ebook img

Image analysis, classification and change detection in remote sensing : with algorithms for Python PDF

532 Pages·2019·33.806 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Image analysis, classification and change detection in remote sensing : with algorithms for Python

Image Analysis, Classification, and Change Detection in Remote Sensing With Algorithms for Python Fourth edition Image Analysis, Classification, and Change Detection in Remote Sensing With Algorithms for Python Fourth edition Morton John Canty CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2019 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed on acid-free paper Version Date: 20190130 International Standard Book Number-13: 978-1-138-61322-5 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging-in-Publication Data Names: Canty, Morton John, author. Title: Image analysis, classification and change detection in remote sensing : with algorithms for Python / by Morton J. Canty. Description: Fourth edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, 2019. | Includes bibliographical references and index. Identifiers: LCCN 2018051975| ISBN 9781138613225 (hardback : acid-free paper) | ISBN 9780429464348 (ebook) Subjects: LCSH: Remote sensing--Mathematics. | Image analysis--Mathematics. | Image analysis--Data processing. | Python (Computer program language) Classification: LCC G70.4 .C36 2019 | DDC 621.36/70285--dc23 LC record available at https://lccn.loc.gov/2018051975 Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Contents Preface to the First Edition xiii Preface to the Second Edition xv Preface to the Third Edition xvii Preface to the Fourth Edition xx Author Biography xxi 1 Images, Arrays, and Matrices 1 1.1 Multispectral satellite images . . . . . . . . . . . . . . . . . . 4 1.2 Synthetic aperture radar images . . . . . . . . . . . . . . . . . 7 1.3 Algebra of vectors and matrices . . . . . . . . . . . . . . . . . 10 1.3.1 Elementary properties . . . . . . . . . . . . . . . . . . 11 1.3.2 Square matrices . . . . . . . . . . . . . . . . . . . . . . 13 1.3.3 Singular matrices . . . . . . . . . . . . . . . . . . . . . 15 1.3.4 Symmetric, positive definite matrices . . . . . . . . . . 15 1.3.5 Linear dependence and vector spaces . . . . . . . . . . 16 1.4 Eigenvalues and eigenvectors . . . . . . . . . . . . . . . . . . 17 1.5 Singular value decomposition . . . . . . . . . . . . . . . . . . 19 1.6 Finding minima and maxima . . . . . . . . . . . . . . . . . . 21 1.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 Image Statistics 31 2.1 Random variables . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.1.1 Discrete random variables . . . . . . . . . . . . . . . . 32 2.1.2 Continuous random variables . . . . . . . . . . . . . . 33 2.1.3 Random vectors . . . . . . . . . . . . . . . . . . . . . 36 2.1.4 The normal distribution . . . . . . . . . . . . . . . . . 39 2.1.5 The gamma distribution and its derivatives . . . . . . 41 2.2 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . 44 2.2.1 Random samples . . . . . . . . . . . . . . . . . . . . . 44 2.2.2 Sample distributions and interval estimators . . . . . . 47 2.3 Multivariate distributions . . . . . . . . . . . . . . . . . . . . 50 2.3.1 Vector sample functions and the data matrix . . . . . 51 2.3.2 Provisionalmeans . . . . . . . . . . . . . . . . . . . . 53 v vi Image Analysis, Classification, and Change Detection in Remote Sensing 2.3.3 Real and complex multivariate sample distributions. . 55 2.4 Bayes’ Theorem, likelihood and classification . . . . . . . . . 57 2.5 Hypothesis testing . . . . . . . . . . . . . . . . . . . . . . . . 60 2.6 Ordinary linear regression . . . . . . . . . . . . . . . . . . . . 65 2.6.1 One independent variable . . . . . . . . . . . . . . . . 65 2.6.2 Coefficient of determination (R2) . . . . . . . . . . . . 67 2.6.3 More than one independent variable . . . . . . . . . . 68 2.6.4 Regularization,duality and the Gram matrix . . . . . 72 2.7 Entropy and information . . . . . . . . . . . . . . . . . . . . . 73 2.7.1 Kullback–Leibler divergence . . . . . . . . . . . . . . . 75 2.7.2 Mutual information. . . . . . . . . . . . . . . . . . . . 76 2.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3 Transformations 83 3.1 The discrete Fourier transform . . . . . . . . . . . . . . . . . 83 3.2 The discrete wavelet transform . . . . . . . . . . . . . . . . . 88 3.2.1 Haar wavelets . . . . . . . . . . . . . . . . . . . . . . . 89 3.2.2 Image compression . . . . . . . . . . . . . . . . . . . . 93 3.2.3 Multiresolution analysis . . . . . . . . . . . . . . . . . 96 3.3 Principal components . . . . . . . . . . . . . . . . . . . . . . 103 3.3.1 Principal components on the GEE . . . . . . . . . . . 105 3.3.2 Image compression and reconstruction . . . . . . . . . 107 3.3.3 Primal solution . . . . . . . . . . . . . . . . . . . . . . 111 3.3.4 Dual solution . . . . . . . . . . . . . . . . . . . . . . . 111 3.4 Minimum noise fraction . . . . . . . . . . . . . . . . . . . . . 112 3.4.1 Additive noise. . . . . . . . . . . . . . . . . . . . . . . 113 3.4.2 Minimum noise fraction via PCA . . . . . . . . . . . . 116 3.5 Spatial correlation . . . . . . . . . . . . . . . . . . . . . . . . 117 3.5.1 Maximum autocorrelationfactor . . . . . . . . . . . . 117 3.5.2 Noise estimation . . . . . . . . . . . . . . . . . . . . . 119 3.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 4 Filters, Kernels, and Fields 127 4.1 The Convolution Theorem . . . . . . . . . . . . . . . . . . . . 127 4.2 Linear filters . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 4.3 Wavelets and filter banks . . . . . . . . . . . . . . . . . . . . 135 4.3.1 One-dimensional arrays . . . . . . . . . . . . . . . . . 136 4.3.2 Two-dimensionalarrays . . . . . . . . . . . . . . . . . 141 4.4 Kernel methods . . . . . . . . . . . . . . . . . . . . . . . . . . 144 4.4.1 Valid kernels . . . . . . . . . . . . . . . . . . . . . . . 144 4.4.2 Kernel PCA . . . . . . . . . . . . . . . . . . . . . . . . 149 4.5 Gibbs–Markov random fields . . . . . . . . . . . . . . . . . . 152 4.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 Contents vii 5 Image Enhancement and Correction 159 5.1 Lookup tables and histogram functions . . . . . . . . . . . . . 159 5.2 High-pass spatial filtering and feature extraction . . . . . . . 161 5.2.1 Sobel filter . . . . . . . . . . . . . . . . . . . . . . . . 161 5.2.2 Laplacian-of-Gaussianfilter . . . . . . . . . . . . . . . 164 5.2.3 OpenCV and GEE algorithms . . . . . . . . . . . . . . 166 5.2.4 Invariant moments . . . . . . . . . . . . . . . . . . . . 171 5.3 Panchromatic sharpening . . . . . . . . . . . . . . . . . . . . 177 5.3.1 HSV fusion . . . . . . . . . . . . . . . . . . . . . . . . 178 5.3.2 Brovey fusion . . . . . . . . . . . . . . . . . . . . . . . 179 5.3.3 PCA fusion . . . . . . . . . . . . . . . . . . . . . . . . 179 5.3.4 DWT fusion . . . . . . . . . . . . . . . . . . . . . . . . 180 5.3.5 A` trous fusion . . . . . . . . . . . . . . . . . . . . . . . 181 5.3.6 A quality index . . . . . . . . . . . . . . . . . . . . . . 184 5.4 Radiometric correction of polarimetric SAR imagery . . . . . 185 5.4.1 Speckle statistics . . . . . . . . . . . . . . . . . . . . . 185 5.4.2 Multi-look data . . . . . . . . . . . . . . . . . . . . . . 188 5.4.3 Speckle filtering . . . . . . . . . . . . . . . . . . . . . . 193 5.5 Topographic correction . . . . . . . . . . . . . . . . . . . . . . 200 5.5.1 Rotation, scaling and translation . . . . . . . . . . . . 201 5.5.2 Imaging transformations . . . . . . . . . . . . . . . . . 202 5.5.3 Camera models and RFM approximations . . . . . . . 203 5.5.4 Stereo imaging and digital elevation models . . . . . . 205 5.5.5 Slope and aspect . . . . . . . . . . . . . . . . . . . . . 210 5.5.6 Illumination correction . . . . . . . . . . . . . . . . . . 211 5.6 Image–image registration . . . . . . . . . . . . . . . . . . . . 216 5.6.1 Frequency domain registration . . . . . . . . . . . . . 217 5.6.2 Feature matching . . . . . . . . . . . . . . . . . . . . . 219 5.6.3 Re-sampling with ground control points . . . . . . . . 223 5.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 6 Supervised Classification Part 1 231 6.1 Maximizing the a posteriori probability . . . . . . . . . . . . 233 6.2 Training data and separability . . . . . . . . . . . . . . . . . . 234 6.3 Maximum likelihood classification . . . . . . . . . . . . . . . . 239 6.3.1 Naive Bayes on the GEE. . . . . . . . . . . . . . . . . 240 6.3.2 Python scripts for supervised classification. . . . . . . 241 6.4 Gaussian kernel classification . . . . . . . . . . . . . . . . . . 245 6.5 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . 248 6.5.1 The neural network classifier . . . . . . . . . . . . . . 253 6.5.2 Cost functions . . . . . . . . . . . . . . . . . . . . . . 256 6.5.3 Backpropagation . . . . . . . . . . . . . . . . . . . . . 258 6.5.4 A deep learning network . . . . . . . . . . . . . . . . . 264 6.5.5 Overfitting and generalization . . . . . . . . . . . . . . 268 6.6 Support vector machines . . . . . . . . . . . . . . . . . . . . . 270 viii Image Analysis, Classification, and Change Detection in Remote Sensing 6.6.1 Linearly separable classes . . . . . . . . . . . . . . . . 270 6.6.2 Overlapping classes . . . . . . . . . . . . . . . . . . . . 276 6.6.3 Solution with sequential minimal optimization. . . . . 278 6.6.4 Multiclass SVMs . . . . . . . . . . . . . . . . . . . . . 279 6.6.5 Kernel substitution . . . . . . . . . . . . . . . . . . . . 280 6.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 7 Supervised Classification Part 2 289 7.1 Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . 289 7.1.1 Majority filtering . . . . . . . . . . . . . . . . . . . . . 290 7.1.2 Probabilistic label relaxation . . . . . . . . . . . . . . 290 7.2 Evaluation and comparison of classification accuracy . . . . . 293 7.2.1 Accuracy assessment . . . . . . . . . . . . . . . . . . . 293 7.2.2 Accuracy assessment on the GEE . . . . . . . . . . . . 298 7.2.3 Cross-validationon parallel architectures. . . . . . . . 299 7.2.4 Model comparison . . . . . . . . . . . . . . . . . . . . 302 7.3 Adaptive boosting . . . . . . . . . . . . . . . . . . . . . . . . 306 7.4 Classification of polarimetric SAR imagery . . . . . . . . . . . 312 7.5 Hyperspectral image analysis . . . . . . . . . . . . . . . . . . 314 7.5.1 Spectral mixture modeling . . . . . . . . . . . . . . . . 314 7.5.2 Unconstrained linear unmixing . . . . . . . . . . . . . 317 7.5.3 Intrinsic end-members and pixel purity . . . . . . . . . 318 7.5.4 Anomaly detection: The RX algorithm . . . . . . . . . 319 7.5.5 Anomaly detection: The kernel RX algorithm . . . . . 322 7.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326 8 Unsupervised Classification 329 8.1 Simple cost functions . . . . . . . . . . . . . . . . . . . . . . . 330 8.2 Algorithms that minimize the simple cost functions . . . . . . 332 8.2.1 K-means clustering . . . . . . . . . . . . . . . . . . . . 333 8.2.2 Kernel K-means clustering . . . . . . . . . . . . . . . . 338 8.2.3 Extended K-means clustering . . . . . . . . . . . . . . 341 8.2.4 Agglomerative hierarchicalclustering . . . . . . . . . . 344 8.2.5 Fuzzy K-means clustering . . . . . . . . . . . . . . . . 347 8.3 Gaussian mixture clustering . . . . . . . . . . . . . . . . . . . 349 8.3.1 Expectation maximization . . . . . . . . . . . . . . . . 350 8.3.2 Simulated annealing . . . . . . . . . . . . . . . . . . . 353 8.3.3 Partition density . . . . . . . . . . . . . . . . . . . . . 353 8.3.4 Implementation notes . . . . . . . . . . . . . . . . . . 354 8.4 Including spatial information . . . . . . . . . . . . . . . . . . 354 8.4.1 Multiresolution clustering . . . . . . . . . . . . . . . . 354 8.4.2 Spatial clustering . . . . . . . . . . . . . . . . . . . . . 357 8.5 A benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . 360 8.6 The Kohonen self-organizing map . . . . . . . . . . . . . . . . 362 8.7 Image segmentation and the mean shift . . . . . . . . . . . . 366 Contents ix 8.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368 9 Change Detection 375 9.1 Naive methods . . . . . . . . . . . . . . . . . . . . . . . . . . 376 9.2 Principal components analysis (PCA) . . . . . . . . . . . . . 378 9.2.1 Iterated PCA . . . . . . . . . . . . . . . . . . . . . . . 380 9.2.2 Kernel PCA . . . . . . . . . . . . . . . . . . . . . . . . 382 9.3 Multivariate alteration detection (MAD) . . . . . . . . . . . . 384 9.3.1 Canonical correlation analysis (CCA). . . . . . . . . . 385 9.3.2 Orthogonality properties . . . . . . . . . . . . . . . . . 388 9.3.3 Iteratively re-weighted MAD . . . . . . . . . . . . . . 389 9.3.4 Scale invariance . . . . . . . . . . . . . . . . . . . . . . 391 9.3.5 Correlationwith the original observations . . . . . . . 392 9.3.6 Regularization . . . . . . . . . . . . . . . . . . . . . . 394 9.3.7 Postprocessing . . . . . . . . . . . . . . . . . . . . . . 396 9.4 Unsupervised change classification . . . . . . . . . . . . . . . 397 9.5 iMAD on the Google Earth Engine . . . . . . . . . . . . . . . 399 9.6 Change detection with polarimetric SAR imagery . . . . . . . 401 9.6.1 Scalar imagery: the gamma distribution . . . . . . . . 402 9.6.2 Polarimetric imagery: the complex Wishart distribu- tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405 9.6.3 Python software . . . . . . . . . . . . . . . . . . . . . 409 9.6.4 SAR change detection on the Google Earth Engine . . 413 9.7 Radiometric normalization of visual/infrared images . . . . . 415 9.7.1 Scatterplot matching . . . . . . . . . . . . . . . . . . . 416 9.7.2 Automatic radiometric normalization . . . . . . . . . . 419 9.8 RESTful change detection on the GEE . . . . . . . . . . . . . 422 9.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422 A Mathematical Tools 427 A.1 Cholesky decomposition . . . . . . . . . . . . . . . . . . . . . 427 A.2 Vector and inner product spaces . . . . . . . . . . . . . . . . 429 A.3 Complex numbers, vectors and matrices . . . . . . . . . . . . 430 A.4 Least squares procedures . . . . . . . . . . . . . . . . . . . . . 432 A.4.1 Recursive linear regression . . . . . . . . . . . . . . . . 432 A.4.2 Orthogonallinear regression . . . . . . . . . . . . . . . 434 A.5 Proof of Theorem 7.1 . . . . . . . . . . . . . . . . . . . . . . . 437 B Efficient Neural Network Training Algorithms 441 B.1 The Hessian matrix . . . . . . . . . . . . . . . . . . . . . . . . 441 B.1.1 The R-operator . . . . . . . . . . . . . . . . . . . . . . 442 B.1.2 Calculating the Hessian . . . . . . . . . . . . . . . . . 445 B.2 Scaled conjugate gradient training . . . . . . . . . . . . . . . 447 B.2.1 Conjugate directions . . . . . . . . . . . . . . . . . . . 447 B.2.2 Minimizing a quadratic function . . . . . . . . . . . . 449

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.