ebook img

IL-15 Receptor PDF

8 Pages·0.337 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview IL-15 Receptor

IL-15 Receptor Thomas A. Waldmann* and Yutaka Tagaya Metabolism Branch, National Cancer Institute, NIH Building 10, Room 4N115, 10 Center Drive, MSC 1374, Bethesda, MD 20892-1374, USA *corresponding author tel: 301-496-6653, fax: 301-496-9956, e-mail: [email protected] DOI: 10.1006/rwcy.2000.14008. SUMMARY TheIL-2/15R(cid:12)chainandthe(cid:13)cchainweredefined as part of an analysis of the IL-2 receptor system. UsingradiolabeledIL-2incrosslinkingstudiesTsudo IL-15 uses two distinct receptor and signaling et al. (1986) and Sharon et al. (1986) discovered pathways. In T and NK cells, the type 1 IL-15 IL-2R(cid:12),a70–75kDabindingsubunit.Grabsteinetal. receptor includes the IL-2/15R(cid:12) subunit shared with (1994)andBamfordetal.(1994)usedIL-2R(cid:12)-specific IL-2,the(cid:13)csubunitsharedwithIL-2,IL-4,IL-7,and antibodies to demonstrate that IL-15 requires this IL-9, as well as an IL-15-specific receptor subunit subunit for its action in T and NK cells. Takeshita IL-15R(cid:11). Thus type 1 receptor uses a JAK1/JAK3 et al. (1992) defined and cloned the (cid:13)c receptor and and STAT3/STAT5 signaling system. Mast cells showed thatit wasacomponentofthe IL-2receptor. respond to IL-15 with a type 2 receptor system that It was subsequently demonstrated that IL-2R(cid:13) (now does not share elements with IL-2R but uses a novel termedcommongammaor(cid:13)c)isnotonlyanessential 60–65kDa IL-15RX subunit. This type 2 receptor element of high- and intermediate-affinity receptors signaling involves JAK2/STAT5 activation. In addi- for IL-2, but is also required for the actions of IL-4, tion to the other functional activities in immune and IL-7, and IL-9 (Kondo et al., 1993; Noguchi et al., nonimmune cells, signaling through the type 1 IL-15 1993). Giri et al. (1994) demonstrated in cells trans- receptor plays a pivotal role in the development, fected with IL-2R subunits that (cid:13)c as well as IL-2R(cid:12) survival, and activation of NK cells. are required for IL-15 binding and signaling. IL-15 does not use the (cid:11) subunit of the IL-2 receptor. However, a novel IL-15-specific binding protein BACKGROUND termed IL-15R(cid:11) was identified and its cDNA cloned byGirietal.(1995).ThusinTandNKcellstheIL-15 Discovery Figure 1 IL-15 receptors. IL-15 is a 14–15kDa member of the four (cid:11) helix bundlefamilyof cytokines.IL-15 utilizes two distinct receptor and signaling pathways (Figure 1). In T and Type 1 (T/NK cells) Type 2 (Mast cells) NK cells the type 1 IL-15 receptor includes the (cid:13)c IL-15 IL-15 sharedwithIL-2,IL-4,IL-7,IL-9,andtheIL-2/15R(cid:12) subunitsharedwithIL-2.Furthermore,itinvolvesan IL-15-specificreceptorsubunit,IL-15R(cid:11).Incontrast, IL-15 IL-2 g IL-15 ? mast cells respond to IL-15 using a receptor system Ra 15Rb c RX that does not share elements with the IL-2R system but involves a novel 60–65kDa IL-15RX subunit. JAK2 JAK1 JAK3 In mast cells IL-15 signaling involves JAK2 and STAT5 activation rather than the JAK1/JAK3 and STAT5 STAT3 STAT5 STAT3/STAT5 that are used by IL-15 in activated T and NK cells. IL-15 receptors 1522 Thomas A. Waldmann and Yutaka Tagaya receptor was shown to involve an IL-15-specific IL-15 acting through the type 2 receptor stimulates subunit IL-15R(cid:11), the IL-2/15R(cid:12) subunit shared with mast cells proliferation. IL-15 also acts on skeletal IL-2,andthe(cid:13)csubunitsharedwithIL-2,IL-4,IL-7, muscle (Quinn et al., 1997), endothelial cells, and and IL-9. Tagaya et al. (1996a,b) demonstrated that microglia (Lee et al., 1996; Hanisch et al., 1997). IL-15 uses a distinct type 2 receptor/signal trans- ductionpathwayin mastcells. Mastcells were shown to respond to IL-15 with a receptor system that does GENE not share elements with the IL-2R but uses a novel 60–65kDa IL-15RX subunit. Accession numbers Alternative names GenBank: Human IL-15R(cid:11): NM_002189 The (cid:12) chain shared by IL-2 and IL-15 is frequently Human IL-2/15R(cid:12): NM_000878 calledIL-2R(cid:12).ItisalsoreferredtoasIL-2/15R(cid:12).The Human (cid:13)c: NM_000206 common gamma chain, (cid:13)c, was initially termed IL- Mouse IL-15R(cid:11): U22339 2R(cid:13) prior to the demonstration of its use by other Mouse IL-2/15R(cid:12): M28052 cytokines. The IL-15-specific receptor in T and NK Mouse (cid:13)c: U21795 cellsistermedIL-15R(cid:11),whereasthechaininvolvedin the type 2 receptor of mast cells is IL-15RX. Sequence Structure NucleotidesequencesfortheIL-15Rcomponentscan be found in GenBank. The accession numbers are IL-2/15R(cid:12) and (cid:13)c are members of the cytokine I shown above. superfamily of receptors that contain four conserved cystines and the canonical WSXWS (Trp-Ser-X-Trp- Ser) motif. IL-15R(cid:11) is a type 1 membrane protein Chromosome location and linkages that is not a member of the cytokine receptor superfamily. However, a comparison of IL-2R(cid:11) and IL-15R(cid:11) revealed the shared presence of a conserved Human (cid:11): 10 p15-14; (cid:12): 22q11.2-q12; (cid:13)c: Xq13 motif known as the GP-1 motif or a SUSHI domain Mouse (cid:11): 2; (cid:12): 15: (cid:13)c: X (Girietal.,1995).Thestructureofthemastcelltype2 The chromosomal localization of IL-15RX has not IL-15RX receptor subunit has not been defined. been defined. Main activities and Relevant linkages pathophysiological roles IL-15R(cid:11) and IL-2R(cid:11) are linked in humans on Through its action on its receptor, IL-15 stimulates chromosome10p15-14andinmiceonchromosome2 the proliferation of activated CD4(cid:255)CD8(cid:255), CD4+ (Anderson et al., 1995). CD8+, CD4+ and CD8+ cells, and dendritic epi- dermal T cells (Burton et al., 1994; Grabstein et al., 1994; Edelbaum et al., 1995; Garcia et al., 1998). It PROTEIN was recently reported that IL-15 preferentially pro- pagates CD8 memory T cells (Zhang et al., 1998). Accession numbers Although IL-15 does not have an effect on resting B cells it induces proliferation and immunoglobulin synthesis by B cells costimulated by PMA or by Human IL-15R(cid:11): NP_002180 an immobilized antibody to immunoglobulin M Human IL-2/15R(cid:12): NP_000869 (Armitage et al., 1995). Human (cid:13)c: NP_000197 One of the most critical functions of IL-15 acting Mouse IL-15R(cid:11): AAC52240 through the type 1 receptor is a pivotal role in the Mouse IL-2/15R(cid:12): AAA39283 development, survival, and activation of NK cells. Mouse (cid:13)c: AAA64279 IL-15 Receptor 1523 Sequence motif. IL-15RX is a 60–65kDa receptor whose structure has not been defined. See Figure 2. Relevant homologies and species differences Description of protein IL-2/15R(cid:12) and (cid:13)c are members of the hematopoietin or cytokine superfamily of receptors. IL-15R(cid:11) shares IL-15R(cid:11) is a type 1 membrane protein with a with IL-2R(cid:11) the presence of the GP-1 or SUSHI predicted signal peptide of 32 amino acids, a domain motif. Furthermore, the IL-2R(cid:11) and IL- 173 amino acid extracellular domain, a single 15R(cid:11) genes have a similar intron–exon organization. membrane-spanning region of 21 amino acids, and a Moreover, they are closely linked on both human 37aminoacidcytoplasmicdomain(mouseIL-15R(cid:11)). (10p-15-14) and murine genomes (chromosome 2) In contrast to IL-2/15R(cid:12) and (cid:13)c, IL-15R(cid:11) is not a (Anderson et al., 1995). member of the cytokine receptor superfamily. However, IL-15R(cid:11) contains a motif known as a Affinity for ligand(s) GP-1 motif or a SUSHI domain (Giri et al., 1995). The human IL-2/15R(cid:12) mRNA encodes a primary translation product of 551 amino acids (Hatakeyama IL-15R(cid:11) binds IL-15 with a very high affinity et al., 1989). The receptor contains a 26 amino acid (dissociation constant K (cid:136)10(cid:255)11M) (Anderson d signal peptide and a mature human IL-2/15R(cid:12) is et al., 1995; Giri et al., 1995). This affinity was not composed of 525 amino acids with an extracellular dramatically altered by the simultaneous presence of segment of 214 amino acids, a hydrophobic trans- IL-2/15R(cid:12)or(cid:13)c.IL-2/15R(cid:12)and(cid:13)cactingtogetherin membranestretchof25aminoacids,anda286amino the absence of IL-15R(cid:11) bind IL-15 with an acid cytoplasmic domain. The human (cid:13)c cDNA intermediate affinity (approximately K (cid:136)10(cid:255)9M). d containsanopenreadingframeencodinga369amino IL-15RX binds IL-15 with an intermediate affinity acidresiduepolypeptide(Takeshitaet al.,1992).This (K (cid:136)10(cid:255)9M) (Tagaya et al., 1996b). d proteincontainsa22aminoacidsignalpeptide,a233 amino acid extracellular domain, a 28 amino acid Cell types and tissues expressing hydrophobic transmembrane domain, and an 86 the receptor amino acid terminal cytoplasmic domain. IL-2/15R(cid:12) and(cid:13)caremembersofthehematopoietinorcytokine superfamily of receptors that contain four conserved IL-15R(cid:11) has a wide cellular distribution. Its expres- cystines and canonical WSXWS (Trp-Ser-X-Trp-Ser) sion is observed in T cells, B cells, macrophages, and Figure 2 The amino acid sequences for human IL-15R(cid:11) (Anderson et al., 1995) and mouse IL-15R(cid:11) (Giri et al., 1995). The transmembrane domain is underlined. 1524 Thomas A. Waldmann and Yutaka Tagaya in thymic stroma cells and bone marrow stroma cells tyrosine kinases p56lck and p72syk, the induction of (Andersonetal.,1995).Inaddition,IL-15R(cid:11)mRNA theexpressionoftheBcl-2anti-apoptoticproteinand is widespread in such tissues as liver, heart, spleen, the stimulation of the Ras/Raf/MAP kinase pathway lung,skeletalmuscle,andactivatedvascularendothe- leading to fos/jun activation (Miyazaki et al., 1995). lial cells (Giri et al., 1995). IL-15R(cid:11) mRNA is Mast cells respond to IL-15 with a type 2 receptor increased in T cells after addition of IL-2, an anti- systemthatusesanovel60–65kDaIL-15RXsubunit. CD3 antibody or phorbol-myristate acetate (PMA) Thistype2receptorinvolvesJAK2/STAT5activation (Giri et al., 1995). Furthermore, IL-15R(cid:11) expression rather than the JAK1/JAK3 and STAT3/STAT5 is augmentedin macrophagecell lines aftertreatment system used by the type 1 receptor in T/NK cells. with IFN(cid:13). IL-2/15R(cid:12) is constitutively expressed by NKcells,monocytes,andrestingCD8cellsbutisnot expressedbyrestingCD4cellsalthoughitisinducible DOWNSTREAM GENE in such cells. The common gamma chain is expressed ACTIVATION by most hematopoietic cells. Transcription factors activated Regulation of receptor expression IL-15 through the type 1 receptor activates jun/fos IL-2/15R(cid:12): Promoter/enhancer region contains puta- AP-1complex.ItalsoactivatesSTAT3,STAT5a,and tive binding sites for Ets-1, GABP, SP-1 and Egr-1 STAT5b transcription factors (Lin et al., 1995). (Lin and Leonard, 1997). The type 2 receptor signaling activates STAT5a (cid:13)c: The (cid:13)c gene has a constitutive activation and b molecules. promoter that contains an Ets-binding site. IL-15R(cid:11): The 50 regulatory region of this gene is Genes induced not defined. The genes induced by IL-15R include IL-2R(cid:11) Release of soluble receptors (Treiber-Held et al., 1996), CC chemokines and receptors (Perera et al., 1999), bcl-2/bcl-X anti- L apoptotic genes, caspase 8/FLICE (Perera and In contrast to the release of IL-2R(cid:11), there is little Waldmann, 1998), Pim-1, CIS/SIS/SOCS family release of IL-2/15R(cid:12) or (cid:13)c. Although levels have not member proteins, and c-myc. been quantitated, it has been suggested that IL-15R(cid:11) isreleasedfromthecellsurfaceandmayacttoinhibit IL-15 action. Promoter regions involved The promoter regions involved are the STAT5 SIGNAL TRANSDUCTION consensus sequence and AP-1 sites. Associated or intrinsic kinases BIOLOGICAL CONSEQUENCES The type 1 IL-15 receptors in T and NK cells, like OF ACTIVATING OR INHIBITING most cytokine receptors, do not possess intrinsic RECEPTOR AND protein tyrosine kinase (PTK) domains, yet receptor stimulation invokes rapid tyrosine phosphorylation PATHOPHYSIOLOGY of intracellular proteins including the receptors themselves. In T and NK cells, IL-15 activates Unique biological effects of JAK1 and JAK3 of the tyrosine kinase family activating the receptors members (Witthuhn et al., 1994; Johnston et al., 1995). Furthermore, the addition of IL-15 to such receptor-expressing T cells led to the tyrosine phos- For more detail on the biological effects of IL-15 phorylationandnucleartranslocationofSTAT3and receptor, see the review by Waldmann and Tagaya STAT5 (Johnston et al., 1995; Lin et al., 1995). The (1999). IL-15-signaling pathway in T cells also involves the IL-15 actingthroughthe type1receptor stimulates phosphorylation of the Src-related cytoplasmic the proliferation of activated CD4(cid:255)CD8(cid:255), CD4+ IL-15 Receptor 1525 CD8+, CD4+, and CD8+ cells (Burton et al., 1994; anemia (Suzuki et al., 1997). These animals mani- Grabstein et al., 1994; Edelbaum et al., 1995; Zhang fested marked infiltrative granulopoiesis and died et al., 1998; Garcia et al., 1998). IL-15 also has an after about 12 weeks. The (cid:13)c chain is shared by IL-2, effect on activated but not resting T cells, inducing IL-4,IL-7,IL-9,andIL-15;thusmicedeficientinthis proliferation and immunoglobulin synthesis in cells chain lack the ability to respond to all of these costimulatedbyPMAorbyanimmobilizedantibody cytokines. Mice made deficient in this cytokine or its to IgM (Armitage et al., 1995). IL-15 may be an membrane-proximal signaling element, JAK3, man- essential factor for the development of NK cells ifest severe combined immunodeficiency disease with a (Carson et al., 1994). NK cells are absent in mice virtual absence of NK cells markedly deficient T cell made deficient in elements required for IL-15 action, numbers and function and abnormalities of B cell including IL-2/15R(cid:12) (Suzuki et al., 1997), (cid:13)c (Cao function,presumablyduetothelackofIL-7function et al., 1995; DiSanto et al., 1995), IRF-1(cid:255)/(cid:255) in early T/B cell development. (Ogasawara et al., 1998; Ohteki et al., 1998), JAK3 (Biron et al., 1989; Russell et al., 1995; Macchi et al., 1995), or STAT5a/b (Imada et al., 1998; Teglund Human abnormalities et al., 1998). Furthermore, IL-15 is effective in inducingbonemarrowprogenitordifferentiationinto No patients with deficiency of IL-15R(cid:11), IL-2/15R(cid:12), NKcells(Mro´zeketal.,1996;Cavazzana-Calvoetal., or IL-15RX have been defined. Patients deficient in 1996). In a similar way, the addition of IL-15 to (cid:13)c manifest X chromosome-linked severe combined immature postnatal thymocytes or to fetal thymic immunodeficiency disease (X-SCID) (Schorle et al., organ cultures led to the development of NK cells 1991; Noguchi et al., 1993). Patients with this dis- (Mingari et al., 1997). order have a dramatic reduction in T and NK cells IL-15 also has unique functions on nonlymphoid but have at least normal numbers of B cells that cells. Acting through the type 2 receptor it stimu- are functionally abnormal. Deficiency of JAK3 in lates mast cell proliferation (Tagaya et al., 1996a,b). humans yields an autosomal disorder with the same Although the type of receptor has not been defined, phenotype. IL-15 also has actions on muscle, inducing skeletal muscle fiber hypertrophy (Quinn et al., 1997), vascular endothelial cells promoting angiogenesis THERAPEUTIC UTILITY (Angiolillo et al., 1997), and on brain microglia and astrocytes(Lee et al., 1996;Hanisch et al.,1997). Effect of treatment with soluble receptor domain Phenotypes of receptor knockouts and receptor overexpression mice The injection of an IL-15 antagonist with the soluble form of IL-15R(cid:11) into DBS/1 mice suppressed their development of collagen-induced arthritis (Ruchatz IL-15R(cid:11)-null (IL-15R(cid:11)(cid:255)/(cid:255)) mice are markedly lym- et al., 1998). phopenic despite grossly normal T and B lymphocyte development(Lodolceetal.,1998).Thislymphopenia is due to decreased proliferation and decreased Effects of inhibitors (antibodies) to homing of IL-15R(cid:11)(cid:255)/(cid:255) lymphocytes to peripheral receptors lymph nodes. These mice are also deficient in NK cells, natural killer T cells, CD8+ lymphocytes, and TCR(cid:13)/(cid:14)-intraepithelial lymphocytes. In addition, An IL-15 receptor antagonist has been produced by memory phenotype CD8+ T cells are selectively mutatingglutamineresidueswithintheC-terminusof reduced in number. IL-15 to aspartic acid, completely inhibiting IL-15- Mice lacking the IL-2/15R(cid:12) chain are deficient in triggered cell proliferation (Kim et al., 1998). This functions mediated by either IL-2 or IL-15 since this IL-15 mutant protein markedly attenuated antigen- receptor is shared by these two cytokines. Mice specific delayed hypersensitivity responses in Balb/c lackingthisreceptorlackNKcells.Furthermore,they mice and enhanced the acceptance of islet cell manifest spontaneously activated T cells, increased allografts. An antibody (Mik(cid:12)1) directed toward differentiation of B cells into plasma cells, and high IL-2/IL-15R(cid:12) inhibits the actions of IL-15 but not serum concentrations of immunoglobulins IgG and thosemediatedbyIL-2throughthehigh-affinityIL-2 IgE as well as autoantibodies that cause hemolytic receptor. A humanized version of this antibody 1526 Thomas A. Waldmann and Yutaka Tagaya prolonged renal allograft survival in cynomolgus DiSanto, J. P., Muller, W., Guy-Grand, D., Fischer, A., and monkeys (Tinubu et al., 1994). Rajewsky, K. (1995). Lymphoid development in mice with a targeted deletion of the interleukin 2 receptor (cid:13) chain. Proc. The clinical application of new therapeutic agents NatlAcad.Sci.USA92,377–381. that target IL-15 or the receptor and signaling ele- Edelbaum, D., Mohamadzadeh, M., Bergstresser, P. R., ments shared by IL-15 and other T cell stimula- Sugamura, K., and Takashima, A. (1995). Interleukin (IL)-15 tory cytokines may provide a new perspective for promotesthegrowthofmurineepidermalgammadeltaTcells the treatment of tropical spastic paraparesis HTLV-I- byamechanisminvolvingthebeta-andgammac-chainsofthe IL-2receptor.J.Invest.Dermatol.105,837–843. associated myelopathy (TSP/HAM), rheumatoid Garcia, V. E., Jullien, D., Song, M., Uyemura, K., Shuai, K., arthritis,andinflammatoryboweldiseasewhereabnor- Morita, C. T., and Modlin, R. L. (1998). IL-15 enhances the malities of IL-15 expression have been demonstrated. responseofhumangammadeltaTcellstononpeptidemicrobial antigens.J.Immunol.160,4322–4329. Giri, J. G., Ahdieh, M., Eisenman, J., Shanebeck, K., Grabstein, K., Kumaki, S., Namen, A., Park, L. S., References Cosman, D., and Anderson, D. (1994). Utilization of the betaandgammachainsoftheIL-2receptorbythenovelcyto- kineIL-15.EMBOJ.13,2822–2830. Anderson, D. M., Kumaki, S., Ahdieh, M., Bertles, J., Giri, J. G., Kumaki, S., Ahdieh, M., Friend, D. J., Loomis, A., Tometsko, M., Loomis, A., Giri, J., Copeland, G., Shanebeck, K., DuBose, R., Cosman, D., Park, L. S., and Gilbert, D. J., Jenkins, N. A., Valentine, V., Shapiro, D. N., Anderson, D. M. (1995). Identification and cloning ofa novel Morris,S.W.,Park,L.S.,andCosman,D.(1995).Functional IL-15 binding protein that is structurally related to the alpha characterization of the human interleukin-15 receptor (cid:11) chain chainoftheIL-2receptor.EMBOJ.14,3654–3663. andcloselinkageofIL15RAandIL2RAgenes.J.Biol.Chem. Grabstein, K. H., Eisenman, J., Shanebeck, K., Rauch, C., 270,29862–29869. Srinivasan, S., Fung, V., Beers, C., Richardson, J., Angiolillo,A.L.,Kanegane,H.,Sgadari,C.,Reaman,G.H.,and Schoenborn,M.A.,Ahdieh,M.,Johnson,L.,Alderson,M.R., Tosato,G.(1997).Interleukin-15promotesangiogenesisinvivo. Watson,J.D.,Anderson,D.M.,andGiri,J.G.(1994).Cloning Biochem.Biophys.Res.Commun.233,231–237. ofaTcellgrowthfactorthatinteractswiththe(cid:12) chainofthe Armitage, R. J., Macduff, B. M., Eisenman, J., Paxton, R., and interleukin-2receptor.Science264,965–968. Grabstein,K.H.(1995).IL-15hasstimulatoryactivityforthe Hanisch,U.K.,Lyons,S.A.,Prinz,M.,Nolte,C.,Weber,J.R., inductionofBcellproliferationanddifferentiation.J.Immunol. Kettenmann,H.,andKirchhoff,F.(1997).Mousebrainmicro- 154,483–490. gliaexpressinterleukin-15anditsmultimericreceptorcomplex Bamford,R.N.,Grant,A.J.,Burton,J.D.,Peters,C.,Kurys,G., functionally coupled to Janus kinase activity. J. Biol. Chem. Goldman,C.K.,Brennan,J.,Roessler,E.,andWaldmann,T.A. 272,28853–28860. (1994).Theinterleukin(IL)2receptor(cid:12)chainissharedbyIL-2 Hatakeyama, M., Tsudo, M., Minamoto, S., Kono, T., Doi, T., and a cytokine, provisionally designated IL-T, that stimulates Miyata, T., Miyasaka, M., and Taniguchi, T. (1989). T-cell proliferation and the induction of lymphokine-activated Interleukin-2 receptor beta chain gene: generation of three killercells.Proc.NatlAcad.Sci.USA91,4940–4944. receptor forms by cloned human alpha and beta chain Biron, C. A., Byron, K. S., and Sullivan, J. L. (1989). Severe cDNA’s.Science244,551–556. herpesvirus infections in an adolescent without natural killer Imada, K., Bloom, E. T., Nakajima, H., Horvath- cells[seecomments].N.EnglJ.Med.320,1731–1735. Arcidiacono, J. A., Udy, G. B., Davey, H. W., and Burton,J.D.,Bamford,R.N.,Peters,C.,Grant,A.J.,Kurys,G., Leonard, W. J. (1998). Stat5b is essential for natural killer Goldman,C.K.,Brennan,J.,Roessler,E.,andWaldmann,T.A. cell-mediated proliferation and cytolytic activity. J. Exp. Med. (1994). A lymphokine, provisionally designated interleukin T 188,2067–2074. andproducedbyahumanadultT-cellleukemialine,stimulates Johnston, J. A., Bacon, C. M., Finbloom, D. S., Rees, R. C., T-cell proliferation and the induction of lymphokine-activated Kaplan, D., Shibuya, K., Ortaldo, J. R., Gupta, S., killercells.Proc.NatlAcad.Sci.USA91,4935–4939. Chen, Y. Q., Giri, J. D., and O’Shea, J. J. (1995). Tyrosine Cao, X., Shores, E. W., Hu-Li, J., Anver, M. R., Kelsall, B. L., phosphorylation and activation ofSTAT5, STAT3, and Janus Russell, S. M., Drago, J., Noguchi, M., Grinberg, A., kinasesbyinterleukins2and15.Proc.NatlAcad.Sci.USA92, Bloom, E. T., Paul, W. E., Katz, S. I., Love, P. E., and 8705–8709. Leonard, W. J. (1995). Defective lymphoid development in Kim,Y.S.,Maslinski,W.,Zheng,X.X.,Stevens,A.C.,Li,X.C., mice lacking expression of the common cytokine receptor (cid:13) Tesch,G.H.,Kelley,V.R.,andStrom,T.B.(1998).Targeting chain.Immunity2,223–238. the IL-15 receptor with an antagonist IL-15 mutant/Fc (cid:13)2a Carson, W. E., Giri, J. G., Lindemann, M. J., Linett, M. L., protein blocks delayed-type hypersensitivity. J. Immunol. 160, Ahdieh, M., Paxton, R., Anderson, D., Eisenmann, J., 5742–5748. Grabstein,K.,andCaligiuri,M.A.(1994).Interleukin(IL)15 Kondo,M.,Takeshita,T.,Ishii,N.,Nakamura,M.,Watanabe,S., is a novel cytokine that activates human natural killer cells Arai,K.,andSugamura,K.(1993).Sharingoftheinterleukin-2 via components of the IL-2 receptor. J. Exp. Med. 180, 1395– (IL-2) receptor (cid:13) chain between receptors for IL-2 and IL-4. 1403. Science262,1874–1877. Cavazzana-Calvo, M., Hacein-Bey, S., de Saint Basile, G., De Lee, Y. B., Satoh, J., Walker, D. G., and Kim, S. U. (1996). Coene, C., Selz, F., Le Deist, F.,and Fischer, A. (1996). Role Interleukin-15geneexpressioninhumanastrocytesandmicro- of interleukin-2 (IL-2), IL-7, and IL-15 in natural killer cell gliainculture.Neuroreport7,1062–1066. differentiation from cord blood hematopoietic progenitor cells Lin, J. X., and Leonard, W. J. (1997). Signaling from the andfrom(cid:13)ctransducedseverecombinedimmunodeficiencyX1 IL-2 receptor to the nucleus. Cytokine Growth Factor Rev. 8, bonemarrowcells.Blood88,3901–3909. 313–332. IL-15 Receptor 1527 Lin, J. X., Migone, T. S., Tsang, M., Friedmann, M., Schorle,H.,Holtschke,T.,Hunig,T.,Schimpl,A.,andHorak,I. Weatherbee, J. A., Zhou, L., Yamauchi, A., Bloom, E. T., (1991). Development and function of T cells in mice rendered Mietz, J., John, S., and Leonard, W. J. (1995). The role of interleukin-2deficientbygenetargeting.Nature352,621–624. shared receptor motifs and common Stat proteins in the gen- Sharon, M., Klausner, R. D., Cullen, B. R., Chizzonite, R., and eration of cytokine pleiotropy and redundancy by IL-2, IL-4, Leonard, W. J. (1986). Novel interleukin-2 receptor subunit IL-7,IL-13,andIL-15.Immunity2,331–339. detected by cross-linking under high-affinity conditions. Lodolce, J. P., Boone, D. L., Chai, S., Swain, R. E., Science234,859–863. Dassopoulos,T.,Trettin,S.,andMa,A.(1998).IL-15receptor Suzuki,H.,Duncan,G.S.,Takimoto,H.,andMak,T.W.(1997). maintains lymphoid homeostasis by supporting lymphocyte Abnormal development of intestinal intraepithelial lympho- homingandproliferation.Immunity9,669–676. cytes and peripheral natural killer cells in mice lacking the Macchi, P., Villa, A., Gillani, S., Sacco, M. G., Frattini, A., IL-2receptorbetachain.J.Exp.Med.185,499–505. Porta, F., Ugazio, A. G., Johnston, J. A., Candotti, F., Tagaya, Y., Bamford, R. N., DeFilippis, A. P., and O’Shea, J. J., Vezzoni, P., and Notarangelo, L. D. (1995). Waldmann, T. A. (1996a). IL-15: a pleiotropic cytokine with MutationsofJak-3geneinpatientswithautosomalseverecom- diverse receptor/signaling pathways whose expression is con- binedimmunedeficiency(SCID).Nature377,65–68. trolledatmultiplelevels.Immunity4,329–336. Mingari,M.C.,Vitale, C.,Cantoni,C.,Bellomo,R.,Ponte,M., Tagaya,Y.,Burton,J.D.,Miyamoto,Y.,andWaldmann,T.A. Schiavetti,F.,Bertone,S.,Moretta,A.,andMoretta,L.(1997). (1996b). Identification of a novel receptor/signal transduction Interleukin-15-inducedmaturationofhumannaturalkillercells pathwayforIL-15/Tinmastcells.EMBOJ.15,4928–4939. from early thymic precursors: selective expression of CD94/ Takeshita, T., Asao, H., Ohtani, K., Ishii, N., Kumaki, S., NKG2-A as the only HLA class I-specific inhibitory receptor. Tanaka,N.,Munakata,H.,Nakamura,M.,andSugamura,K. EurJ.Immunol.27,1374–1380. (1992). Cloning of the (cid:13) chain of the human IL-2 receptor. Miyazaki,T.,Liu,Z.J.,Kawahara,A.,Minami,Y.,Yamada,K., Science257,379–382. Tsujimoto, Y., Barsoumian, E. L., Permutter, R. M., and Teglund, S., McKay, C., Schuetz, E., van Deursen, J. M., Taniguchi, T. (1995). Three distinct IL-2 signaling pathways Stravopodis, D., Wang, D., Brown, M., Bodner, S., mediated by bcl-2, c-myc, and lck cooperate in hematopoietic Grosveld,G.,andIhle,J.N.(1998).Stat5aandStat5bproteins cellproliferation.Cell81,223–231. haveessentialandnonessential,orredundant,rolesincytokine Mro´zek, E., Anderson, P., and Caligiuri, M. A. (1996). Role of responses.Cell93,841–850. interleukin-15 in the development of human CD56+ natural Tinubu, S. A., Hakimi, J., Kondas, J. A., Bailon, P., killer cells from CD34+ hematopoietic progenitor cells. Blood Familletti, P. C., Spence, C., Crittenden, M. D., 87,2632–2640. Parenteau, G. L., Dirbas, F. M., Tsudo, M., Bacher J. D., Noguchi, M., Nakamura, Y., Russell, S. M., Ziegler, S. F., Kasten-Sportes, C., Martinucci J. L., Goldman, C. K., Tsang, M., Cao, X., and Leonard, W. J. (1993). Interleukin-2 Clark, R. E., and Waldmann, T. A. (1994). Humanized anti- receptor (cid:13) chain: a functional component of the interleukin-7 body directed to the IL-2 receptor (cid:12)-chain prolongs primate receptor.Science262,1877–1880. cardiacallograftsurvival.J.Immunol.153,4330–4338. Ogasawara,K.,Hida,S.,Azimi,N.,Tagaya,Y.,Sato,T.,Yokochi- Treiber-Held, S., Stewart, D. M., Kurman, C. C., and Fukuda,T.,Waldmann,T.A.,Taniguchi,T.,andTaki,S.(1998). Nelson, D. L. (1996). IL-15 induces the release of soluble Requirement for IRF-1 in the microenvironment supporting IL-2R-(cid:11) from human peripheral blood mononuclear cells. developmentofnaturalkillercells.Nature391,700–703. Clin.Immunol.Immunopathol.79,71–78. Ohteki, T., Yoshida, H., Matsuyama, T., Duncan, G. S., Tsudo,M.,Kozak,R.W.,Goldman,C.K.,andWaldmann,T.A. Mak,T.W.,andOhashi,P.S.(1998).Thetranscriptionfactor (1986). Demonstration of a non-Tac peptide that binds inter- interferon regulatory factor 1 (IRF-1) is important during the leukin 2: a potential participant in a multichain interleukin 2 maturation ofnatural killer1.1+Tcell receptor-alpha/beta+ receptorcomplex.Proc.NatlAcad.Sci.USA83,9694–9698. (NK1+T)cells,naturalkillercells,andintestinalintraepithelial Waldmann, T. A., and Tagaya, Y. (1999). The multifaceted reg- Tcells.J.Exp.Med.187,967–972. ulationofinterleukin-15expressionandtheroleofthiscytokine Perera,L.P.,andWaldmann,T.A.(1998).Activationofhuman in NK cell differentiation and host response to intracellular monocytes induces differential resistance to apoptosis with pathogens.Annu.Rev.Immunol.17,19–49. rapid down regulation of caspase-8/FLICE. Proc. Natl Acad. Witthuhn,B.A.,Silvennoinen,O.,Miura,O.,Lai,K.S.,Cwik,C., Sci.USA95,14308–14313. Liu, E. T., and Ihle, J. N. (1994). Involvement of the Jak-3 Perera, L. P., Goldman, C. K., and Waldmann, T. A. (1999). Janus kinase in signalling by interleukins 2 and 4 in lymphoid IL-15inducestheexpressionofchemokinesandtheirreceptors andmyeloidcells.Nature370,153–157. inTlymphocytes.J.Immunol.165,2606–2612. Zhang,X.,Sun,S.,Hwang,I.,Tough,D.F.,andSprent,J.(1998). Quinn,L.S.,Haugk,K.L.,andDamon,S.E.(1997).Interleukin- Potent and selective stimulation of memory-phenotype CD8+ 15 stimulates C2 skeletal myoblast differentiation. Biochem. TcellsinvivobyIL-15.Immunity8,591–599. Biophys.Res.Commun.239,6–10. Ruchatz, H., Leung, B. P., Wei, X. Q., McInnes, I. B., and LICENSED PRODUCTS Liew,F.Y.(1998).SolubleIL-15receptoralpha-chainadmin- istration prevents murine collagen-induced arthritis: a role for IL-15 in development of antigen- induced immunopathology. ApolyclonalantibodyagainsthumanandmurineIL- J.Immunol.160,5654–5660. 15R(cid:11) peptide may be obtained from Santa Cruz Russell, S. M., Tayebi, N., Nakajima, H., Riedy, M. C., Biotechnology Inc., Santa Cruz, CA, USA. Roberts, J. L., Aman, M. J., Migone, T. S., Noguchi, M., Markert, M. L., Buckley, R. H., O’Shea, J. J., and Antibodies against human IL-2/15R(cid:12) molecule Leonard, W. J. (1995). Mutation of Jak3 in a patient with Mik(cid:12)2 and (cid:12)3 monoclonal antibodies are available SCID: essential role of Jak3 in lymphoid development. Science270,797–800. from PharMingen (San Diego, CA, USA). 1528 Thomas A. Waldmann and Yutaka Tagaya Polyclonal antibodies against IL-2/15(cid:12) peptides are Antibodies against human (cid:13)c molecule available from Santa Cruz Biotechnology (Santa A monoclonal anti-human (cid:13)c antibody is available Cruz, CA, USA). from PharMingen. Antibodies against murine IL-2/15R(cid:12) molecule Antibodies against murine (cid:13)c molecule Two monoclonal anti-murine IL-2/15R(cid:12) antibodies Monoclonal antibodies recognizing the murine (cid:13)c may be obtained from PharMingen. Santa Cruz molecule are available from PharMingen. carriesanti-mouseIL-2/15R(cid:12)polyclonalIgGsthatare Polyclonal anti-mouse (cid:13)c peptides are available from raised against synthetic peptides from this molecule. Santa Cruz Biotechnology.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.