IMAGE-BASED TRANSFORMATION OF VIEWPOINT AND SCENE APPEARANCE By StevenMaxwellSeitz A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (COMPUTER SCIENCES) atthe UNIVERSITYOFWISCONSIN–MADISON 1997 IMAGE-BASED TRANSFORMATION OF VIEWPOINT AND SCENE APPEARANCE By StevenMaxwellSeitz A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (COMPUTER SCIENCES) atthe UNIVERSITYOFWISCONSIN–MADISON 1997 i Abstract Thisthesisaddressestheproblemofsynthesizingimagesofrealscenesunderthree-dimensionaltrans- formations in viewpoint and appearance. Solving this problem enables interactive viewing of remote scenes on a computer, inwhich a user can move avirtual camera through the environment and virtu- ally paint or sculpt objects in the scene. It is demonstrated that a variety of three-dimensional scene transformations canberenderedonavideodisplaydevicebyapplyingsimpletransformations toaset of basis images of the scene. The virtue of these transformations is that they operate directly on im- agesandrecoveronlythesceneinformation thatisrequired inordertoaccomplish thedesired effect. Consequently, they are applicable in situations where accurate three-dimensional models aredifficult orimpossible toobtain. Acentraltopicistheproblemofviewsynthesis,i.e.,renderingimagesofarealscenefromdifferent cameraviewpointsbyprocessingasetofbasisimages. Towardsthisend,twoalgorithmsaredescribed thatwarpandresamplepixelsinasetofbasisimagestoproducenewimagesthatarephysically-valid, i.e., they correspond to what a real camera would see from the specified viewpoints. Techniques for synthesizing other types of transformations, e.g., non-rigid shape and color transformations, are also discussed. Thetechniques arefoundtoperform wellonawidevarietyofrealandsynthetic images. A basic question is uniqueness, i.e., for which views is the appearance of the scene uniquely de- termined from the information present in the basis views. An important contribution is a uniqueness result for the no-occlusion case, which proves that all views on the line segment between the two camera centers areuniquely determined from twouncalibrated viewsofascene. Importantly, neither densepixelcorrespondencenorcamerainformationisneeded. Fromthisresult,aviewmorphingalgo- rithmisderivedthatproduceshighqualityviewpointandshapetransformationsfromtwouncalibrated images. To treat the general case of many views, a novel voxel coloring framework is introduced that facilitates the analysis of ambiguities in correspondence and scene reconstruction. Using this frame- work, anewtype of scene invariant, called color invariant, isderived, whichprovides intrinsic scene information useful for correspondence and view synthesis. Based on this result, an efficient voxel- based algorithm is introduced to compute reconstructions and dense correspondence from a set of basis views. This algorithm has several advantages, most notably its ability to easily handle occlu- sion and views that are arbitrarily far apart, and its usefulness for panoramic visualization of scenes. These factors also make the voxel coloring approach attractive as a means for obtaining high-quality three-dimensional reconstructions fromphotographs. ii Acknowledgements Thisthesisisdedicatedtomyparents,GaryandSheilaSeitz,whotaughtmethateducationisalifelong pursuitandinspired metopursueaPh.D. I wish to thank Chuck Dyer for his guidance and support throughout my graduate studies. His advice and infallible judgement on all matters academic and otherwise have been a tremendous in- fluence and an invaluable resource for me. I am very fortunate to have had the opportunity to work withhimduringmytimeatU.W.Madison. Iwouldalsoliketothanktheothermembersofmythesis committee, Nicola Ferrier, Vladimir Lumelsky, Vadim Shapiro, and Jude Shavlik for their comments andinsights onthiswork. I am especially grateful to Larry Rowefor introducing meto scientific research as an undergrad- uate atU.C.Berkeley and forencouraging metopursue graduate studies incomputer science. Kyros Kutulakos contributed keyideastothisworkandprovided astronginfluence bothaspeerandcollab- orator. In the course of graduate studies, I have benefited from interactions with many people. I would especiallyliketothankBrianRoddy,AaronSeitz,KathySuchenski,SanjayTiwari,andJohnWatrous formanyilluminating discussions. Adviceandinsightsonthisworkwereprovidedbyseveralcurrent andformermembersofthevisiongroupatU.W.Madison, including RusselManning,BrianMorgan, Andrew Prock, Dan Reznik, Brent Seales, and Steve Walden. I also thank the following people who graciously permitted their imagestobeused inthisthesis, inorder ofappearance: John Watrous, Su- huiChiang,ShubuMukherjee,DionisiosPnevmatikatos,AlainKagi,EltonGlaser,BabakFalsafi,and DougBurger. Most of all, I am deeply grateful to Sandhya Subramanian for her endless encouragement and enthusiasm, andformakingtheselastseveralyearstrulyenjoyable. iii Contents Abstract i Acknowledgements ii 1 Introduction 1 1.1 ExamplesofImage-Based SceneTransformations . . . . . . . . . . . . . . . . . . . 3 1.2 Transforming RealScenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 ThesisContributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 ThesisOutline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Notation 8 2.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 TheTwo-ViewCase: ViewMorphing 9 3.1 2Dvs. 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 RelatedWorkonViewSynthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.3 Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.4 Uniqueness andMeasurability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.5 Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.5.1 ImpactforViewSynthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.5.2 Identifying Monotonic Scenes . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.5.3 Orthographic Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.6 ImageMorphing forViewSynthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.7 Shape-Preserving Morphs: ParallelViews . . . . . . . . . . . . . . . . . . . . . . . . 20 3.8 Occlusions andVisibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.8.1 ConstantVisibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.8.2 ChangesinVisibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.9 Shape-Preserving Morphs: Non-ParallelViews . . . . . . . . . . . . . . . . . . . . . 24 3.9.1 ImageReprojection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.9.2 AThreeStepAlgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.9.3 SingularViewConfigurations . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.9.4 Producing theMorph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.10 Uncalibrated ViewMorphing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.10.1 ProjectiveTransformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 iv 3.10.2 ComputingPrewarps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.10.3 Specifying Postwarps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.11 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.11.1 Correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.11.2 ImageResampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.11.3 PrewarpStability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.12 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.13 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4 Single-ViewMorphing 39 5 N-ViewMorphing 41 5.1 StrongMonotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 6 AMulti-ViewApproach: VoxelColoring 44 6.1 PixelCorrespondence forViewSynthesis . . . . . . . . . . . . . . . . . . . . . . . . 45 6.1.1 OpticalFlow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 6.1.2 Stereo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.1.3 FeatureTracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.1.4 ContourTrackingandVolumeIntersection . . . . . . . . . . . . . . . . . . . 47 6.1.5 EPIAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.1.6 SceneSpaceMethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.1.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6.2 TheVoxelColoringProblem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6.3 ColorInvariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.3.1 TheOrdinalVisibilityConstraint . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.3.2 Properties ofColorInvariants . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6.4 AVoxelColoringAlgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.4.1 LayeredSceneDecomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.4.2 VoxelConsistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.4.3 ASingle-PassAlgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 6.4.5 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.5.1 ResultsonRealImages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.5.2 ResultsonSynthetic Images . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 v 7 Editing 73 7.1 TheUserView: EditingbyExample . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 7.1.1 Plenoptic Painting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 7.1.2 Plenoptic Scissoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 7.1.3 Plenoptic Morphing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 7.1.4 NewViewGeneration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 7.2 EditPropagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 7.2.1 Painting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 7.2.2 Scissoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 7.2.3 Morphing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 8 Conclusions 79 8.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 8.2 LimitationsandFutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Bibliography 83 A ComputingPrewarps 92 A.1 TheFundamentalMatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 A.2 Choosing theHomographies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 A.2.1 AligningtheImagePlanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 A.2.2 AligningtheScanlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 A.2.3 InfiniteEpipoles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 A.2.4 Selecting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 d0 A.2.5 Orthographic Prewarps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 B OrthographicViewMorphing 99 B.1 ImageInterpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 B.2 TheNeedforRectification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 vi List of Figures 1.1 Image-based SceneTransformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 ImagetransformationofPhotographs,Drawings,andPaintingsEnables3DVisualiza- tionofHistoricObjectsandScenes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 An Image Morph Combines 2D Interpolations of Shape (via Image Warping) and Color(viaCross-Dissolve)toCreateTransitionsthatAppearStrikinglyThree-Dimensional. 4 3.1 ViewMorphing BetweenTwoImages ofanObject TakenFrom TwoDifferent View- pointsProducestheIllusion ofPhysicallyMovingaVirtualCamera. . . . . . . . . . . 10 3.2 VisualAmbiguity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3 TheMonotonicity Constraint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.4 Correspondence UnderMonotonicity. . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.5 AShape-Distorting Morph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.6 Morphing ParallelViews. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.7 ViewMorphing inThreeSteps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.8 SingularViews. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.9 ViewMorphing Procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.10 Viewmorphsofthreeimagepairswithautomatic stereomatching. . . . . . . . . . . . 34 3.11 FacialViewMorphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.12 ImageMorphing VersusViewMorphing: HelicopterToy. . . . . . . . . . . . . . . . 37 3.13 ImageMorphing VersusViewMorphing: MonaLisa. . . . . . . . . . . . . . . . . . . 37 4.1 Photocorrection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.1 N-ViewMorphing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 6.1 VoxelColoring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.2 SpatialAmbiguity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.3 ColorAmbiguity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.4 ColorInvariants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.5 CompatibleCameraConfigurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6.6 LayeredSceneTraversal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.7 Selectedbasisimagesforadinosaur toyandarose. . . . . . . . . . . . . . . . . . . . 65 6.8 ImageAcquisition Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.9 VoxelColoringofaDinosaurToy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6.10 VoxelColoringofFlower. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 vii 6.11 Placementofinputcameraviewpoints forapanoramic synthetic roomscene. . . . . . 68 6.12 PanoramicRoomSceneReconstruction. . . . . . . . . . . . . . . . . . . . . . . . . 69 6.13 EffectsofTextureDensityonVoxelReconstruction. . . . . . . . . . . . . . . . . . . 70 6.14 EffectsofImageNoiseandVoxelSizeonReconstruction. . . . . . . . . . . . . . . . 71 7.1 Examples of Plenoptic Image Editing Operations Applied to Photographs of a Di- nosaur Toy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 A.1 APairofViewscanbeMadeCoincidentWithaPlane byRotatingtheImagePlanes E AboutTheirLinesofIntersection With . . . . . . . . . . . . . . . . . . . . . 94 i di E I B.1 Monotonic ViewingGeometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 B.2 ViewsGeneratedbyImageInterpolation. . . . . . . . . . . . . . . . . . . . . . . . . 100 viii List of Tables 6.1 Comparison ofCorrespondence Approaches. . . . . . . . . . . . . . . . . . . . . . . 46 6.2 VoxelResolution Effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Description: