ebook img

image guided respiratory motion analysis PDF

151 Pages·2008·6.05 MB·Tagalog
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview image guided respiratory motion analysis

IMAGE GUIDED RESPIRATORY MOTION ANALYSIS: TIME SERIES AND IMAGE REGISTRATION by DanRuan Adissertationsubmittedinpartialfulfillment oftherequirements forthedegreeof DoctorofPhilosophy (ElectricalEngineering: Systems) inTheUniversityofMichigan 2008 DoctoralCommittee: ProfessorJeffreyA.Fessler,Chair ProfessorAlfredO.HeroIII ProfessorCharlesR.Meyer AssociateProfessorJamesM.Balter AssistantProfessorSelimEsedog¯lu DanRuan 2008 c (cid:13) AllRightsReserved ToMum,Dad,andmybestfriendHuaHe. ii ACKNOWLEDGEMENTS I thank my previous advisor Professor David A. Castan˜on at Boston University, who trustinglyledmetothedoorofappliedmathematics,andlet mewanderatwill. I enjoyed thefreedomofexplorationandowemyconfidencetoperformindependentresearchtohis encouragement. ThisworkwouldnotbepossiblewithoutmyadvisorProfessorJeffreyA.Fessler. Jeffis a natural; uncork the bottle and the charm flows. Working with him is fun and enjoyable. I thank Professor James M. Balter for welcoming me to Michigan with open arms, and generously showered me with support and friendship. I am grateful to Professor Alfred O. Hero, whose intellectual power and enlightening guidance have always inspired me to push for better. Much thanks goes to Professor Charles R. Meyer for his expertise, valuable feedback, and patience with a humble graduate student like me. I am indebted to ProfessorSelim Esedog¯lu, from whom I appreciated the professionalism, ambition and passion for truth of a young scientist. I thank Professor Marc. L. Kessler for motivating much of the research work, offering computational support and data access. I have also benefited from discussions with ProfessorWilliam C. Karl (BU), ProfessorJeffrey Rauch (UMich), Professor Susan Murphy (Umich), Professor Paul Keall (Stanford), Professor Steve B. Jiang (UCSC), Dr. Gregory C. Sharp (Mass General Hospital) and many other peopleovertheyears. My colleagues and teammates have always been a source of wisdom for me, they have made my time in Michigan a pleasant experience. I wish to acknowledge my lab- iii mates: MattJacobson,AnastasiaYendiki,YingyingZhang,RongpingZeng,EranBashan, SomeshSrivastava,SeYoungChun,KimKhalsa,AmandaFunai,HugoShi,TedWayand Yong Long. Special thanks goes to Drs. Derek Justice, Raviv Raich, Mark Kliger, with whom I enjoyed many vivid discussions. Michigan Argentina Tango club has been the ultimatefunplaceformylastyearofPh.Dwork,anditsactivitiesconstitutesmuchofmy healthybreaksfrom work. Finally, I am indebted to my family. I feel sorry for not being there at his bedside for mylategrandfatherduringtheprocessoffinishingthisthesis. Ithankmyparentsfortheir love, care, and nurtue with freedom and critical thinking. My appreciation goes to Dr. HuaHe,whosegoodhumorandsensitivitynotonlybroughtmemuchhappiness,butalso supported me through difficult times. Last but not least, I am grateful to my American grandmother, Ms. Natalie Rammel, who has taught me to appreciate life, and to always smile. ThisworkwasfinanciallysupportedinpartbyNIH grantP01-CA59827,International studentfellowshipandBarbourfellowshipattheUniversityofMichigan. iv TABLEOFCONTENTS DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii LISTOFFIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii LISTOFTABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x LISTOFAPPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi ABSTRACT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii CHAPTER I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 II. AdaptiveEllipseTrackinganditsApplicationinEstimatingRespiratoryDrifting1 . . 3 2.1 EllipseFittingModelforStaticData . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 AnIterativeAlgorithmforSolvingtheGeneralizedEigenProblem . . . . . . . . . 5 2.3 AdaptiveEllipseFitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3.1 SlidingWindowAdaptation . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3.2 DiscountingAdaptation . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4 ApplicationtoTrackingRespiratoryMeanDrift . . . . . . . . . . . . . . . . . . . 10 2.4.1 ApplicationBackground . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4.2 ExperimentSetup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.5 GeneralizedFittingCostforRobustEstimation . . . . . . . . . . . . . . . . . . . . 19 2.6 Appendix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 III. RegularizedNonrigidImageRegistration. . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.1 GeneralOptimizationFormulationforRegularizedRegistration . . . . . . . . . . . 27 3.1.1 DataDissimilarity(Infidelity)Measure . . . . . . . . . . . . . . . . . . 27 3.2 Tissue-typeDependentRigidityRegularization . . . . . . . . . . . . . . . . . . . . 28 3.2.1 RegularizationDesign . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2.2 ExperimentandTestResults . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.3 Discontinuity-PreservingRegularization . . . . . . . . . . . . . . . . . . . . . . . 37 3.3.1 IndiscriminateDiscontinuityPreservingRegularization . . . . . . . . . 39 3.3.2 DiscriminativeShearPreservingRegularizer . . . . . . . . . . . . . . . 45 1Thischapterisbasedonmaterialsfrom[97,99]. v 3.3.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.4 EquivalenceBetweenTwoL Div-L CurlRegularizations⋆ . . . . . . . . . . . . . 60 2 1 IV. Fundamental Performance Analysis in Image Registration Problems: Crame´r-Rao BoundanditsVariations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.1 Model-theIdealv.s. CommonlyUsed . . . . . . . . . . . . . . . . . . . . . . . . 64 4.2 Crame´r-RaoBoundanditsAsymptoticBehavior . . . . . . . . . . . . . . . . . . . 65 4.3 RelatingtoMCRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.4 AnAlternatingMinimizationAlgorithm . . . . . . . . . . . . . . . . . . . . . . . 69 4.5 ComparisonwithConventionalMethods: CRBv.s. M-estimate . . . . . . . . . . . 70 4.6 ASimpleExample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 V. SummaryandFutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.2 FutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 vi LISTOFFIGURES Figure 2.1 Effectofdriftcompensationforgatingsystem.. . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 Illustrationofellipsefittingperformanceoftheproposedmethod. . . . . . . . . . . . . . 14 2.3 Comparisonofmovingaverage(MA)andellipsefittingestimatorformeanpositiontracking. 15 2.4 EffectofwindowlengthLontrackingperformance. . . . . . . . . . . . . . . . . . . . . . 16 2.5 Effectofdiscountfactorg ontrackingperformance. . . . . . . . . . . . . . . . . . . . . . 16 2.6 MeantrackingforRPMdatawithwindowsizedeterminedbyperiodestimator. . . . . . . 17 2.7 OverallRMSerror(acrossallpatients)asafunctionofsamplingrate. . . . . . . . . . . . 17 2.8 Evolutionofrobustfittedellipsewiththegradientprojectionmethod.. . . . . . . . . . . . 23 3.1 Illustrationofstiffnessfactors(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 · 3.2 DifferentviewsoftheoriginalCTdataandtissueinformationinferredfromit. . . . . . . . 32 3.3 Deformedsourceimage(green)overlaidwithtargetimage(darkblue)forcomparisonof intensitymatch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.4 Geometryextractedfromregistrationresults: target(blue)vs. deformedsource(white). . . 34 3.5 IllustrationoflandmarkdataonthoraxCT. . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.6 Registrationerrorfordifferentmethods: TPS,BSPandRegularizedBSP. . . . . . . . . . 36 3.7 Comparisonof3-dimensionalEuclideanlandmarkregistrationerror. . . . . . . . . . . . . 37 3.8 Truncatedquadraticregularizationwithvaryingscale. . . . . . . . . . . . . . . . . . . . . 42 3.9 Registration comparison between Tikhonov (Tik) and Truncated quadratic (TQ) regular- izations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.10 Comparisonofdeformationfields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.11 Regularizationresultsforacolliding/foldingflow. . . . . . . . . . . . . . . . . . . . . . . 47 3.12 Regularizationresultsforavacuumgeneratingflow. . . . . . . . . . . . . . . . . . . . . . 48 vii 3.13 Regularizationresultsforaslidingflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.14 Regularizationresultsforaflowwithsimultaneouslysignificantdivergenceandcurlcom- ponents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.15 Simulatedslidingblocksandthegroundtruthdeformation. . . . . . . . . . . . . . . . . . 50 3.16 Registrationperformancecomparison: registrationerrorv.s. intensitydiscrepancy. . . . . . 51 3.17 Bestestimationresults(relativetothegroundtruthdeformation)fromvariousregulariza- tionmethods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.18 RegistrationresultsofCTdatawithvariousregularizations. . . . . . . . . . . . . . . . . . 54 3.19 VerticalcomponentofthedeformationfromCTregistration. . . . . . . . . . . . . . . . . 55 3.20 QuiverplotoverlainwithimageintensityforL regularizedimageregistration. . . . . . . 55 1 3.21 QuiverplotoverlainwithimageintensityforL regularizedimageregistration. . . . . . . 56 2 3.22 Quiverplotoverlainwithimageintensityfordiscriminatelyregularizedimageregistration. 56 3.23 Coronalviewfor3Ddiscriminateregistration. . . . . . . . . . . . . . . . . . . . . . . . . 57 3.24 Sagittalviewfor3Ddiscriminateregistration. . . . . . . . . . . . . . . . . . . . . . . . . 58 3.25 Illustrationforthethreecasesoffeasibleregion: strictlyconvexandeverywheredifferen- tiable,nonstrictlyconvexandeverywheredifferentiable,nondifferentiable. . . . . . . . . . 61 3.26 Equivalencebetweenunconstrainedandconstrainedformulation. . . . . . . . . . . . . . . 62 4.1 BiasandvarianceapproximationobtainedfromexplicitsolutionforconventionalM-estimate. 77 4.2 BiasandvarianceapproximationforM-estimateobtainedfromexpansionabout(a¯,z¯). . . 79 4.3 BiasandvarianceapproximationofM-estimateobtainedfromexpansionabout(aˇ,zˇ). . . 83 4.4 BiasandvarianceapproximationofML-estimateobtainedfromexpansionabout(a¯,z¯).. . 89 A.1 Properinitializationhelpstoavoidsuboptimal(nonphysical)localminimum. . . . . . . . 99 A.2 Clinicalsignificantperformancemetricsv.s. RootMeanSquaredError(RMSE).. . . . . . 99 A.3 RMSE,Doseerror(%),PTVmargin(cm),95%dosecoverageofmodifiedcosinemodel v.s. projectionmodel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 A.4 Trajectoryfittingwithprojectionmodelandmodifiedcosinemodel. . . . . . . . . . . . . 101 A.5 Predictionofbreathingtrajectorywithprojectionmodel. . . . . . . . . . . . . . . . . . . 102 B.1 State-spacedistanceandlocalregressionweightassignment. . . . . . . . . . . . . . . . . 105 B.2 Typicalbreathingtrajectories: (a)rapidyetregularbreath;(b)slowyetirregularbreath. . . 109 viii

Description:
mates: Matt Jacobson, Anastasia Yendiki, Yingying Zhang, Rongping Zeng, Eran Bashan,. Somesh Srivastava, Se Young Chun, Kim Khalsa, Amanda
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.