perception and behavioural expression of pain in tivelywiththedegreeofhyperalgesiasuggestingthatbrain- humans. The PFC is reciprocally connected to limbic regions stemactivityregulatesthebehaviouralexpressionofcentral and these connections form the neural substrates through sensitizationduringopioidwithdrawal. which the motivational-emotional aspects of pain can be regulated.Thebeliefthatpainfromnoxiousstimulationcan Personalityandpain becontrolledincreasestoleranceofsuchpainfulstimuli;this Thedegreetowhichlimbicandbrainstemregionsarefunction- analgesic effect involves the ventrolateral PFC.46 Individuals ally linked by neural activity can explain the influence of can be taught to reinterpret the significance of adverse personality on pain thresholds. Using fMRI, we found that events so that the negative emotional responses (e.g. fear) insular-brainstem functional connectivity67 was weaker in canbecontrolled.Duringsuccessfulreappraisal,thedorsolat- moreanxiousindividuals,whoalsohadlowerpainthresholds eral PFC engages the nucleus accumbens and suppresses when compared with less anxious individuals.68 Hence, the amygdalaactivation.47 48 Reducing the fearassociated with influence of personality traits on pain can be substantiated impending pain via extinction learning requires activation by mechanisms involving the descending control of pain; of the ventromedial PFC.49 50 However, anxiety levels can therefore, an anxious and pain-vigilant personality might increase if extinction learning fails to lower such fear,51 arisefromlesseffectiveintrinsicregulationofnociception.69 whichcanexacerbateapainexperienceviapara-hippocampal mechanisms.5253 Expectancyeffects Frontal-limbic regions are reciprocally connected to the Individualsoften‘getwhattheyexpect’fromanytreatmentfor brainstem.Thisneuroanatomicalconnectionpresentsanother pain. Expectancy is often used to explain the placebo effect routethroughwhichpaincanbecontrolled—viainhibitionof which is now substantiated by neuroimaging research as a neuroneswithinthespinalcordthattransmitnociceptiveinfor- genuinepsychobiologicalevent.Mechanismsforplaceboanal- mationtothebrain.Distractionfrompainhasbeenshownto gesia operate within the neural circuit for the descending involve activity within the cingulo-frontal cortex, thalamus, control of pain which include the ACC, PAG, and the spinal andPAG5455and,morerecently,suppressionofspinalcordac- dorsalhorn.59Morerecently,weinvestigatedwhethereffects tivity.56Likewise,placeboanalgesiainvokesandaltersactivity from positive and negative expectanciesof opioid analgesia insimilarregionswithinthecentralnervoussystem.57–59 engagedsimilarbrainregionsinhealthysubjects.70Theexperi- ment involved afixedand constantinfusion ofremifentanil. Thebrainstemintegrator Subjectsreportedslightlylowerpaincomparedwithbaseline Neuronesinthespinalcordthattransmitinformationregard- when the infusion commenced but knowledge of that was ingnoxiouseventstohighercentreswithinthebrainreceive hidden.Painreliefbecamesignificantlysuperiorwhensubjects 66 BJA Imagingpain weretoldthattheinfusionhadcommenced.Wheninformed becomeprominentonlyafterpeakbloodconcentrationswere that the infusion had ceased (though in reality the infusion achievedfromtheinfusion.Thesestudiesondrugandexpect- was continued), their ratings of pain returned to baseline. ancyeffectssuggest that expectancyeffects possess distinct ThefMRIdatarevealedthateffectsofpositiveandnegativeex- functional neuro-anatomies. Further research is needed to pectanciesonopioidanalgesiainvolvedistinctneuroanatom- explorethepossibilityofisolatingthecontributionofplacebo ical substrates. Expectation of poor analgesic effect was ornocebo effects on pain based on neuroimaging datafrom accompaniedbyactivationoftheentorhinalcortex,thehippo- clinicaldrugtrials.70 campalregionthatmediatestheexacerbationofpainthrough anxiety52andinhibition(negativeactivation)oftheperigenual Thebrainandchronicpain ACC (pgACC). Conversely, positive expectation of analgesic effect was associated with increased pgACCactivation, sug- Neuroimaging research in patients with chronic pain have gesting the descending mechanisms of pain inhibition were revealed altered structure, function, and neurochemistry in engaged. the frontal-limbic-brainstem regions compared with healthy Inourstudy,activationswithintheprimarysomatosensory, controls underscoring the importance of this descending insular,andmid-anteriorcingulatecorticesfollowedsubjective neuro-circuitfortheregulationofpaininhumans. reports of pain, with the intensity modulated by expectancy Convergingevidencesuggeststhatfrontal-limbicdysfunc- usingafixedremifentanildose.However,activationsinthese tion accompanies chronic pain (Fig. 1). Early fMRI studies same regions also correlate with pain modulated by varying have shown altered functional activation of PFC by noxious doses of remifentanil without psychological manipulations. stimuliinpatientswithchronicpain.Bothhypo-activity72–74 Thisraisesimportantquestionsaboutwhetherinnateplacebo and hyperactivity of the PFC75–77 have been observed. mechanisms in the brain might be altered fundamentally by Furtherevidenceoffrontal-limbicdysfunctioninchronicpain thepresenceoftheactiveopioid.Atlasandcolleagues71used statescomesfromPET-ligandstudieswhichsuggestsabnor- afullfactorialexperimentaldesignintheirrecentstudytoinves- mal opioidergic transmissionwithin frontal-limbic regions in tigate potential interaction effects between remifentanil and patients with chronic pain (e.g. complex regional pain syn- expectation on pain ratings and also brain activity. They did drome,78centralpost-strokepain,7980andfibromyalgia).81 notfindsignificantinteractioneffectsonpainratingsorbrain Numerousinvestigatorshaveusedvoxel-basedmorphometry activity.Painrelieffromremifentanilandexpectationwerein- (VBM) to demonstrate subtle but distinct alterations in distinguishablebasedonsubjectivepainratings.fMRIdidnot grey-matterdensitiesinthebrainsofpatientswithchronicpain reveal regions where interaction effects were significant. when compared with healthy controls. Distinct grey-matter Instead,expectancyandremifentanileffectsweredistinguish- changeshavebeenobservedintheprefrontal82–84andlimbic ablebecausetheyinfluenceddifferentbrainregions.Additional- regions85–88 in disparate chronic pain syndromes. However, ly, expectancy and remifentanil effects had different onsets. these MR-based changes do not necessarily imply neuronal Expectancy effects occurred soon after the subjects became loss. Furthermore as these MRI data are from cross-sectional aware the infusion had started, whereas remifentanil effects studiesinpatients,theycannotrevealwhetherthechronicpain Activation Opioidergic tone PFC hypo [72–74] Altered opioid receptor or hyper activity [75–77] Binding within limbic regions [78–81] Pain Depression PFC Anxiety limbic Fear Structural BrSt integrity Altered grey-matter Connectivity density [82–88] Altered frontal–striatal White matter tracts [84] functional connection [83, 84] Fig1 ThePFC-limbic-brainstem(BrSt)pathwaysisinvolvedinthedescendingmodulationofpain.Brainimagingstudies(referencesinbrackets) haverevealedalteredfunctionalactivation,structureandneurochemistryofprefrontalandlimbicregionsinassociationwithsymptomsreported bypatientswithchronicpain. 67 BJA LeeandTracey state is the cause or consequence of regional grey-matter symptoms.91–93Thesedatahavebeenextendedtochanges changes. Nonetheless, in rodent models of neuropathic pain, in cortical thickness which is a more quantitative measure neuronal remodelling,89 and altered MRI-based measures of that can be compared between studies, unlike grey-matter grey-matterstructures90occurinthefrontal-limbicregionsand densities.94 Seminowicz and colleagues demonstrated that correlate with ‘anxiety-like’ behaviours after the peripheral thedorsolateralPFCthickenedinpatientswithchroniclower nerve lesions. These animal data suggest that the brain can back pain who reported improved symptoms. Additionally, changeasaconsequenceofaberrantinputfromdamagednoci- thedegreeofthickeningcorrelatedwiththeextentofclinical ceptiveafferentsandpotentiallycontributetothestateofchronic improvement. Interestingly, when compared with controls, pain. patientswhosesymptomsimprovedstillhadthinnercortices LongitudinalVBMstudiesinpatientswithchronicpainnow intheDLPFC,thoughthedifferencedidnotreachstatisticalsig- suggest that abnormalities in grey-matter densities within nificance.Thisfindingmaywellreflectincompleterecoveryof specific brain regions can resolve with improvement in thepainstateinthatpatientcohort.However,itpromptsusto MRI-modality Physiological measure Neurovascular Activation maps Which brains regions show increased activity? FMRI-‐BOLD stimulus- evoked pain + Functional s n connectivity o Which brain regions show egi r closely correlated activity? n r ai ASL Br – Spontaneous, ongoing pain Brain regions Anatomical Grey matter White matter tracts Structural Where are grey matter densities Is anatomical connectivity Diffusion weighted or cortical thickness altered ? altered? Brain metabolites NAA Neurochemical MRS Cr/PCr Cho ml Glu/Gln Lac/Lip 4 3.5 3 2.5 2 1.5 1 0.5 Fig2 MRI-basedimagingmodalitiesthatmeasurethebrainfunction,structure,andneurochemistry.Bloodoxygenationleveldependent(BOLD) fMRIandASLtechniquescanmapthebrain’sneurovascularresponsesthatareassociatedwithpainsymptoms.Thesetechniquesrevealwhere activationorcerebralperfusionisalteredwithinthebrain.Moresophisticatedconnectivityanalysesprovideinformationregardingtheflowof neuralinformationwithinthebrain.AdvancedanalysesofanatomicalMRIscanscandemonstratesubtlechangesofgrey-matterdensitiesor alterationsintheconnectivityofwhite-mattertractsbetweenbrainregions.Magneticresonancespectroscopyquantifieschangesinbrainmeta- bolitestorevealpotentialareasofneuroinflammationorneurodegeneration. 68 BJA Imagingpain consider whether predisposition to chronic pain can be pre- integrate meditative practice and cognition-based therapy dictedbasedonprefrontalstructureorfunction. forthemanagementofchronicpain.106 The longitudinal fMRI study by Baliki and colleagues83 demonstrated the value of cortical-striatal connectivity in Thefuture predicting the 1-year outcome of patients with sub-acute MR-based brain imaging methods are developing rapidly back pain. Greater functional connectivity between the PFC (Fig.2).Usingquantitativearterialspinlabelling(ASL),weare andnucleusaccumbenspredictedpainpersistencesuggesting nowabletomeasureregionalchangesincerebralbloodflow thatthefrontal-striatalconnectionisinvolvedinthetransition thatcanbeassociatedwithtonic,ratherthanphasicneural from acute to chronic pain. Cortico-striatal connectivity is events.107–109Thisnon-invasivetechniqueprovidesanabso- knowntosub-serveanumberofneuropsychologicalfunctions lutemeasureofcerebralperfusionandprovidesuswiththeop- andisincreasedduringcognitivereappraisalofemotions,47a portunity to identify the neural correlates that underpin the skillthatmayberelevantforcopingwithchronicpain.Hence, unrelenting,spontaneousandongoingpainthatisthedomin- theincreasedfrontal-striatalFcobservedinpatients‘destined’ antcharacteristicofchronicpainsyndromes.SpinalcordfMRI forchronicpaincouldrepresentanadaptivemechanismthat isnowavailableandfurtherresearchisbeingundertakento waseventuallyoverwhelmed. enable simultaneous acquisition of neural activities (spinal dorsal horn, brainstem to the cortex) which, in combination withmicroneurography,102couldallowmappingoftheentire Braindynamics ‘pain-pathway’ (nociceptor to brain). Machine-learning algo- Inrecentyears,fMRIhasrevealedthatthebrainexhibitshighly rithmsimplementedin‘brain-reading’studiesprovidenewop- correlatedspontaneousandslow(,0.1Hz)oscillatoryactiv- portunities for dissecting the neural bases of pain ities,evenintheabsenceofanysensorystimulation.95Thebio- perception.110 Neuroimaging methods are also being devel- logical significance of these ‘resting’ state networks is still opedasclinicaltoolsthatrevealthemechanismsthatunderlie unclear.96Ithasbeensuggestedthatincomingsensorystimu- chronic pain in patients where disease pathophysiologyand lation sculpts the activity and temporal dynamics of these psychosocialinfluencesonpainareunclearbasedonclinical spontaneousnetworks,reducingthevariabilityoftheirfluctua- presentationalone.Thechallengenowistoimprovethesensi- tions,toallowstablepatternsofneuralfiringwithincortical tivityandspecificityofimagingtechniquestoallowtheirdevel- regions that are associated with stimulus perception.97 For opmentasdiagnostictoolsfortheindividualpatientinourpain example,baselinefluctuationsinfMRIactivitycaninfluence clinics. whetherpainarisesfromnoxiousstimulation.6898 Ourabilitytodetect,analyse,anddeterminechangesinthe Declarationofinterest brain’srestingstatenetworks(RSNs)hasimprovedconsider- Nonedeclared. ablyinrecentyears.Thedefault-modenetwork(DMN)isone such RSN and includes the medial PFC, medial temporal Funding lobes, posterior cingulate cortex, and retrosplenial cortex.99 Studies utilizing fMRI or PET have shown that patients with M.C.L.andI.T.aresupportedbyfundingfromtheNationalInsti- chronicpaincanhaveabnormalpatternsofintrinsicbrainac- tute of Health Research Oxford Biomedical Research Centre, tivityintheDMN.77100101Thesestudiesindicatethatresting WellcomeTrustandMedicalResearchCouncilofGreatBritain brain activity within various brain regions is associated in andNorthernIreland.OpenAccessisfundedbytheWellcome somewaywithspontaneouspaininthiscondition. Trust. ActivityinthevariousbrainregionsthatmakeuptheDMNis highlycorrelatedwhenan individual‘rests witheyes closed’ References and does not perform any explicit task. Hence, the DMN is 1 IASP.PartIII:Painterms:acurrentlistwithdefinitionsandnotes often associated with ‘mind-wandering’ which philosophical onusage.In:MerskeyM,BogdukN,eds.ClassificationofChronic andcontemplativetraditionsbelieveisassociatedwithunhap- Pain Descriptions of Chronic Pain Syndromes and Definitions of piness,incontrastto‘livinginthemoment’.102Meditationis PainTerms.Seattle:IASPPress,1994;209–14 associated with relative deactivation of the main nodes of 2 MorleyS.Psychologyofpain.BrJAnaesth2008;101:25–31 the DFN (medial prefrontal and posterior cingulate cortices) 3 AdamsF.TheLaw,OathofHippocrates,ontheSurgery,andonthe inexperiencedmeditators.103Experiencedpractitioners also SacredDisease.Gloucester,UnitedKingdom:DodoPress,2009 report that pain is less unpleasant during meditation. Their 4 TalbotJD,MarrettS,EvansAC,MeyerE,BushnellMC,DuncanGH. Multiple representations of pain in human cerebral cortex. subjectivereportswereassociatedwithdecreasedactivation Science1991;251:1355–8 inPFCsbutincreasedactivationinthesensoryregions,includ- 5 ApkarianAV,HashmiJA,BalikiMN.Painandthebrain:specificity ing the posterior insular.104 105 These observations suggest andplasticityofthebraininclinicalchronicpain.Pain2011;152: neuralmechanismsthatunderlie‘painmodulation’bymedita- S49–64 tion comprise increased sensory processing and decreased 6 TraceyI.Canneuroimagingstudiesidentifypainendophenotypes cognitive control, and contrast with established neural inhumans?NatRevNeurol2011;7:173–81 mechanismsfordescendingcontrolofpain.Suchmechanisms 7 ApkarianAV,BalikiMN,GehaPY.Towardsatheoryofchronicpain. may explain the efficacy of psychological approaches that ProgNeurobiol2009;87:81–97 69 BJA LeeandTracey 8 TraceyI,MantyhPW.Thecerebralsignatureforpainperception 31 AlbaneseMC,DuerdenEG,RainvilleP,DuncanGH.Memorytraces anditsmodulation.Neuron2007;55:377–91 ofpaininhumancortex.JNeurosci2007;27:4612–20 9 ApkarianAV,BushnellMC,TreedeRD,ZubietaJK.Humanbrain 32 Fairhurst M, Fairhurst K, Berna C, Tracey I. An fMRI study mechanisms of pain perception and regulation in health and exploring the overlap and differences between neural disease.EurJPain2005;9:463–84 representationsofphysicalandrecalledpain.PLoSONE2012;7: 10 MelzackR.Painandtheneuromatrixinthebrain.JDentEduc2001; e48711 65:1378–82 33 OstrowskyK,MagninM,RyvlinP,IsnardJ,GuenotM,MauguiereF. 11 SingerT, SeymourB, O’Doherty J, KaubeH, DolanRJ, Frith CD. Representation of pain and somatic sensation in the human Empathyforpaininvolvestheaffectivebutnotsensorycompo- insula:astudyofresponsestodirectelectricalcorticalstimulation. nentsofpain.Science2004;303:1157–62 CerebCortex2002;12:376–85 12 KrossE,BermanMG,MischelW,SmithEE,WagerTD.Socialrejec- 34 Mazzola L, Isnard J, Peyron R, Mauguiere F. Stimulation of the tion shares somatosensory representations with physical pain. humancortexandtheexperienceofpain:WilderPenfield’sobser- ProcNatlAcadSciUSA2011;108:6270–5 vationsrevisited.Brain2012;135:631–40 13 EisenbergerNI,LiebermanMD,WilliamsKD.Doesrejectionhurt? 35 IannettiGD,NiazyRK,WiseRG,etal.Simultaneousrecordingof AnFMRIstudyofsocialexclusion.Science2003;302:290–2 laser-evokedbrainpotentialsandcontinuous,high-fieldfunction- 14 RaijTT,NumminenJ,NarvanenS,HiltunenJ,HariR.Braincorre- almagneticresonanceimaginginhumans.Neuroimage2005;28: lates of subjective reality of physically and psychologically 708–19 inducedpain.ProcNatlAcadSci2005;102:2147–51 36 LeeMC,MourauxA,IannettiGD.Characterizingthecorticalactiv- 15 RainvilleP,DuncanGH,PriceDD,CarrierB,BushnellMC.Painaffect itythroughwhichpainemergesfromnociception.JNeurosci2009; encoded in human anterior cingulate but not somatosensory 29:7909–16 cortex.Science1997;277:968–71 37 Tallon-Baudry C. On the neural mechanisms subserving con- 16 CoghillRC,SangCN,MaisogJM,IadarolaMJ.Painintensitypro- sciousnessandattention.FrontPsychol2011;2:397 cessingwithinthehumanbrain:abilateral,distributedmechan- 38 FellJ,FernandezG,KlaverP,ElgerCE,FriesP.Issynchronizedneur- ism.JNeurophysiol1999;82:1934–43 onalgammaactivityrelevantforselectiveattention?BrainRes 17 BingelU,QuanteM,KnabR,BrommB,WeillerC,BuchelC.Subcor- BrainResRev2003;42:265–72 ticalstructuresinvolvedinpainprocessing:evidencefromsingle- 39 GrossJ,SchnitzlerA,TimmermannL,PlonerM.Gammaoscilla- trialfMRI.Pain2002;99:313–21 tionsinhumanprimarysomatosensorycortexreflectpainpercep- 18 BornhovdK,QuanteM,GlaucheV,BrommB,WeillerC,BuchelC. tion.PLoSBiology2007;5:e133 Painful stimuli evoke different stimulus-response functions in 40 ZhangZG,HuL,HungYS,MourauxA,IannettiGD.Gamma-band the amygdala, prefrontal, insula and somatosensory cortex: a oscillationsintheprimarysomatosensorycortex–adirectandob- single-trialfMRIstudy.Brain2002;125:1326–36 ligatorycorrelateofsubjectivepainintensity.JNeurosci2012;32: 19 BerthierM,StarksteinS,LeiguardaR.Asymboliaforpain:asensory- 7429–38 limbicdisconnectionsyndrome.AnnNeurol1988;24:41–9 41 Iannetti GD, Hughes NP, Lee MC, Mouraux A. Determinants of 20 Ploner M, Freund HJ, Schnitzler A. Pain affect without pain laser-evokedEEGresponses:painperceptionorstimulussaliency? sensationinapatientwithapostcentrallesion.Pain1999;81: JNeurophysiol2008;100:815–28 211–4 42 FastenrathM,FristonKJ,KiebelSJ.Dynamicalcausalmodellingfor 21 Wilkinson HA, Davidson KM, Davidson RI. Bilateral anterior M/EEG:spatialandtemporalsymmetryconstraints.Neuroimage cingulotomyforchronicnoncancerpain.Neurosurgery1999;45: 2009;44:154–63 1129–34;discussion34–6 43 FristonK.Causalmodellingandbrainconnectivityinfunctional 22 HeadH,HolmesG.Sensorydisturbancesfromcerebrallesions. magneticresonanceimaging.PLoSBiology2009;7:e33 Brain1911;34:102–254 44 FristonKJ,DolanRJ.Computationalanddynamicmodelsinneu- 23 PenfieldW,BoldreyE.Somaticmotorandsensoryrepresentation roimaging.Neuroimage2010;52:752–65 inthecerebralcortexofmanasstudiedbyelectricalstimulation. 45 LiangM,MourauxA,IannettiGD.Parallelprocessingofnociceptive Brain1937;60:389–443 andnon-nociceptivesomatosensoryinformationinthehuman 24 BolyM,FaymonvilleME,SchnakersC,etal.Perceptionofpaininthe primaryandsecondarysomatosensorycortices:evidencefrom minimallyconsciousstatewithPETactivation:anobservational dynamic causal modeling of functional magnetic resonance study.LancetNeurol2008;7:1013–20 imagingdata.JNeurosci2011;31:8976–85 25 WoolfCJ,MaQ.Nociceptors–noxiousstimulusdetectors.Neuron 46 WiechK,KalischR,WeiskopfN,PlegerB,StephanKE,DolanRJ. 2007;55:353–64 Anterolateralprefrontalcortexmediatestheanalgesiceffectof expectedandperceivedcontroloverpain.JNeurosci2006;26: 26 ToddAJ.Neuronalcircuitryforpainprocessinginthedorsalhorn. 11501–9 NatRevNeurosci2010;11:823–36 47 WagerTD,DavidsonML,HughesBL,LindquistMA,OchsnerKN. 27 Frot M, Mauguiere F. Dual representation of pain in the Prefrontal-subcortical pathways mediating successful emotion operculo-insularcortexinhumans.Brain2003;126:438–50 regulation.Neuron2008;59:1037–50 28 FrotM,MauguiereF,MagninM,Garcia-LarreaL.Parallelprocessing 48 OchsnerKN,GrossJJ.Cognitiveemotionregulation:insightsfrom ofnociceptiveA-deltainputsinSIIandmidcingulatecortexin socialcognitiveandaffectiveneuroscience.CurrDirPsycholSci humans.JNeurosci2008;28:944–52 2008;17:153–8 29 CraigAD.Painmechanisms:labeledlinesversusconvergencein 49 PhelpsEA,DelgadoMR,NearingKI,LeDouxJE.Extinctionlearning centralprocessing.AnnuRevNeurosci2003;26:1–30 inhumans:roleoftheamygdalaandvmPFC.Neuron2004;43: 30 BrooksJC,ZambreanuL,GodinezA,CraigAD,TraceyI.Somatoto- 897–905 pic organisation of the human insula to painful heat studied 50 Quirk GJ, Garcia R, Gonzalez-Lima F. Prefrontal mechanisms withhighresolutionfunctionalimaging.Neuroimage2005;27: inextinctionofconditionedfear.BiolPsychiatry2006;60:337–43 201–9 70 BJA Imagingpain 51 SchillerD,LevyI,NivY,LeDouxJE,PhelpsEA.Fromfeartosafety 70 BingelU,WanigasekeraV,WiechK,etal.Theeffectoftreatment andback:reversaloffearinthehumanbrain.JNeurosci2008; expectationondrug efficacy:imagingtheanalgesicbenefitof 28:11517–25 theopioidremifentanil.SciTranslMed2011;3:70ra14 52 PloghausA,NarainC,BeckmannCF,etal.Exacerbationofpainby 71 Atlas LY, Whittington RA, Lindquist MA, Wielgosz J, Sonty N, anxiety is associated with activity in a hippocampal network. WagerTD.Dissociableinfluencesofopiatesandexpectationson JNeurosci2001;21:9896–903 pain.JNeurosci2012;32:8053–64 53 KongJ,GollubRL,PolichG,etal.Afunctionalmagneticresonance 72 Mayer EA, Berman S, Suyenobu B, et al. Differences in imagingstudyontheneuralmechanismsofhyperalgesicnocebo brain responses to visceral pain between patients with effect.JNeurosci2008;28:13354–62 irritablebowelsyndromeandulcerativecolitis.Pain2005;115: 54 TraceyI,PloghausA,GatiJS,etal.Imagingattentionalmodulation 398–409 ofpainintheperiaqueductalgrayinhumans.JNeurosci2002;22: 73 JonesAK,DerbyshireSW.Reducedcorticalresponsestonoxious 2748–52 heatinpatientswithrheumatoidarthritis.AnnRheumDis1997; 55 Valet M, Sprenger T, Boecker H, et al. Distraction modulates 56:601–7 connectivity of the cingulo-frontal cortex and the midbrain 74 Gundel H, Valet M, Sorg C, et al. Altered cerebral response to duringpain—anfMRIanalysis.Pain2004;109:399–408 noxiousheatstimulationinpatientswithsomatoformpaindis- 56 SprengerC,EippertF,FinsterbuschJ,BingelU,RoseM,BuchelC. order.Pain2008;137:413–21 Attention modulates spinal cord responses to pain. Curr Biol 75 ApkarianAV,ThomasPS,KraussBR,SzeverenyiNM.Prefrontalcor- 2012;22:1019–22 tical hyperactivity in patients with sympathetically mediated 57 PetrovicP,KalsoE,PeterssonKM,IngvarM.Placeboandopioid chronicpain.NeurosciLett2001;311:193–7 analgesia—imaging a shared neuronal network. Science 2002; 76 GracelyRH,GeisserME,GieseckeT,etal.Paincatastrophizingand 295:1737–40 neuralresponsestopainamongpersonswithfibromyalgia.Brain 58 EippertF,BingelU,SchoellED,etal.Activationoftheopioidergic 2004;127:835–43 descending pain control system underlies placebo analgesia. 77 BalikiMN,ChialvoDR,GehaPY,etal.Chronicpainandtheemotion- Neuron2009;63:533–43 albrain:specificbrainactivityassociatedwithspontaneousfluc- 59 Eippert F, Finsterbusch J, Bingel U, Buchel C. Direct evidence tuationsofintensityofchronicbackpain.JNeurosci2006;26: forspinalcordinvolvementinplaceboanalgesia.Science2009; 12165–73 326:404 78 KlegaA,EberleT,BuchholzHG,etal.Centralopioidergicneuro- 60 Fields H, Basbaum AI, Heinricher MM. Central nervous system transmission in complex regional pain syndrome. Neurology mechanismsofpainmodulation.In:McMahonS,KoltzenburgM, 2010;75:129–36 eds. Textbook of Pain. New York: Churchhill Livingstone, 2006; 79 WillochF,SchindlerF,WesterHJ,etal.Centralpoststrokepain 125–30 and reduced opioid receptor binding within pain processing 61 Lee MC, Zambreanu L, Menon DK, Tracey I. Identifying brain circuitries: a [11C]diprenorphine PET study. Pain 2004; 108: activityspecificallyrelatedtothemaintenanceandperceptual 213–20 consequence of central sensitization in humans. J Neurosci 80 MaarrawiJ,PeyronR,MertensP,etal.Differentialbrainopioidre- 2008;28:11642–9 ceptoravailabilityincentralandperipheralneuropathicpain.Pain 62 Luginbuhl M, Gerber A, Schnider TW, Petersen-Felix S, Arendt- 2007;127:183–94 Nielsen L, Curatolo M. Modulation of remifentanil-induced 81 HarrisRE,ClauwDJ,ScottDJ,McLeanSA,GracelyRH,ZubietaJK. analgesia, hyperalgesia, and tolerance by small-dose Decreasedcentralmu-opioidreceptoravailabilityinfibromyalgia. ketamineinhumans.AnesthAnalg2003;96:726–32,tableof JNeurosci2007;27:10000–6 contents 82 ApkarianAV,SosaY,SontyS,etal.Chronicbackpainisassociated 63 JensenKB,LonsdorfTB,SchallingM,KosekE,IngvarM.Increased with decreased prefrontal and thalamic gray matter density. sensitivity to thermal pain following a single opiate dose is JNeurosci2004;24:10410–5 influenced by the COMTval(158)met polymorphism. PLoS ONE 83 BalikiMN,PetreB,TorbeyS,etal.Corticostriatalfunctionalcon- 2009;4:e6016 nectivity predicts transition to chronic back pain. Nat Neurosci 64 Wanigasekera V, Lee MC, Rogers R, Hu P, Tracey I. Neural 2012 correlatesofaninjury-freemodelofcentralsensitizationinduced 84 GehaPY,BalikiMN,HardenRN,BauerWR,ParrishTB,ApkarianAV. byopioidwithdrawalinhumans.JNeurosci2011;31:2835–42 ThebraininchronicCRPSpain:abnormalgray-whitematterinter- 65 PetersenKL,JonesB,SegredoV,DahlJB,RowbothamMC.Effectof actionsinemotionalandautonomicregions.Neuron2008;60: remifentanilonpainandsecondaryhyperalgesiaassociatedwith 570–81 the heat–capsaicin sensitization model in healthy volunteers. 85 Draganski B, Moser T, Lummel N, et al. Decrease of thalamic Anesthesiology2001;94:15–20 gray matter following limb amputation. Neuroimage 2006; 31: 66 Angst MS, Koppert W, Pahl I, Clark DJ, Schmelz M. Short- 951–7 terminfusionofthemu-opioidagonistremifentanilinhumans 86 DavisKD,PopeG,ChenJ,KwanCL,CrawleyAP,DiamantNE.Cor- causeshyperalgesiaduringwithdrawal.Pain2003;106:49–57 ticalthinninginIBS:implicationsforhomeostatic,attention,and 67 SmithSM.ThefutureofFMRIconnectivity.Neuroimage2012;62: painprocessing.Neurology2008;70:153–4 1257–66 87 Schmidt-WilckeT,LuerdingR,WeigandT,etal.Striatalgreymatter 68 Ploner M, Lee MC, Wiech K, Bingel U, Tracey I. Prestimulus increaseinpatientssufferingfromfibromyalgia—avoxel-based functionalconnectivitydeterminespainperceptioninhumans. morphometrystudy.Pain2007;132Suppl1:S109–16 ProcNatlAcadSciUSA2010;107:355–60 88 KuchinadA,SchweinhardtP,SeminowiczDA,WoodPB,ChizhBA, 69 FairDA,DosenbachNUF,ChurchJA,etal.Developmentofdistinct BushnellMC.Acceleratedbraingraymatterlossinfibromyalgia controlnetworksthroughsegregationandintegration.ProcNatl patients: premature aging of the brain? J Neurosci 2007; 27: AcadSciUSA2007;104:13507–12 4004–7 71 BJA LeeandTracey 89 MetzAE,YauHJ,CentenoMV,ApkarianAV,MartinaM.Morpho- 101 NapadowV,LaCountL,ParkK,As-SanieS,ClauwDJ,HarrisRE.In- logical and functional reorganization of rat medial prefrontal trinsicbrainconnectivityinfibromyalgiaisassociatedwithchronic cortex in neuropathic pain. Proc Natl Acad Sci USA 2009; 106: painintensity.ArthritisRheum2010;62:2545–55 2423–8 102 SchmelzM,SchmidtR.Microneurographicsingle-unitrecordings 90 SeminowiczDA,LaferriereAL,MillecampsM,YuJS,CoderreTJ, toassessreceptivepropertiesofafferenthumanC-fibers.Neurosci Bushnell MC. MRI structural brain changes associated with Lett2010;470:158–61 sensoryandemotionalfunctioninaratmodeloflong-termneuro- 103 BrewerJA,WorhunskyPD,GrayJR,TangYY,WeberJ,KoberH. pathicpain.Neuroimage2009 Meditationexperienceisassociatedwithdifferencesindefault 91 ObermannM,NebelK,SchumannC,etal.Graymatterchanges modenetworkactivityandconnectivity.ProcNatlAcadSciUSA relatedtochronicposttraumaticheadache.Neurology2009;73: 2011;108:20254–9 978–83 104 Gard T, Holzel BK, Sack AT, et al. Pain Attenuation through 92 Rodriguez-RaeckeR,NiemeierA,IhleK,RuetherW,MayA.Brain mindfulnessisassociatedwithdecreasedcognitivecontroland gray matter decrease in chronic pain is the consequence and increasedsensoryprocessinginthebrain.CerebCortex2012;22: notthecauseofpain.JNeurosci2009;29:13746–50 2692–702 93 Gwilym SE, Filippini N, Douaud G, Carr AJ, Tracey I. Thalamic 105 GrantJA,CourtemancheJ,RainvilleP.Anon-elaborativemental atrophyassociatedwithpainfulosteoarthritisofthehipisrevers- stance and decoupling of executive and pain-related cortices ibleafterarthroplasty:alongitudinalvoxel-basedmorphometric predictslowpainsensitivityinZenmeditators.Pain2011;152: study.ArthritisRheum2010;62:2930–40 150–6 94 SeminowiczDA,WidemanTH,NasoL,etal.Effectivetreatmentof 106 VeehofMM,OskamMJ,SchreursKM,BohlmeijerET.Acceptance- chronic low back pain in humans reverses abnormal brain basedinterventionsforthetreatmentofchronicpain:asystemat- anatomyandfunction.JNeurosci2011;31:7540–50 icreviewandmeta-analysis.Pain2011;152:533–42 95 BiswalB,YetkinFZ,HaughtonVM,HydeJS.Functionalconnectivity 107 OwenDG,BureauY,ThomasAW,PratoFS,StLawrenceKS.Quan- inthemotorcortexofrestinghumanbrainusingecho-planarMRI. tificationofpain-inducedchangesincerebralbloodflowbyperfu- MagnResonMed1995;34:537–41 sionMRI.Pain2008;136:85–96 96 SmithK.Neuroscience:idleminds.Nature2012;489:356–8 108 SegerdahlAR,XieJ,PatersonK,RamirezJD,TraceyI,BennettDL. 97 SchwarzkopfDS,ReesG.Neuroscience.Brainactivitytorelyon? Imagingtheneuralcorrelatesofneuropathicpainandpleasur- Science2010;327:43–4 ablereliefassociatedwithinheritederythromelalgiainasingle 98 BolyM,BalteauE,SchnakersC,etal.Baselinebrainactivityfluctua- subjectwithquantitativearterialspinlabelling.Pain2012;153: tionspredictsomatosensoryperceptioninhumans.ProcNatlAcad 1122–7 SciUSA2007;104:12187–92 109 HowardMA,KrauseK,KhawajaN,etal.Beyondpatientreported 99 FoxMD,SnyderAZ,VincentJL,RaichleME.Intrinsicfluctuations pain:perfusionmagneticresonanceimagingdemonstratesre- withincorticalsystemsaccountforintertrialvariabilityinhuman producible cerebral representation of ongoing post-surgical behavior.Neuron2007;56:171–84 pain.PLoSONE2011;6:e17096 100 NapadowV,KimJ,ClauwDJ,HarrisRE.Decreasedintrinsicbrain 110 BrodersenKH,WiechK,LomakinaEI,etal.Decodingthepercep- connectivityisassociatedwithreducedclinicalpaininfibromyal- tionofpainfromfMRIusingmultivariatepatternanalysis.Neuro- gia.ArthritisRheum2012;64:2398–403 image2012;63:1162–70 Handlingeditors:L.ColvinandD.J.Rowbotham 72

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.