ebook img

IL-5 Receptor PDF

10 Pages·0.101 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview IL-5 Receptor

IL-5 Receptor Christopher J. Bagley1,2,*, Jan Tavernier3, Joanna M. Woodcock4,2 and Angel F. Lopez4,2 1Protein Laboratory, Hanson Centre for Cancer Research, Frome Road, Adelaide, SA, 5000, Australia 2Human Immunology, Institute of Medical and Veterinary Science, Frome Road, Adelaide, SA, 5000, Australia 3Department of Medical Protein Research, Flanders’ Interuniversity Institute for Biotechnology, University of Ghent, Ghent, Belgium 4Cytokine Receptor Laboratory, Hanson Centre for Cancer Research, Frome Road, Adelaide, SA, 5000, Australia *corresponding author tel: (cid:135)61-8-82223714, fax: (cid:135)61-8-82324092, e-mail: [email protected] DOI: 10.1006/rwcy.2000.20002. SUMMARY Tavernieretal.(1991)whoalsoidentifiedthe(cid:12) chain of the GM-CSF receptor ((cid:12)c, cloned by Hayashida et al., 1990) as a component of the IL-5R. ThereceptorforIL-5iscomprisedoftwochains:an(cid:11) chainthatbindsIL-5withmoderateaffinitybutalone is unable to mediate signaling, and a (cid:12) chain that Alternative names represents the major signaling component of the receptor. The (cid:12) chain is unable to bind IL-5 alone, but when expressed together with the IL-5 receptor (cid:11) IL-5R (cid:11) chain: IL-5R(cid:11), Cdw125. chain (IL-5R(cid:11)) a high-affinity receptor is formed IL-5R(cid:12) chain:IL-5R(cid:12),Cdw131,common(cid:12) chainof (K (cid:136)0.15nM).The(cid:12)chainissharedwiththerelated the GM-CSF, IL-3 and IL-5 receptors, (cid:12)c. d receptors for granulocyte–macrophage colony-stimu- lating factor (GM-CSF) and IL-3 and many of the events in IL-5-induced signal transduction are Structure paralleled in the GM-CSF and IL-3 receptors. The IL-5R(cid:11)isexpressedonarestrictedrangeofcelltypes, The IL-5 receptor consists of two chains, denoted principally eosinophils, basophils, and their immedi- (cid:11) and (cid:12). The (cid:11) subunit has specific ligand-binding ate precursors confining the actions of IL-5 to these activity whereas the (cid:12) subunit does not bind IL-5 by cells. Thus, the IL-5 receptor is considered to be a itself but enhances the binding of IL-5 and provides target in the development of treatments for allergic the major determinants of signaling capacity of the inflammatory diseases such as asthma. receptor. The (cid:12) subunit is also a component of the high-affinity receptors for GM-CSF and IL-3. BACKGROUND Main activities and Discovery pathophysiological roles ThetwocomponentsoftheIL-5Rwerefirstidentified Stimulation of the IL-5 receptor in vivo results in the in crosslinking studies (Mita et al., 1989). The cDNA stimulation of production of eosinophils and baso- forIL-5R(cid:11)wasclonedbyTakakietal.(1990)andby phils which exacerbates allergic inflammation. 1904 Christopher J. Bagley, Jan Tavernier, Joanna M. Woodcock and Angel F. Lopez GENE IL-5R(cid:11) produced in Escherichia coli has been reported to bind IL-5 with near normal affinity Accession numbers (Monahan et al., 1997). Theextracellularpartoftheproteinfoldsintothree fibronectintypeIIIstructuraldomains,eachhavinga GenBank: seven (cid:12) sheet scaffold. The juxtamembrane domain HumanIL-5R(cid:11):M75914,M96651,M96652,X61176, contains a canonical Trp-Ser-Xaa-Trp-Ser motif X61177, X61178, X62156 (WSXWS box) and forms together with the central Human IL-5R(cid:12): M59941, M38275 domain, which itself is characterized by four con- servedcysteines,aso-calledcytokinereceptormodule Sequence (CRM) (Goodall et al., 1993) also described as a cytokine-binding domain (CBD). The N-terminal Both the murine IL-5R(cid:11) gene (Imamura et al., 1994) domain is more related to the WSXWS box domain and IL-5R(cid:12) gene (Gorman et al., 1992) have been (Tuypensetal.,1992),andcontainstwoCysresidues, mapped. which may form an intradomain disulfide bond (Cornelisetal.,1995a).WiththeexceptionofaBox-1 motif(Pro-Pro-Xaa-Pro),noconsensussequencesare PROTEIN foundin the cytoplasmicdomain. Ligandrecognition involvesresiduesinthehingebetweenthecentraland Accession numbers membrane-proximal domains as well as a region in the N-terminal domain (Cornelis et al., 1995b). The nucleotide sequence of the human IL-5R(cid:12) See Table 1. cDNApredictsapolypeptideof897aminoacids.The protein is characterized by a 16 residue N-terminal Description of protein signal peptide, followed by a 422 amino acid extra- cellular domain, a membrane anchor spanning 22 ThenucleotidesequenceofthehumanIL-5R(cid:11)cDNA residues, and a 437 amino acid cytoplasmic tail. The predicts a polypeptide of 420 amino acids. It is char- predicted molecular mass for the (cid:12) chain is 97.3kDa, acterized by a 20 residue N-terminal signal peptide, indicating that N-linked glycosylation and probably followed by a 322 amino acid extracellular domain, O-glycosylation contribute to the apparent molecular a membrane anchor spanning 20 residues, and a 58 mass of approximately 130kDa. The extracellular amino acid cytoplasmic tail. The predicted molecular partoftheproteinfoldsintofourfibronectintypeIII mass for the (cid:11) chain is 45.5kDa, indicating that structural domains grouped into two CRMs (Bagley N-linked glycosylation of one or more of the six et al., 1997). The membrane-proximal CRM contains potential N-glycosylation sites (and perhaps O-glyco- the main determinants for interaction with IL-5, sylation)contributestotheapparentmolecularmassof principally in the loops between the B and C and F 60kDa. The biological role of glycosylation remains and G strands of domain four (Woodcock et al., unresolved since deglycosylation appears to lead to 1994, 1996). The cytoplasmic domain contains a loss of IL-5 binding (Johanson et al., 1995) although Box-1 motif (Pro-Pro-Xaa-Pro) responsible for Table 1 Protein accession numbers ID (Swiss) AC (Swiss) AC (GenPept) Human IL-5R(cid:11) IL5R_HUMAN Q01344 Mouse IL-5R(cid:11) IL5R_MOUSE P21183 Guinea pig IL-5R(cid:11) U55215 Human (cid:12)c CYRB_HUMAN P32927 Mouse (cid:12)c CYRB_MOUSE P26955 Guinea pig (cid:12)c U94688 Rat IL-3-specific Q64146 (or common) (cid:12) chain IL-5 Receptor 1905 interaction with JAK kinases, eight tyrosine residues expressionleveliscontrolledatdifferentlevels.Inthe that are susceptible to phosphorylation, and a mouse, in addition to these cell types, the IL-5R(cid:11) is recently reported phosphoserine-containing site that alsofoundprominentlyonBcellsbelongingtotheB1 binds 14-3-3 proteins (Stomski et al., 1999). lineage(Hitoshietal.,1990).Althoughtherehasbeen no report of direct measurement of IL-5R on human B cells, IL-5 appears to augment terminal differentia- Relevant homologies and tion of mitogen-stimulated B cells in some cases. species differences Regulation of receptor expression BothchainsoftheIL-5Raremembersofthecytokine receptorfamily.TheIL-5R(cid:11)ismostcloselyrelatedto the GM-CSFR(cid:11) and IL-3R(cid:11) and more distantly Two promoters, P1 and P2, have been identified in relatedtotheIL-13R(cid:11)2.ThetwoCRMsof(cid:12)carenot the hIL-5R(cid:11) gene (Sun et al., 1995; Zhang et al., closelyrelatedtoeachother,nortoothermembersof 1997). P1 and P2 precede the first and the second the cytokine receptor family. exon respectively, and show no significant sequence Apart from the immediate membrane-proximal similarities. P1 is myeloid and eosinophil lineage- region, the cytoplasmic domain of (cid:12)c is not signi- specific, whilst the use of P2 is restricted to eosino- ficantly related to those of other cytokine receptors. philicHL60-C15cells.Itisatpresentunclearwhether Human and murine IL-5R (cid:11) chains are 68% iden- differential use and regulation of both promoters tical (extracellular 71%; intracellular 58%). Human occur during eosinophilic differentiation. and murine common (GM-CSF and IL-5 receptor) (cid:12) The P1 promoter contains multiple consensus chains are 56% identical (extracellular 57%; intracel- binding sites for AP-1, C/EBP, GATA, and PU.1. lular 55%). In addition, the region between (cid:255)432 and (cid:255)398 was showntocontainauniquecis-element(EOS1),neces- sary and sufficient for the expression in eosinophilic Affinity for ligand(s) cell lines (Sun et al., 1995). The putative myeloid- or eosinophil-specific binding factor(s) has not been The IL-5R(cid:11) subunit is ligand-specific and binds with identified so far. Involvement of the adjacent AP-1 intermediate affinity in humans (K (cid:136)(cid:24)0.5–1nM) elementatposition(cid:255)440to(cid:255)432intheexpressionin d andlowaffinityinthemouse(K (cid:136)(cid:24)5–10nM).Upon eosinophilic HL-60 cells has been demonstrated d association with the (cid:12) subunit, similar high-affinity (Baltus et al., 1998), suggesting cooperation between binding (K (cid:136)150pM) is observed for both species. the cognate binding transcription factors. Supershift d The (cid:12) subunit does not have any detectable affinity analysis experiments showed the presence of cJun, for IL-5 by itself (Takaki et al., 1990, 1991; Devos CREB, and CREM in the AP-1-binding complexes. et al., 1991; Tavernier et al., 1991; Murata et al., The P2 promoter sequence shows the presence of 1992). The dissociation rate of mIL-5 from the (cid:11)/(cid:12) AP-1, C/EBP, GATA, CLEO (IL-5), and its con- complex is considerably slower (t >1 hour) than sensus binding sites. A unique functional motif was 1=2 from the low-affinity (cid:11)-binding site (t <2 min) identified between positions (cid:255)19 and (cid:255)14. It is 1=2 (Devos et al., 1991). IL-5 binds to its receptor with involved in the binding of a hitherto unidentified unidirectional species-specificity: mIL-5 binds with eosinophilic HL-60-C15-specific transcription fac- comparableaffinitiestobothmurineandhuman(cid:11)sub- tor(s). Alternatively, it may also serve as a non- units, but hIL-5 displays 100-fold lower binding affi- canonical TATA box, since such a motif is lacking in nityforthemurine(cid:11)chain,comparedwithitshuman the P2 promoter. counterpart, a cross-species pattern that is mirrored Rapiddownregulation(maximuminhibitionwithin in their biological activities (Lopez et al., 1986). 2hours) of the hIL-5R(cid:11) mRNA is induced in peri- pheral blood eosinophils upon treatment with IL-3, Cell types and tissues expressing IL-5,orGM-CSF.Incontrast,similartreatmentleads to upregulation of the IL-3R(cid:11), GM-CSFR(cid:11), and (cid:12)c the receptor mRNA. The mechanisms involved were shown to be promoteractivationandreducedmRNAdegradation, ExpressionoftheIL-5Rinhumansismostprominent respectively, indicating differential regulation (Wang on eosinophils and basophils (Lopez et al., 1991). Its et al., 1998). It is at present unclear whether the appearance on multipotential myeloid progenitors is downmodulation occurs for P1, P2, or both. criticalfortheirdevelopmenttowardstheeosinophilic The promoter of the mIL-5R(cid:11) contains consensus lineage. It remains expressed on mature cells, but the binding sites for AP-1, GATA, NF-IL-6, NF(cid:20)B, and 1906 Christopher J. Bagley, Jan Tavernier, Joanna M. Woodcock and Angel F. Lopez SP-1. Little is known about transcription factors SIGNAL TRANSDUCTION controlling cell type-specific expression of the mIL- 5R(cid:11) chain. Signal transduction via the IL-5 receptor involves ligand binding and receptor dimerization, require- ments shared by other cytokine receptors (Bagley Release of soluble receptors et al., 1997). The structural elements utilized by the IL-5 receptor (cid:11) and (cid:12) chains to bind IL-5 have been Human eosinophils express through alternative discussed above. Following binding of IL-5, dimer- splicing different transcripts from the same IL-5R(cid:11) ization of the IL-5 receptor ensues, a process which locus(Tavernieretal.,1992;Tuypensetal.,1992).As shares certain events with the cytokine receptor a result, in addition to the membrane-anchored superfamily at large but which has some features receptor, two soluble isoforms can be produced. more limited to the IL-5, GM-CSF, and IL-3 One of these soluble variants is the predominant subfamily of receptors. (>90%) transcript detected in eosinophilic HL-60- Dimerization of the IL-5 receptor involves the C15cellsandineosinophilsobtainedfromcordblood associationoftheIL-5receptor(cid:11)chainwith(cid:12)c.This cultures. Variable isoform mRNA expression has takesplacebynoncovalentaswellascovalentmeans. beenobservedineosinophilspurifiedfromperipheral The covalent linkage of IL-5R(cid:11) and (cid:12)c is probably blood. The forced expiratory volume in 1 second in the most functionally relevant one as it is associated patients with mild asthma has been reported to be with tyrosine phosphorylation of the receptor inversely correlated with the expression of the (Stomski et al., 1998). The cysteines involved are membrane-anchored isoform and directly correlated Cys86 and Cys91 in the most N-terminal domain of with the soluble isoform in eosinophils in endobron- (cid:12)c (Stomski et al., 1998). These cysteines interact chial biopsies (Yasruel et al., 1997). with a Cys in the IL-5 receptor (cid:11) chain which has In mouse B cells, transcripts encoding secreted not yet been determined, however, since this (cid:11) chain variants are also generated through alternative has an odd number of cysteines and all cysteines splicing. In contrast to humans, there is no evidence except Cys86 appear to form intramolecular bonds for a similar soluble variant-specific exon. Rather, (based on alignment with other members of the these soluble variant-specific transcripts are formed cytokine receptor superfamily); Cys86 is the prime by skipping of the membrane anchor exon (Takaki candidate. The related GM-CSF and IL-3 receptor (cid:11) et al., 1990; Tavernier et al., 1992; Imamura et al., chains also exhibit an odd number of cysteines 1994). consistent with them also forming high-order com- The soluble hIL-5R(cid:11) isoform has antagonistic plexes with (cid:12)c. propertiesinvitro.ItbindsoneIL-5dimerinsolution. Both the IL-5R(cid:11) and (cid:12)c subunits are required for It inhibits various IL-5 activities, including induced signaling. Deletion of the cytoplasmic domains of tyrosine phosphorylation of JAK2 and (cid:12)c, prolifera- either chain leads to complete loss of signaling, tion of IL-5-dependent cell lines, and eosinophilic without altered ligand binding (Sakamaki et al., differentiation and survival (Tavernier et al., 1991; 1992; Takaki et al., 1994; Cornelis et al., 1995b). Monahan et al., 1997), suggesting a role in the IL-5 bindingleads tothe rapid tyrosine phosphoryla- regulation of eosinophilia in vivo. No IL-5-potentiat- tion of a multitude of cytoplasmic proteins. ing effects have been observed in in vitro assays, Mutations at position 13 of IL-5 cause diminished underscoring its anti-inflammatory potential. So far, or abrogated activation of the (cid:12)c chain and may however, neither translation of the message encoding yield variants with antagonistic activity (Tavernier this soluble variant in vitro in eosinophils, nor et al., 1995; Bagley et al., 1999). An E to K circulatingsolublehIL-5R(cid:11)invivohasbeenreported. substitution at residue 13 leads to loss of detectable One possible explanation might be the thermolability phosphorylation of (cid:12)c in eosinophils. Yet, whilst of this soluble receptor. Alternatively, this splice being deficient in inducing TF-1 proliferation and regulation could merely serve a regulatory function eosinophil adhesion, this IL-5 mutein still retains the driving transcription into a nonproductive pathway, capacity to support eosinophil survival, indicating reducing the expression level of the membrane- that the different signaling pathways and functional associated receptor. Soluble murine IL-5R(cid:11) also has responses can be segregated (McKinnon et al., 1997). antagonistic properties in vitro, albeit to a lesser The expression level of the IL-5R(cid:11) subunit may degreethanitshumancounterpart,consistentwithits control this agonist/antagonist balance (van Ostade lower affinity for IL-5. et al., 1999). IL-5 Receptor 1907 Associated or intrinsic kinases is also phosphorylated on serine residues such as Ser585. This allows (cid:12) to bind to the 14-3-3(cid:16) adapter protein and presumably associate with other mole- Neither subunit of the IL-5 receptor possesses intrin- cules (Stomski et al., 1999). The biological signifi- sic tyrosine kinase activity. cance of this is being determined. Studies in cell lines showed association of JAK2 and JAK1 (or JAK2) with the IL-5R(cid:11) and (cid:12)c sub- units, respectively, and rapid tyrosine phosphoryla- DOWNSTREAM GENE tion upon IL-5-binding (Ogata et al., 1998). This activationcriticallydependsonthepresenceofintact, ACTIVATION membrane-proximalproline-richmotifs(Box-1motif) in both chains (Quelle et al., 1994; Takaki et al., Transcription factors activated 1994). STAT1 (Pazdrak et al., 1995; van der Bruggen et al., 1995) and STAT5, c-fos, c-myc (Mui et al., 1995), Cytoplasmic signaling cascades NF-AT (Jinquan et al., 1999). In addition tothe JAK kinases that associate directly Genes induced with IL-5R, other kinases such as the Src family kinasesLynandFyn,andtheBrutontyrosinekinase, Btk, are activated by IL-5, suggesting a cascade of Activation of STAT5 leads to rapid induction of tyrosine phosphorylation events. Btk has been impli- immediate early response genes, including Cis, OSM, cated in IL-5 signaling in B cells only. Mutations in Id, pim-1, c-fos (Mui et al., 1995). the btk gene lead to B cell deficiencies in humans Other genes induced include c-myc, VEGF (X-linked agammaglobulinemia) and mice (X-linked (Horiuchi and Weller, 1997), (cid:12) integrin (Palframan 2 immunodeficiency) (Hitoshi et al., 1993; Koike et al., et al., 1998), PAF (Kishimoto et al., 1996), Bcl-xL 1995). Btk functions in concert with the Src family (Dibbert et al., 1998) and Bcl2 (Ochiai et al., 1997; kinases Lyn and Fyn (Cheng et al., 1994; Appleby Dewson et al., 1999). The expression of the IL-3R(cid:11), et al., 1995). GM-CSFR(cid:11), and (cid:12)c chains is induced, whereas that Multiple tyrosine residues become phosphorylated of the IL-5R(cid:11) is repressed (Wang et al., 1998). on the (cid:12)c subunit and provide docking sites for signaling molecules. Both STAT1 (Pazdrak et al., 1995; van der Bruggen et al., 1995) and STAT5 (Mui BIOLOGICAL CONSEQUENCES et al., 1995) can become phosphorylated and activ- OF ACTIVATING OR INHIBITING ated by IL-5 treatment. STAT1 appears to be the RECEPTOR AND major STAT activated by IL-5 in eosinophils. In the case of STAT5, a high degree of redundancy in PATHOPHYSIOLOGY recruitment sites has been reported (van Dijk et al., 1997). Unique biological effects of Via rapid recruitment and phosphorylation of the activating the receptors adapters Shc or SHP2, IL-5 signaling can be coupled totheRaspathway(Pazdraketal.,1997).Downstream effector molecules of Ras include PI-3 kinase and Although the IL-5 receptor exhibits the same bio- MAP kinase. PI-3 kinase plays a critical role in the logical activities as the GM-CSF and IL-3 receptors inductionbyIL-5ofachemokineticresponseinbone in a given cell type by virtue of their sharing the (cid:12) marrow eosinophils (Palframan et al., 1998). The subunit, its unique biological effect stems from the downstream targets of PI-3 kinase remain unclear. spectrum of cells types that express the receptor. ActivationofMAPkinaseisrequiredforinductionof Thus, in contrast to the GM-CSF receptor and to a members of the AP-1 family, including the c-fos and lesserdegreetheIL-3receptor,whicharemorewidely c-jun proto-oncogenes. Members of this family are distributed, the expression of the IL-5 receptor is involved in myeloid differentiation (Foletta et al., largely restricted to eosinophils and basophils in 1998). humans (and to B cells also in the mouse). Ras activation has also been implicated in Stimulation of the IL-5 receptor in vivo thus results suppression of apoptosis of eosinophils by IL-5. The in selective stimulation of eosinophil and basophil (cid:12)c not only undergoes tyrosine phosphorylation but production which exacerbates allergic inflammation. 1908 Christopher J. Bagley, Jan Tavernier, Joanna M. Woodcock and Angel F. Lopez Phenotypes of receptor knockouts GM-CSF and IL-3, of eosinophils and basophils, the major inflammatory cell types in allergy. The and receptor overexpression mice antibody BION-1 has recently been developed and thisbindstotheB-Cloopofthefourthdomainof(cid:12)c Disruption of the IL-5R(cid:11) gene in mice leads to andblockstheproduction,survival,andactivationof decreased levels of IgA in mucosal secretions (Hiroi eosinophils in response to IL-5, GM-CSF, and IL-3 et al., 1999) and an inability toinduce eosinophilia in (Sun et al., 1999). response to parasitic infection (Sugaya et al., 1997). Overexpression of the IL-5R(cid:11) does not lead to increased levels of eosinophils or B cells, although References they exhibit some enhancement of sensitivity to IL-5 (Sugaya et al., 1997). Appleby, M. W., Kerner, J. D., Chien, S., Maliszewski, C. R., Mice that are deficient in the (cid:12) chain of the IL-5 Bondadaa, S., and Perlmutter, R. M. (1995). Involvement of receptorareapparentlynormalexceptforaprofound p59fynT in interleukin-5 receptor signaling. J. Exp. Med. 182, decrease in the number of eosinophils and a pul- 811–820. monary alveolar proteinosis (PAP)-like disease Bagley,C.J.,Woodcock,J.M.,Stomski,F.C.,andLopez,A.F. (1997).Thestructuralandfunctionalbasisofcytokinereceptor (Nishinakamura et al., 1995). Given that the (cid:12) activation:lessonsfromthecommonbetasubunitofthegran- subunit is shared with the GM-CSF and IL-3 ulocyte-macrophage colony-stimulating factor, interleukin-3 receptors, it is not clear which defect is specific for (IL-3),andIL-5receptors.Blood89,1471–1482. the IL-5 receptor. The reduction of eosinophils is Bagley,C.J.,Woodcock,J.M.,Stomski,F.C.,andLo´pez,A.F. likelytobesosinceasimilarphenotypeisseeninIL-5 (1999). In ‘‘Interleukin-5, From Molecule to Drug Target for knockouts; however, PAP is also seen in GM-CSF Asthma’’ (ed. C. J. Sanderson), The structural basis for inter- leukin-5 receptor assembly pp. 189–203. Marcel Dekker, but not IL-5 knockout mice. NewYork. Baltus, B., van Dijk, T. B., Caldenhoven, E., Zanders, E., Raaijmakers, J. A., Lammers, J. W., Koenderman, L., and THERAPEUTIC UTILITY de Groot, R. P. (1998). An AP-1 site in the promoter of the human IL-5R alpha gene is necessary for promoter activity in Effect of treatment with soluble eosinophilicHL60cells.FEBSLett.434,251–254. Cheng, G., Ye, Z. S., and Baltimore, D. (1994). Binding of receptor domain Bruton’s tyrosine kinase to Fyn, Lyn, or Hck through a Src homology 3 domain-mediated interaction. Proc. Natl Acad. Sci.USA91,8152–8155. SolubleIL-5R(cid:11)inhibitstheabilityofIL-5topromote Cornelis, S., Plaetinck, G., Devos, R., Van der Heyden, J., the survival, proliferation, and activation of eosino- Tavernier, J., Sanderson, C., Guisez, Y., and Fiers, W. phils and basophils. (1995a).DetailedanalysisoftheIL-5–IL-5Ralphainteraction: characterizationofcrucialresiduesontheligandandtherecep- tor.EMBOJ.14,3395–3402. Effects of inhibitors (antibodies) to Cornelis, S., Fache, I., Van der Heyden, J., Guisez, Y., Tavernier, J., Devos, R., Fiers, W., and Plaetinck, G. (1995b). receptors Characterizationofcriticalresiduesinthecytoplasmic domain of the human interleukin-5 receptor alpha chain required for growthsignaltransduction.Eur.J.Immunol.25,1857–1864. Inhibition of the IL-5 receptor is being tried as an Devos, R., Plaetinck, G., Van der Heyden, J., Cornelis, S., alternative to inhibiting IL-5 itself for the treatment Vandekerckhove, J., Fiers, W., and Tavernier, J. (1991). of allergic inflammation such as asthma. One Molecularbasisofahighaffinitymurineinterleukin-5receptor. approach relies on blocking the specific (cid:11) chain of EMBOJ.10,2133–2137. the IL-5 receptor by constructing IL-5 mutants Dewson,G.,Walsh,G.M.,andWardlaw,A.J.(1999).Expression defective in interacting with the (cid:12) chain only. This ofBcl-2anditshomologuesinhumaneosinophils.Modulation byinterleukin-5.Am.J.Respir.CellMol.Biol.20,720–728. can be achieved by modifying IL-5 itself by mutating Dibbert, B., Daigle, I., Braun, D., Schranz, C., Weber, M., Glu13, a residue that is conserved in position in the Blaser, K., Zangemeister-Wittke, U., Akbar, A. N., and tertiary structure and function in GM-CSF and IL-3. Simon, H. U. (1998). Role for Bcl-xL in delayed eosinophil SubstitutionofGlu13byaGln,Arg,orLysresultsin apoptosis mediated by granulocyte-macrophage colony-stimu- an IL-5 molecule that behaves as a specific IL-5 latingfactorandinterleukin-5.Blood92,778–783. antagonist.However,theE13K mutantisstill ableto Foletta, V. C., Segal, D. H., and Cohen, D. R. (1998). Transcriptional regulation in the immune system: all roads support eosinophil survival. A second approach leadtoAP-1.J.Leukoc.Biol.63,139–152. involves blocking the (cid:12) subunit, an approach which Goodall, G. J., Bagley, C. J., Vadas, M. A., and Lopez, A. F. has the additional therapeutical advantage of block- (1993). A model for the interaction of the GM-CSF, IL-3 and ing stimulation by IL-5 but also the stimulation by IL-5receptorswiththeirligands.GrowthFactors8,87–97. IL-5 Receptor 1909 Gorman, D. M., Itoh, N., Jenkins, N. A., Gilbert, D. J., McKinnon, M., Page, K., Uings, I. J., Banks, M., Fattah, D., Copeland,N.G.,andMiyajima,A.(1992).Chromosomalloca- Proudfoot,A.E.,Graber,P.,Arod,C.,Fish,R.,Wells,T.N., lizationandorganizationofthemurinegenesencodingthebeta and Solari, R. (1997). An interleukin 5 mutant distinguishes subunits(AIC2AandAIC2B)oftheinterleukin3,granulocyte/ between two functional responses in human eosinophils. macrophagecolony-stimulatingfactor,andinterleukin5recep- J.Exp.Med.186,121–129. tors.J.Biol.Chem.267,15842–15848. Mita, S., Tominaga, A., Hitoshi, Y., Sakamoto, K., Honjo, T., Hayashida, K., Kitamura, T., Gorman, D. M., Arai, K., Akagi, M., Kikuchi, Y., Yamaguchi, N., and Takatsu, K. Yokota, T., and Miyajima, A. (1990). Molecular cloning of a (1989). Characterization of high-affinity receptors for interleu- second subunit of the receptor for human granulocyte-macro- kin5oninterleukin5-dependentcelllines.Proc.NatlAcad.Sci. phagecolony-stimulatingfactor(GM-CSF):reconstitutionofa USA86,2311–2315. high-affinityGM-CSFreceptor.Proc.NatlAcad.Sci.USA87, Monahan, J., Siegel, N., Keith, R., Caparon, M., Christine, L., 9655–9659. Compton, R., Cusik, S., Hirsch, J., Huynh, M., Devine, C., Hiroi, T., Yanagita, M., Iijima, H., Iwatani, K., Yoshida, T., Polazzi, J., Rangwala, S., Tsai, B., and Portanova, J. (1997). Takatsu,K.,andKiyono,H.(1999).DeficiencyofIL-5receptor Attenuation of IL-5-mediated signal transduction, eosinophil alpha-chain selectively influences the development of the com- survival, and inflammatory mediator release by a soluble mon mucosal immune system independent IgA-producing B-1 humanIL-5receptor.J.Immunol.159,4024–4034. cellinmucosa-associatedtissues.J.Immunol.162,821–828. Mui, A. L., Wakao, H., O’Farrell, A. M., Harada, N., and Hitoshi, Y., Yamaguchi, N., Mita, S., Sonoda, E., Takaki, S., Miyajima, A. (1995). Interleukin-3, granulocyte-macrophage Tominaga, A., and Takatsu, K. (1990). Distribution of IL-5 colony stimulating factor and interleukin-5 transduce signals receptor-positive B cells. Expression of IL-5 receptor on Ly- throughtwoSTAT5homologs.EMBOJ.14,1166–1175. 1(CD5)+Bcells.J.Immunol.144,4218–4225. Murata, Y., Takaki, S., Migita, M., Kikuchi, Y., Tominaga, A., Hitoshi,Y.,Sonoda,E.,Kikuchi,Y.,Yonehara,S.,Nakauchi,H., and Takatsu, K. (1992). Molecular cloning and expression of andTakatsu, K.(1993). IL-5 receptor positive Bcells, but not thehumaninterleukin5receptor.J.Exp.Med.175,341–351. eosinophils,arefunctionallyandnumericallyinfluencedinmice Nishinakamura, R., Nakayama, N., Hirabayashi, Y., Inoue, T., carrying the X-linked immune defect. Int. Immunol. 5, 1183– Aud, D., McNeil, T., Azuma, S., Yoshida, S., Toyoda, Y., 1190. Arai,K.,Miyajima,A.,andMurray,R.(1995).Micedeficient Horiuchi, T., and Weller, P. F. (1997). Expression of vascular fortheIL-3/GM-CSF/IL-5betacreceptorexhibitlungpathol- endothelial growth factor by human eosinophils: upregulation ogy and impaired immune response, while beta IL3 receptor- bygranulocytemacrophagecolony-stimulatingfactorandinter- deficientmicearenormal.Immunity2,211–222. leukin-5.Am.J.Respir.CellMol.Biol.17,70–77. Ochiai,K.,Kagami,M.,Matsumura,R.,andTomioka,H.(1997). Imamura,F.,Takaki,S.,Akagi,K.,Ando,M.,Yamamura,K.I., IL-5 but not interferon-gamma (IFN-gamma) inhibits eosino- Takatsu,K.,andTominaga,A.(1994).Themurineinterleukin- phil apoptosis by up-regulation of bcl-2 expression. Clin. Exp. 5 receptor alpha-subunit gene: characterization of the gene Immunol.107,198–204. structureandchromosomemappingDNA.Cell.Biol.13,283– Ogata, N., Kouro, T., Yamada, A., Koike, M., Hanai, N., 292. Ishikawa,T.,andTakatsu,K.(1998).JAK2andJAK1consti- Jinquan,T.,Quan,S.,Jacobi,H.H.,Reimert,C.M.,Millner,A., tutivelyassociatewithaninterleukin-5(IL-5)receptoraandbc Hansen, J. B., Thygesen, C., Ryder, L. P., Madsen, H. O., subunit, respectively, and are activated upon IL-5 stimulation. Malling,H.J.,andPoulsen,L.K.(1999).Cuttingedge:expres- Blood91,2264–2271. sionoftheNFofactivatedTcellsineosinophils:regulationby Pazdrak,K.,Stafford,S.,andAlam,R.(1995).Theactivationof IL-4andIL-5.J.Immunol.163,21–24. the Jak-STAT 1 signaling pathway by IL-5 in eosinophils. Johanson,K.,Appelbaum,E.,Doyle,M.,Hensley,P.,Zhao,B., J.Immunol.155,397–402. Abdel-Meguid, S. S., Young, P., Cook, R., Carr, S., and Pazdrak, K., Adachi, T., and Alam, R. (1997). Src homology 2 Matico, R. (1995). Binding interactions of human interleukin protein tyrosine phosphatase (SHPTP2)/Src homology 2 phos- 5withitsreceptoralphasubunit.Largescaleproduction,struc- phatase2(SHP2)tyrosinephosphataseisapositiveregulatorof tural, and functional studies of Drosophila-expressed recombi- theinterleukin5receptorsignaltransductionpathwaysleading nantproteins.J.Biol.Chem.270,9459–9471. to the prolongation of eosinophil survival. J. Exp. Med. 186, Kishimoto,S.,Shimadzu,W.,Izumi,T.,Shimizu,T.,Fukuda,T., 561–568. Makino, S., Sugiura, T., and Waku, K. (1996). Regulation by Palframan, R. T., Collins, P. D., Severs, N. J., Rothery, S., IL-5ofexpressionoffunctionalplatelet-activatingfactorrecep- Williams, T. J., and Rankin, S. M. (1998). Mechanisms of torsonhumaneosinophils.J.Immunol.157,4126–4132. acuteeosinophilmobilizationfromthebonemarrowstimulated Koike, M., Kikuchi, Y., Tominaga, A., Takaki, S., Akagi, K., by interleukin 5: the role of specific adhesion molecules and Miyazaki, J., Yamamura, K., and Takatsu, K. (1995). phosphatidylinositol3-kinase.J.Exp.Med.188,1621–1632. Defective IL-5-receptor-mediated signaling in B cells of X- Quelle,F.W.,Sato,N.,Witthuhn,B.A.,Inhorn,R.C.,Eder,M., linkedimmunodeficientmice.Int.Immunol.7,21–30. Miyajima,A.,Griffin,J.D.,andIhle,J.N.(1994).JAK2associ- Lopez, A. F., Begley, C. G., Williamson, D. J., Warren, D. J., ateswiththebetacchainofthereceptorforgranulocyte-macro- Vadas, M. A., and Sanderson, C. J. (1986).Murine eosinophil phagecolony-stimulatingfactor,anditsactivationrequiresthe differentiationfactor.Aneosinophil-specificcolony-stimulating membrane-proximalregion.Mol.Cell.Biol.14,4335–4341. factor with activity for human cells. J. Exp. Med. 163, 1085– Sakamaki, K., Miyajima, I., Kitamura, T., and Miyajima, A. 1099. (1992). Critical cytoplasmic domains of thecommon beta sub- Lopez, A. F., Vadas, M. A., Woodcock, J. M., Milton, S. E., unit of the human GM-CSF, IL-3 and IL-5 receptors for Lewis, A., Elliott, M. J., Gillis, D., Ireland, R., Olwell, E., growth, signal transduction and tyrosine phosphorylation. andPark,L.S.(1991).Interleukin-5,interleukin-3,andgranu- EMBOJ.11,3541–3549. locyte-macrophagecolony-stimulatingfactorcross-competefor Stomski, F. C., Woodcock, J. M., Zacharakis, B., Bagley, C. J., bindingtocellsurfacereceptorsonhumaneosinophils.J.Biol. Sun, Q., and Lopez, A. F. (1998). Identification of a Cys Chem.266,2474–2477. motif in the common beta chain of the interleukin 3, 1910 Christopher J. Bagley, Jan Tavernier, Joanna M. Woodcock and Angel F. Lopez granulocyte-macrophage colony-stimulating factor, and inter- Tavernier, J., Tuypens, T., Verhee, A., Plaetinck, G., Devos, R., leukin5receptorsessentialfordisulfide-linkedreceptorhetero- Van der Heyden, J., Guisez, Y., and Oefner, C. (1995). dimerizationandactivationofallthreereceptors.J.Biol.Chem. Identification of receptor-binding domains on human interleu- 273,1192–1199. kin5anddesignofaninterleukin5-derivedreceptorantagonist. Stomski, F. C., Dottore, M., Winnall, W., Guthridge, M. A., Proc.NatlAcad.Sci.USA92,5194–5198. Woodcock, J., Bagley, C. J., Thomas, D. T., Andrews, R. K., Tuypens, T., Plaetinck, G., Baker, E., Sutherland, G., Berndt, M. C., and Lopez, A. F. (1999). Identification of a Brusselle, G., Fiers, W., Devos, R., and Tavernier, J. (1992). 14-3-3bindingsequenceinthecommonbetachainofthegran- Organization and chromosomal localization of the human ulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin 5 receptor alpha-chain gene. Eur. Cytokine Netw. interleukin-3 (IL-3), and IL-5 receptors that is serine-phos- 3,451–459. phorylatedbyGM-CSF.Blood94,1933–1942. van der Bruggen, T., Caldenhoven, E., Kanters, D., Coffer, P., Sugaya, H., Aoki, M., Yoshida, T., Takatsu, K., and Raaijmakers, J. A., Lammers, J. W., and Koenderman, L. Yoshimura, K. (1997). Eosinophilia and intracranial worm (1995). Interleukin-5 signaling in human eosinophils involves recovery in interleukin-5 transgenic and interleukin-5 receptor JAK2tyrosinekinaseandStat1alpha.Blood85,1442–1448. alphachain-knockoutmiceinfectedwithAngiostrongyluscanto- van Dijk, T. B., Caldenhoven, E., Raaijmakers, J. A., nensis.Parasitol.Res.83,583–590. Lammers, J. W., Koenderman, L., and de Groot, R. P. Sun, Z.,Yergeau,D.A., Tuypens, T.,Tavernier, J., Paul, C.C., (1997). Multiple tyrosine residues in the intracellular domain Baumann, M. A., Tenen, D. G., and Ackerman, S. J. (1995). of the common beta subunit of the interleukin 5 receptor are Identification and characterization of a functional promoter involvedinactivationofSTAT5.FEBSLett.412,161–164. region in the human eosinophil IL-5 receptor alpha subunit van Ostade, X., Van der Heyden, J., Verhee, A., gene.J.Biol.Chem.270,1462–1471. Vandekerckhove, J., and Tavernier, J. (1999). The cell surface Sun, Q., Jones, K., McClure, B., Cambareri, B., Zacharakis, B., expressionlevelofthehumaninterleukin-5receptoralphasub- Iversen, P. O., Stomski, F., Woodcock, J. M., Bagley, C. J., unitdeterminestheagonistic/antagonisticbalanceofthehuman D’Andrea,R.,andLopez,A.F.(1999).Simultaneousantagon- interleukin-5E13Qmutein.Eur.J.Biochem.259,954–960. ism of IL-5, GM-CSF and IL-3 stimulation of human eosino- Wang, P., Wu, P., Cheewatrakoolpong, B., Myers, J. G., phils by targetting the common cytokine binding site of their Egan, R. W., and Billah, M. M. (1998). Selective inhibition of receptors.Blood94,1943–1951. IL-5receptoralpha-chaingenetranscriptionbyIL-5,IL-3,and Takaki, S., Tominaga, A., Hitoshi, Y., Mita, S., Sonoda, E., granulocyte-macrophage colony-stimulating factor in human Yamaguchi, N., and Takatsu, K. (1990). Molecular cloning bloodeosinophils.J.Immunol.160,4427–4432. and expression of the murine interleukin-5 receptor. EMBO J. Woodcock, J. M., Zacharakis, B., Plaetinck, G., Bagley, C. J., 9,4367–4374. Sun, Q., Hercus, T. R., Tavernier, J., and Lopez, A. F. Takaki,S.,Mita,S.,Kitamura,T.,Yonehara,S.,Yamaguchi,N., (1994). Three residues in the common (cid:12) chain of the human Tominaga, A., Miyajima, A., and Takatsu, K. (1991). GM-CSF, IL-3 and IL-5 receptors are essential for GM-CSF Identification of the second subunit of the murine interleukin- and IL-5 but not IL-3 high affinity binding and interact with 5receptor:interleukin-3receptor-likeprotein,AIC2Bisacom- Glu21 ofGM-CSF.EMBOJ.13,5176–5185. ponentofthehighaffinityinterleukin-5receptor.EMBOJ.10, Woodcock, J. M., Zacharakis, B., Plaetinck, G., Bagley, C. J., 2833–2838. Sun, Q., Hercus, T. R., Tavernier, J., and Lopez, A. F. Takaki,S.,Kanazawa,H.,Shiiba,M.,andTakatsu,K.(1994).A (1996). A single tyrosine residue in the membrane proximal criticalcytoplasmicdomainoftheinterleukin-5(IL-5)receptor domain of the GM-CSF, IL-3 and IL-5 receptor common (cid:12) alpha chain and its function in IL-5-mediated growth signal chain is necessary and sufficient for high affinity binding and transduction.Mol.Cell.Biol.14,7404–7413. signallingbyallthreeligands.J.Biol.Chem.271,25999–26006. Tavernier, J., Devos, R., Cornelis, S., Tuypens, T., Van der Yasruel, Z., Humbert, M., Kotsimbos, T. C., Ploysongsang, Y., Heyden, J., Fiers, W., and Plaetinck, G. (1991). A human Minshall, E., Durham, S., Pfister, R., Menz, G., Tavernier, J., high affinity interleukin-5 receptor (IL5R) is composed of an Kay,A.B.,andHamid,Q.(1997).Membrane-boundandsolu- IL5-specificalphachainandabetachainsharedwiththerecep- ble alpha IL-5 receptor mRNA in the bronchial mucosa of torforGM-CSF.Cell66,1175–1184. atopic and nonatopic asthmatics. Am. J. Respir. Crit. Care Tavernier, J., Tuypens, T., Plaetinck, G., Verhee, A., Fiers, W., Med.155,1413–1418. and Devos, R. (1992). Molecular basis of the membrane- Zhang, J., Kuvelkar, R., Cheewatrakoolpong, B., Williams, S., anchoredandtwosolubleisoformsofthehumaninterleukin5 Egan, R. W., and Billah, M. M. (1997). Evidence for multiple receptor alpha subunit. Proc. Natl Acad. Sci. USA 89, 7041– promoters of the human IL-5 receptor alpha subunit gene: a 7045. novel 6-base pair element determines cell-specific promoter function.J.Immunol.159,5412–5421. IL-5 Receptor 1911 LICENSED PRODUCTS See Table 2. Table 2 Suppliers of anti-IL-5R(cid:11) and anti-IL-5R(cid:12) antibodies Type Class Clone/ID Supplier Anti-IL-5R(cid:11) antibodies Polyclonal (goat) IgG AF-253-NA R&D Systems Monoclonal IgG1 A14 Pharmingen Anti-IL-5R(cid:12) antibodies Monoclonal IgG1 MAB1008 Chemicon International Monoclonal IgG1 202325 Stratagene Monoclonal IgG2b S16 Santa Cruz Monoclonal IgG1k AR-1635 Maine Biotechnology Services Monoclonal IgG1 3D7 Pharmingen Monoclonal IgG1 4F3 Amrad

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.