ebook img

IFNa/b Receptor PDF

10 Pages·0.106 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview IFNa/b Receptor

IFN(cid:11)/(cid:12) Receptor S. Jaharul Haque1,2 and B. R. G. Williams1,* 1Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA 2DepartmentofPulmonaryandCriticalCareMedicine,ClevelandClinicFoundation,9500EuclidAvenue, Cleveland, OH 44195, USA *corresponding author tel: 216-445-9652, fax: 216-444-3164, e-mail: [email protected] DOI: 10.1006/rwcy.2000.18002. SUMMARY 1996; Haque and Williams, 1998; Stark et al., 1998). IFNs are divided into two types: human type I IFNs include 13 nonallelic isoforms of IFN(cid:11), one IFN(cid:12), Interferons (IFNs) comprise a family of secreted pro- and one IFN! (Weissmann and Weber, 1986; Pestka teins produced by a variety of vertebrate cells in et al., 1987; Sen and Lengyel, 1992; Haque and response to viral and other microbial infections, and Williams, 1998). All type I IFNs compete for binding function as antiviral, antiproliferative, and immuno- to the same receptor on the cell surface, known as modulatoryagents.IFNsbindtospecificreceptorson typeIIFNreceptororIFN(cid:11)/(cid:12) receptor(Aguetetal., the surface of target cells and activate multiple intra- 1984;Merlinetal.,1985;Pestkaetal.,1987;Uzeetal., cellular signaling cascades including the JAK/STAT 1995; Haque and Williams, 1998). IFN(cid:13) binds to a pathway which in turn activates the transcription of distinct transmembrane receptor (Aguet et al., 1984; IFN-stimulated genes. Type I IFNs, including (cid:11), (cid:12), Pestka et al., 1987; Uze et al., 1995; Haque and and !, bind to the same receptor that comprises two Williams, 1998; Merlin et al., 1985). transmembrane subunits (IFNAR-1 and IFNAR-2) IFNs exhibit a high level of species-specificity with that are classified as type II cytokine receptors based a few exceptions (Stwert, 1979; Uze et al., 1990; on their amino acid sequence and structural features. Novick et al., 1994; Domanski and Colamonici, These two proteins function in a species-specific 1996). Binding of IFNs to their receptors initiates fashion.IFNAR-1andIFNAR-2physicallyassociate signals that are transmitted from cell surface to the with TYK2 and JAK1 respectively that catalyze the nucleus, resulting in the rapid induction of a number tyrosyl phosphorylation of IFN-signaling proteins of IFN-stimulated genes (ISGs) in the absence of including JAK1, TYK2, IFNAR-1, IFNAR-2, de novo protein synthesis (Sen and Lengyel, 1992; STAT1, STAT2, and STAT3. Mice lacking the Darnell et al., 1994; Levy, 1995; Ihle, 1996; Haque IFNAR-1arecompletelyunresponsivetotypeIIFNs and Williams, 1998). Each type of IFN induces a dis- and unable to combat viral infection. tinctsetofgeneswithacertaindegreeofoverlap(Sen and Lengyel, 1992; Darnell et al., 1994; Haque and Williams,1998;Starketal.,1998).MostoftheIFN(cid:11)/ BACKGROUND (cid:12)-responsive genes contain an enhancer element, termed the IFN-stimulated response element (ISRE) Interferons(IFNs)belongtothecytokinesuperfamily that binds to the transcription factor IFN-stimulated of secreted proteins that were originally identified as gene factor 3 (ISGF3), which is induced through an antiviral agents in 1957 by Isaacs and Lindenmann. IFN(cid:11)/(cid:12)-dependent activation of the Janus kinase/ Subsequent studies revealed that IFNs exert pleio- signal transducer and activator of transcription tropicbiologicaleffects,allmediatedthroughtheacti- (JAK/STAT) signal transduction pathway (Darnell vationofspecificreceptorsonthecellsurface(Pestka et al., 1994; Levy, 1995; Ihle, 1996; Haque and et al., 1987; Sen and Lengyel, 1992; Darnell et al., Williams, 1998; Stark et al., 1998). The SH2 domain- 1994; Uze et al., 1995; Domanski and Colamonici, containing proteins STAT1 and STAT2 are 1846 S. Jaharul Haque and B. R. G. Williams phosphorylated at unique tyrosine residues by a pair cDNAwasexpressedinmousecells,theproteincould of activated JAKs that are physically associated with onlybindtoIFN(cid:11)8at37(cid:14)C,butnottotheothertype the IFN receptor subunits (Darnell et al., 1994; Stark IIFNsofhumanorigin(Uzeetal.,1990).Thehuman et al., 1998). This results in an SH2 domain– IFN(cid:11)8 was later found to possess some binding phosphotyrosine interaction-mediated formation of affinity for mouse receptor (Domanski and a STAT1/STAT2 heterodimer that migrates to the Colamonici, 1996). Therefore, IFNAR-1 was not nucleus and binds with a member of the IFN regu- sufficient to confer responsiveness to all the type I latory factor (IRF) family protein p48 (ISFG3-(cid:13)) to IFNs, indicating that another species-specific ligand- form the functional trimeric complex ISGF3 that binding receptor subunit was required for signal binds to an ISRE to activate transcription (Darnell transduction (Uze et al., 1990; Domanski and et al., 1994; Stark et al., 1998). Colamonici, 1996). A second set of genes, including major histocom- The purification of human IFN(cid:11)-binding protein patibility complexes,is inducedas a delayedresponse from urine and its amino acid sequence analyses led that requires new protein synthesis (Pestka et al., totheisolationofan1.5kbcDNAforanovelsubunit 1987; Sen and Lengyel, 1992; Haque and Williams, of type I IFN receptor encoding 331 amino acids 1998; Stark et al., 1998). The mechanisms of this (Novick et al., 1994). However, this novel protein of delayed response to IFNs are not well understood, 331 amino acids termed IFNAR-2B ((cid:12) subunit) was S but in some cases IFNs may regulate gene expression not a functional receptor subunit. A longer form of at the posttranscriptional level (Stark et al., 1998). human IFNAR-2 encoding 515 amino acids, termed The proteins encoded by the IFN-regulated genes IFNAR-2C ((cid:12) subunit) was identified as the uni- L mediate multiple biological activities attributed to versal ligand-binding subunit of the type I IFN IFNs (Stark et al., 1998). receptor(Zhangetal.,1986;Bazan,1990;Colamonici et al., 1990, 1992; Domanski et al., 1995; Lutfalla et al., 1995). Discovery Alternative names Early investigations using radiolabeled recombinant type I IFNs revealed the cell surface expression of both low-affinity and high-affinity receptors for type Thereceptor forthetypeI IFNsis also referredtoas I IFNs (Aguet and Blanchard, 1981; Branca and type I IFNR, IFNR, IFN(cid:11)R, and IFN(cid:11)/(cid:12)R (Uze Baglioni, 1981; Joshi et al., 1982; Hannigan et al., et al., 1995; Domanski and Colamonici, 1996). The 1983, 1984, 1986; Aguet et al., 1984; Merlin et al., first cloned subunit of the type I IFN receptor is 1985;RaziuddinandGupta,1985;Zhangetal.,1986; IFNAR-1,whichwasinitiallytermedIFNARbyUze Pestkaetal.,1987;VandenBroeckeandPfeffer,1988; et al. (1990). It is identical to IFNR(cid:11) of the SenandLengyel,1992;Faltyneketal.,1993).Studies Colamonici group (Uze et al. 1995). The second on binding and crosslinking of radiolabeled IFNs to subunit of type I IFN receptor, originally cloned by the cell surface suggested the existence of the multi- Novick et al. (1994), is IFNAR-2, which is also subunit structure for the type I IFN receptors (Joshi known as IFNR(cid:12) (Domanski et al., 1995). This sub- et al., 1982; Aguet et al., 1984; Merlin et al., 1985; unit has three isoforms: IFNAR-2A, IFNAR-2B Raziuddin and Gupta, 1985; Hannigan et al., 1986; (alsotermedIFNR(cid:12) ),andIFNAR-2C,whichisalso S Zhang et al., 1986; Pestka et al., 1987; Vanden known as IFNR(cid:12) (Domanski et al., 1995; Lutfalla L Broecke and Pfeffer, 1988; Sen and Lengyel, 1992; et al. 1995; Domanski and Colamonici, 1996). Faltynek et al., 1993). The existence of the multi- subunit structure was later demonstrated using spe- Structure cific monoclonal antibodies to receptor subunits (Colamonici et al., 1990, 1992). The first receptor subunit to be cloned was the Cytokine receptors are transmembrane proteins with humanIFNAR-1(formerlyknownasIFNreceptor(cid:11) a single membrane-spanning region. Based on the chain) (Uze et al., 1990). The cDNA encoding the aminoacidsequenceandstructuralfeatures,cytokine human IFNAR-1 was isolated by an expression receptors are divided into two classes (Bazan, 1990; cloning strategy utilizing the species-specific recogni- Kishimoto et al., 1994; Heldin, 1995; Haque and tion property of type I IFNs. This protein conferred Williams, 1998). While the majority of the cytokine resistance to vesicular stomatitis virus replication in receptors fall into class I, the receptors for IFN(cid:11)/(cid:12), mouse cells in the presence of human IFN(cid:11)8 (Uze IFN(cid:13), and IL-10 as well as the tissue factor (a mem- et al., 1990). However, when the human IFNAR-1 branereceptorforthecoagulationproteasefactorVII) IFN(cid:11)/(cid:12) Receptor 1847 belongtotheclassIIcytokinereceptorfamily(Bazan, acidlevels,differentIFN(cid:11)subtypesare(cid:24)80%homol- 1990). ogous, while the homology between the (cid:11) subtypes The cytokine receptors contain one or two char- and the (cid:12) subtype is about 35% (Pestka et al., 1987). acteristic external domain structures (D200) consist- The AB loop, C helix, and D helix are important for ing of two homologous subdomains (SD100) of functional IFN(cid:11) binding to its receptors (Runkel (cid:24)100aminoacids,eachofwhichadoptsanimmuno- et al., 1998). Mutational studies reveal that substitu- globulin-like fold with seven (cid:12) strands (s1–s7) organ- tions of amino acids that are highly conserved in the ized into two (cid:12) sheets (Bazan, 1990). While the D200 AB loop and D helix reduce the binding of IFN(cid:11) module of class I receptors contains a set of four comparedwiththatofIFN(cid:12),suggestingadifferential conservedcysteine residues and aWSXWSmotif, the interaction of (cid:11) and (cid:12) IFNs with their receptor class II cytokine receptors share one cysteine pair (Runkeletal.,1998).ItisevidentthatbothIFN(cid:11)and with class I and contain an additional conserved IFN(cid:12) need to make physical contact with IFNAR-1 cysteine pair, and several conserved proline and and IFNAR-2 for intracellular signal transduction, tryptophan residues, but lack the WSXWS motif although IFNAR-1 seems to engage IFN(cid:12) quite (Bazan, 1990). differently than IFN(cid:11) (Novick et al., 1994; Cohen The INFAR-1 chain of the receptor contains two et al., 1995; Domanski et al., 1995; Lutfalla et al., D200modules,whileIFNAR-2hasone(Bazan,1990; 1995; Cutrone and Langer, 1997; Karpusas et al., Gaboriaudetal.,1990;Thoreauet al.,1991).Human 1997; Rani et al., 1996). This suggests that there are IFN(cid:11)2 binds to the human IFNAR-1 with low some functional differences between these two affinity, while it exhibits moderate binding affinity subtypes of IFNs at the level of receptor recognition. towards the bovine homolog of IFNAR-1. This has The three-dimensional structure of the cytoplasmic facilitated the analysis of IFN(cid:11) binding to IFNAR-1 domain of cytokine receptors is not currently avail- (Rehberg et al., 1982; Zoon et al., 1982; Lundgren able. Most of the information on structure–function and Langer, 1997; Goldman et al., 1998). Binding of relationship has been derived from the receptor human IFN(cid:11)2 to bovine/human IFNAR-1 chimeras mutagenesis studies. Cytoplasmic domains of cyto- reveals that bovine SD2 and SD3 contain residues kine receptors are of variable lengths (Bazan, 1990; necessary but not sufficient for moderate-affinity Uzeetal.,1990;Kishimotoetal.,1994;Novicketal., ligand binding; SD1 and SD4 also contribute either 1994;Ihle,1995;IhleandKerr,1995;Ihleetal.,1995; directly or indirectly to ligand binding (Goldman Domanski and Colamonici, 1996; Haque and et al., 1998). Mapping of epitopes for neutralizing Williams, 1998; Leonard and O’Shea, 1998; Stark monoclonal antibodies to IFNAR-1 also implicates et al., 1998). Many cytokine receptors contain two direct roles for amino acid residues in all four sub- membrane proximal loosely conserved motifs, Box 1 domains of the IFNAR-1 molecule (Eid and Tovey, and Box 2 (Bazan, 1990; Kishimoto et al., 1994; Ihle, 1995; Goldman et al., 1998; Lu et al., 1998). 1995; Ihle and Kerr, 1995; Ihle et al., 1995; Leonard The human IFNAR-2 binds to type I IFNs with and O’Shea, 1998). moderate affinity (2–8nmol/L; Novick et al., 1994; Domanski and Colamonici, 1996; Lewerenz et al., 1998). Mutant IFNAR-2 proteins generated by ala- Main activities and ninesubstitutionsofselectedaminoacidsintwoloop pathophysiological roles regions (amino acids 71–75 in s3–s4 and amino acids 103–106ins5–s6)intheN-terminalsubdomainconfer complete resistance to IFN(cid:11) but not IFN(cid:12) binding Protein tyrosine phosphorylation is a key reaction in when expressed in IFNAR-2-null human cell line the activation of cytokine and growth factor recep- U5A (Lewerenz et al., 1998). In contrast, unlike tors (Velazquez et al., 1992; Mu¨ller et al., 1993; IFN(cid:11), IFN(cid:12) binding to IFNAR-2 is sensitive to an Watling et al., 1993; Kishimoto et al., 1994; Heldin, alanine substitution of Try127 located in the inter- 1995;Ihle,1995,1996;IhleandKerr,1995;Ihleetal., subdomain link of the IFNAR-2 molecule (Lewerenz 1995; Krowlewski, 1995; Levy, 1995; Domanski and et al., 1998). Cytokines in general contain four main Colamonici, 1996; Haque and Williams, 1998; (cid:11)helices labeled A throughD connectedby two long Leonard and O’Shea, 1998; Stark et al., 1998). loops(ABandCD)andashortloop(BC)withanup- Unlike most growth factor receptors, the cytokine up-down-down arrangement (Uze et al., 1995; Mitsui receptors do not possess any cytoplasmic tyrosine andSenda,1997).IFNshavinganadditionalhelix(E) kinase domain, rather they constitutively associate instead of CD loop constitute a subclass of cytokine with members of Janus family tyrosine kinases that with an up-up-down-up-down arrangement (Uze providetyrosinekinaseactivitynecessaryforreceptor et al., 1995; Mitsui and Senda, 1997). At the amino activation and subsequent signal transduction 1848 S. Jaharul Haque and B. R. G. Williams (Velazquez et al., 1992; Mu¨ller et al., 1993; Watling in this protein–protein interaction (Domanski and et al., 1993; Kishimoto et al., 1994; Ihle, 1995; Ihle Colamonici, 1996). The three amino acid residues and Kerr, 1995; Ihle et al., 1995; Domanski and Ile504, Leu505, and Glu506 in IFNAR-1 are essen- Colamonici, 1996; Haque and Williams, 1998; tial for TYK2 binding (Colamonici et al., 1994a, Leonard and O’Shea, 1998; Stark et al., 1998;). After 1994b; Domanski and Colamonici, 1996; Yan et al., being activated by JAK-mediated tyrosine phosphor- 1996a). ylation cytokine receptor subunits recruit a number In vitro bindingstudies suggest that the N-terminal of downstream signaling components through pro- (cid:24)600 amino acids containing JH7 to JH3 comprise tein–protein interactions (Velazquez et al., 1992; the major binding site of TYK2 to the IFNAR-1 Mu¨ller et al., 1993; Watling et al., 1993; Kishimoto protein (Yan et al., 1998). Glutathione S-transferase- etal.,1994;Ihle,1995;IhleandKerr,1995;Ihleetal., TYK2-JH3 or JH6 domain physically interacts 1995; Domanski and Colamonici, 1996; Haque and in vitro with the IFNAR-1 protein, suggesting that Williams, 1998; Leonard and O’Shea, 1998; Stark JH3 and JH6 are the major sites of interaction of et al., 1998). TYK2with IFNAR-1(Yan et al., 1998).A truncated The type I IFN receptor subunits IFNAR-1 and TYK2 protein containing amino acids 1–601 can IFNAR-2 constitutively associate with the Janus function in vivo as a dominant negative mutant kinases TYK2 and JAK1 respectively (Velazquez kinase inhibiting IFN(cid:11)-dependent JAK/STAT sig- et al., 1992; Mu¨ller et al., 1993; Watling et al., 1993; naling (Yan et al., 1998). Further mutagenesis Domanski and Colamonici, 1996; Haque and studies have revealed that JH7 and a part of the Williams, 1998; Stark et al., 1998). TYK2 was the JH6 domain containing amino acids 22–221 are first member of the JAK family to be identified as an essential for TYK2 binding to IFNAR-1 (Richter essential component of IFN(cid:11) signaling by the use of et al., 1998). somatic cell genetic studies and subsequent investiga- Tyr466 and, to some extent, Tyr481 on human tions established the role of other JAKs in cytokine IFNAR-1 are phosphorylated by TYK2 and phos- signaling (Velazquez et al., 1992). pho-Tyr466 serves as a docking site for STAT2 The C-terminal kinase domain (JH1) of JAKs (Krishnan et al., 1996, 1998; Yan et al., 1996b; Li shares sequence homologywiththe catalytic domains et al., 1997; Richter et al., 1998; Nadeau et al., 1999). of other protein tyrosine kinases within the defined The SH2-containing protein tyrosine phosphatase conserved(Ihle,1995; IhleandKerr,1995;Ihleet al., SHP-2 preassociates with IFNAR-1 and is phos- 1995; Krowlewski, 1995; Wilks, 1995; Hanks et al., phorylated in response to IFN(cid:11)/(cid:12) (David et al., 1988; Leonard and O’Shea, 1998). Adjacent to the 1995a). In transient transfection assays a dominant kinasedomainJAKshaveapseudokinase(i.e.kinase- negative mutant SHP-2 inhibits IFN(cid:11)/(cid:12)-induced related) domain(JH2) that hasa number of sequence expression of an ISRE-driven reporter gene, suggest- motifs characteristic of a catalytic domain but is ingthatSHP-2mayfunctionasapositiveregulatorof missing some conserved amino acids including the type IFN signaling (David et al., 1995a). In contrast, catalytic aspartic acid (Ihle et al., 1995; Leonard and SHP-1 negatively controls IFN(cid:11)/(cid:12) signaling. Bone O’Shea, 1998). The precise function of the pseudo- marrow-derivedmacrophagesfromviablemoth-eaten kinasedomainisnotclearyet.TheN-terminalhalfof mice (expressing mutant SHP-1 with substantially the JAKs contains five regions (JH3–7) that share reduced phosphatase activity) exhibit enhanced sequence homology among the Janus family mem- IFN(cid:11)/(cid:12) signaling compared with normal littermate bers. In contrast, however, the extreme N-terminal control (David et al., 1995a). SHP-1 physically regionofeachJAKproteinisunique,andmayconfer associates with IFNAR-1 in a ligand-regulated the specificity in binding to the membrane-proximal fashion (David et al., 1995a). Mutation of tyrosines regions of cytokine receptors (Ihle, 1995; Ihle et al., to phenylalanines at positions 527 and 538 of 1995; Leonard and O’Shea, 1998). IFNAR-1 enhances IFN(cid:11) signaling, suggesting that TYK2-binding domain in IFNAR-1 protein has IFN(cid:11)/(cid:12) signaling is negatively regulated throughthis been mapped to a (cid:24)33 amino acids membrane- region of IFNAR-1 (Gibbs et al., 1996). proximal region that comprises the Box 1 and Box 2 The cytoplasmic domains of IFNAR-2B and motifs (Domanski and Colamonici, 1996; Yan et al., IFNAR-2C are divergent after the membrane-pro- 1996a). Almost all phylogenetically conserved resi- ximal 15 amino acids. Human IFNAR-2B contains dues in this region of IFNAR-1 are essential for two tyrosine residues (269 and 321) and no char- TYK2 recognition (Domanski and Colamonici, acteristic motifs of cytokine receptors and it does not 1996; Yan et al., 1996a). In contrast to other cyto- interact with JAK1 (Domanski et al., 1995; Lutfalla kine receptors, the Box 1 motif, which is not well et al., 1995; Domanski and Colamonici, 1996). Like conserved in IFNAR-1, does not play a critical role IFNAR-2A, IFNAR-2B probably functions as decoy IFN(cid:11)/(cid:12) Receptor 1849 receptorfortypeIIFNs.Incontrast,thecytoplasmic complex (Darnell et al., 1994; Uze et al., 1995; domainofhumanIFNAR-2CcontainsaBox1motif Domanski and Colamonici, 1996; Haque and and seven tyrosine residues (269, 306, 316, 337, 411, Williams, 1998; Stark et al., 1998). However, dif- and 512) and a number of acidic residues (Domanski ferenceshavebeenobservedbetweencellsignalingby et al., 1995; Lutfalla et al., 1995; Domanski and IFN(cid:11) and IFN(cid:12). Interestingly, U1A cells which are Colamonici, 1996). The JAK1-interaction domain of completely defective in response to recombinant IFNAR-2 has been mapped to amino acids 300–346 IFN(cid:11)1, IF-(cid:11)2, or a mixture of natural IFN(cid:11)s, retain (Domanskietal.,1996).TheBox1motifinIFNAR-2 a partial response to IFN(cid:12) (Pellegrini et al., 1989). playsaminorroleinJAK1binding(Domanskietal., But none of the mutant cell lines lacking JAK1, 1995; Lutfalla et al., 1995; Domanski and STAT1, or STAT2 exhibits any IFN(cid:12) response, Colamonici, 1996). suggesting that TYK2 activity is not absolutely It has been demonstrated by indirect approaches required for IFN(cid:12) signaling (Stark et al., 1998). U1A using a JAK1–JAK2 chimeric protein that the JH3– cells express low levels of IFNAR-1 which is not JH7 of JAK1 is involved in the physical association stably maintained at the plasma membrane. There- with IFNAR-2 to elicit biological responses of type I fore, in U1A cells IFN(cid:12) likely signals through the IFNs (Kohlhuber et al., 1997). Both STAT1 and IFNAR-2 dimer (Lewerenz et al., 1998). Recon- STAT2 physically associate with the IFNAR-2C stitutions of U1A cells with mutant TYK2 proteins protein in unstimulated cells, but the biological sig- reveal that TYK2 N-terminal domain is required to nificanceoftheinteractionisnotclear(Stancatoetal., maintain functional IFNAR-1, JH2 (pseudokinase) 1996; Stark et al., 1998). Murine cells expressing domain is necessary for high-affinity ligand binding humanIFNAR-2Ctruncatedataminoacid417show and JH1(kinase) domain phosphorylates IFNAR-1 a marked decrease in IFN(cid:12)-mediated antiviral which is dispensable for JAK/STAT signaling by response without any defect in JAK/STAT signaling IFN(cid:11) or IFN(cid:12) (Pellegrini et al., 1989; Velazquez by both IFN(cid:11) and IFN(cid:12) (Platanias et al., 1998). et al., 1992; Richter et al., 1998; Rani et al., 1999). Protein tyrosine phosphatase activity associated with Recentlyithasbeendemonstratedthat theIFNAR-1 thedistalregionofIFNAR-2Chasbeenimplicatedin and TYK2 expression is coordinately regulated in the negative regulation of the growth-inhibitory cells (Gauzzi et al., 1997). This is consistent with the action of type I IFNs (Platanias et al., 1998). model that IFN(cid:12) interacts with the receptor in a The mitogen-activated protein kinase (MAPK) is mannerthatisdifferentfromthatofIFN(cid:11)(Pellegrini activated by IFN(cid:11)/(cid:12) treatment of cells and ERK2 et al., 1989; Velazquez et al., 1992; Lewerenz et al., (p42-MAPK) associates with IFNAR-1 both in vitro 1998; Stark et al., 1998; Rani et al., 1999). and in vivo (David et al., 1995b). Binding of type I IFN(cid:11)2 and IFN(cid:12) may require distinct cytoplasmic IFNs to receptor causes tyrosine phosphorylation of regions of IFNAR-2C to elicit an antiviral response. insulinreceptorsubstrate1andsubsequentactivation IFNAR-2Cisphosphorylatedatcomparablelevelsin of the phosphatidylinositol 3-kinase pathway, which response toIFN(cid:11)and IFN(cid:12); however,the IFNAR1/ requiresfunctionalJAK1andTYK2proteins(Pfeffer IFNAR-2Ccomplexcanbeimmunoprecipitatedonly et al., 1997). However, the contribution of the PI-3 from the IFN(cid:12)-treated but not IFN(cid:11)-treated cells kinase pathway to the biological outcome of type I (Croze et al., 1996; Platanias et al., 1996). Iden- IFN action is not yet known (Wang et al., 1997). tification of the (cid:12)-R1 gene which shows a selective STAT3 is activated by type I IFNs and may serve as induction by IFN(cid:12) compared with IFN(cid:11) by Rani an adapter for the recruitment of PI-3 kinase in et al. has provided further evidence that IFN(cid:12) may Daudicells (Burfootet al.,1997).Stimulationofcells use a distinct pathway for cell signaling (Rani et al., with IFN(cid:11) causes a JAK1-dependent phosphoryla- 1996). tion of cytosolic phospholipase A (cPLA ) and IFN(cid:12) shares only 35% identity with the IFN(cid:11) 2 2 pretreatment of cells with inhibitors of cPLA2 subtypes, and appears to engage the (cid:11)/(cid:12) receptor inhibits the activation of ISGF3 but not GAF differently. This can result in the activation of selec- (STAT1 homodimer) formation (Flati et al., 1996). tive subsets of genes by IFN(cid:12) (Der et al., 1998), even Moreover, JAK1 and cPLA2 can be co-immunopre- though it binds and activates the same receptor. cipitated from IFN-treated cell lysate (Flati et al., Apparently distinctive structural differences are 1996). Type I IFNs also activate p38 mitogen-acti- transmittedthroughthemembranetothecytoplasmic vated kinase (p38 MAPK) and this is essential for domains of the receptors that then mediate a dif- cPLA -dependentISGF3formation(Gohetal.,1999; ferential response. Mutant cell lines lacking TYK2 2 Uddin et al., 1999). which are completely defective in their response to IFNAR-1, IFNAR-2C, JAK1, and TYK2 are IFN(cid:11)2 still respond to IFN(cid:12) or (cid:11)8, albeit with known to form the functional type I IFN receptor reducedactivity.Infact,usingtheseandothermutant 1850 S. Jaharul Haque and B. R. G. Williams celllinesreconstitutedwithdifferentmutantproteins, PROTEIN three distinct modes of type I interactions with receptor subunits have been discerned: IFN(cid:11) with Accession numbers IFNAR-1 and IFNAR-2, IFN(cid:12) with IFNAR-1, and IFNAR-2 and IFN(cid:12) with IFNAR-2 only (Lewerenz Bovine IFNAR-2: Q95141 et al., 1998). Thus IFN(cid:11) and (cid:12) signal differently Human IFNAR-2: P48551 through their receptors because they interact with Sheep IFNAR-2: Q95207 the receptor in different ways. There is a tight cor- Human IFNAR-1: P17181 relation between receptor occupancy and the tran- Sheep IFNAR-1: Q28589, Q95206 scriptionalresponsetoIFN(HanniganandWilliams, Bovine IFNAR-1: Q04790 1986). The degree of receptor occupancy is a rate- Mouse IFNAR-1: P33896 limiting step in determining the transcriptional response to IFN which is transient and is accom- panied by the downregulation of receptors on the Description of protein cell surface. Downregulation of type I IFN receptors is also seen in vivo on peripheral blood lymphocytes See Structure. following IFN therapy (Lau et al., 1986). This is a BothN-andO-linkedglycosylationoftheIFNAR- temporary state and receptors reappear on the sur- 1 has been demonstrated (Novick et al., 1992; face over 24–48 hours. Platanias et al., 1993; Constantinescu et al., 1995; Ling et al., 1995). GENE Relevant homologies and species Accession numbers differences Human IFNAR-1 cDNA: J03171 The receptor subunits are species-specific (Uze et al., Human IFNAR-1 gene: X60459 1990; Domanski and Colamonici, 1996; Stark et al., Mouse IFNAR-1 cDNA: M89641 1998). Bovine IFNAR-1 cDNA: L06320 Sheep IFNAR-1 cDNA: U65978 Human IFNAR-2.2 cDNA: L41942 Affinity for ligand(s) Mouse IFNAR-2 cDNA: Y09813 Mouse IFNAR-2B cDNA: Y09864 See Structure. Mouse IFNAR-2C cDNA: Y09865 Sheep IFNAR-2 cDNA: U65979 Cell types and tissues expressing the receptor Chromosome location and linkages The IFNAR subunits are expressed in all tissues. The human IFNAR-1 gene comprises 11 exons Soluble IFNAR-1 and IFNAR-2 are present in covering a 32.9kb region on chromosome 21q22.1 human body fluids (Novick et al., 1992, 1994). (Lutfalla et al., 1990, 1992). The human IFNAR-2 gene is also located on human chromosome 21q22.1 (Lutfalla et al., 1995). The murine IFNAR gene is Regulation of receptor expression located on chromosome 16. The genes encoding two other members of the class II cytokine receptors, namely IFNGR-2 and Recent study shows that TYK2 protein can regu- CRF2–4, are also mapped to chromosome 21q22.1 late the expression and ligand-binding activity of within a (cid:24)300kb span (Hertzog et al., 1994; IFNAR-1 protein (Gauzzi et al., 1997). Binding Rubinstein et al., 1998). IFNGR-2 is the second studies with iodinated IF(cid:11)2 and Scatchard plot anal- chain of IFN(cid:13) receptor and recently the orphan ysis reveal that monocyte differentiation to macro- receptor CRF2–4 has been shown to encode the phages results in a 3- to 4-fold increase in cell surface second chain of IL-10 receptor (Spencer et al., 1998; receptors with no change in their affinity (Eantuzzi Reboul et al., 1999). et al., 1997). IFN(cid:11)/(cid:12) Receptor 1851 BIOLOGICAL CONSEQUENCES Colamonici,O.R.,Uyttendaele,H.,Domanski,P.,Yan,H.,and Krolewski, J. J. (1994b). p135tyk2, an interferon-alpha-acti- OF ACTIVATING OR INHIBITING vated tyrosine kinase, is physically associated with an inter- RECEPTOR AND feron-alphareceptor.J.Biol.Chem.269,3518–3522. Constantinescu, S.N.,Croze,E.,Murti,A.,Wang,C.,Basu,L., PATHOPHYSIOLOGY Hollander, D., Russell-Harde, D., Betts, M., Garcia- Martinez, V., Mullersman, J. E., and Pfeffer, L. M. (1995). Expression and signaling specificity of the IFNAR chain of Phenotypes of receptor knockouts the type I interferon receptor complex. Proc. Natl Acad. Sci. and receptor overexpression mice USA92,10487–10491. Croze,E.,Russell-Harde,D.,Wagner,T.C.,Pu,H.,Pfeffer,L.M., andPerez,H.D.(1996).ThehumantypeIinterferonreceptor. Mice lacking the IFNAR-1 were completely unre- Identificationoftheinterferonbeta-specificreceptor-associated sponsive to type I IFNs. These animals showed no phosphoprotein.J.Biol.Chem.271,33165–33168. Cutrone,E.C.,andLanger,J.A.(1997).Contributionsofcloned overtabnormalitiesbutwereunabletocopewithviral typeIinterferonreceptorsubunitstodifferentialligandbinding. infection (Muller et al., 1994; Steinhoff et al., 1995; FEBSLett.404,197–202. Van den Broek et al., 1995a, 1995b). Despite com- Darnell Jr., J.E., Kerr, I. M., and Stark, G. R. (1994). Jak-Stat pelling evidence for modulation of cell proliferation pathways and transcriptional activation in response to IFNs and differentiation by type I IFNs, there were no andotherextracellularproteins.Science264,1415–1421. David,M.,Chen,H.E.,Goelz,S.,Larner,A.C.,andNeel,B.G. gross signs of abnormal fetal development or mor- (1995a). Differential regulation of the alpha/beta interferon- phological changes in adult IFNAR-1-deficient mice stimulated Jak/Stat pathway by the SH2 domain-containing (Hwang et al., 1995). However, abnormalities of tyrosinephosphataseSHPTP1.Mol.CellBiol.15,7050–7058. hematopoietic cells were detected in these animals. David,M.,PetricoinIII,E.,Benjamin,C.,Pine,R.,Weber,M.J., and Larner, A. C. (1995b). Requirement for MAP kinase (ERK2)activityininterferonalpha-andinterferonbeta-stimu- lated gene expression through STAT proteins. Science 269, References 1721–1723. Der, S. D., Zhou, A., Williams, B. R., and Silverman, R. H. (1998). Identification ofgenes differentially regulated byinter- Aguet,M.,andBlanchard,B.(1981).Highaffinitybindingof125I- feronalpha,beta,orgammausingoligonucleotidearrays.Proc. labeled mouse interferon to a specific cell surface receptor. NatlAcad.Sci.USA95,15623–15628. II.Analysisofbindingproperties.Virology115,249–261. Domanski,P.,andColamonici,O.R.(1996).ThetypeIinterferon Aguet,M.,Grobke,M.,andDreiding,P.(1984).Varioushuman receptor.Thelongandshortofit.CytokineGrowthFactorRev. interferonalphasubclassescross-reactwithcommonreceptors: 7,143–151. the binding affinities correlate with their specific biological Domanski, P., Witte, M., Kellum, M., Rubinstein, M., activities.Virology132,211–216. Hackett, R., Pitha, P., and Colamonici, O. R. (1995). Cloning Bazan,J.F.(1990).Structuraldesignandmolecularevolutionof andexpressionofalongformofthebetasubunitoftheinter- acytokinereceptorsuperfamily.Proc.NatlAcad.Sci.USA876, feronalphabetareceptorthatisrequiredforsignaling.J.Biol. 934–938. Chem.270,21606–21611. Branca,A.A.,andBaglioni,C.(1981).EvidencethattypeIand Eantuzzi, L., Eid, P., Malorni, W., Rainaldi, G., Gauzzi, M. C., type II interferons have different receptors. Nature 294, 768– Pellegrini,S.,Belardelli,F.,andGessani,S.(1997).Post-trans- 770. lationalup-regulationofthecellsurface-associatedalphacom- Burfoot,M.S.,Rogers,N.C.,Watling,D.,Smith,J.M.,Pons,S., ponent of the human type I interferon receptor during Paonessaw, G., Pellegrini, S., White, M. F., and Kerr, I. M. differentiation of peripheral blood monocytes: role in the bio- (1997). Janus kinase-dependent activation of insulin receptor logicalresponsetotypeIinterferon.Eur.J.Immunol.27,1075– substrate1inresponsetointerleukin-4,oncostatinM,andthe 1081. interferons.J.Biol.Chem.272,24183–24190. Eid,P.,andTovey,M.G.(1995).Characterizationofadomainof Cohen, B., Novick, D., Barak, S., and Rubinstein, M. (1995). a human type I interferon receptor protein involved in ligand Ligand-induced association of the type-I interferon receptor binding.J.InterferonCytokineRes.15,205–211. components.Mol.CellBiol.15,4208–4214. Faltynek,C.R.,Branca,A.A.,McCandless,S.,andBaglioni,C. Colamonici,O.R.,D’Alessandro,F.,Diaz,M.O.,Gregory,S.A., (1993). Characterization of an interferon receptor on human Neckers, L. M., and Nordan, R. (1990). Characterization of lymphoblastoidcells.Proc.NatlAcad.Sci.USA80,3269–3273. threemonoclonalantibodiesthatrecognizetheIFN(cid:11)2receptor. Flati, V., Haque, S. J., and Williams, B. R. (1996). Interferon- Proc.NatlAcad.Sci.USA87,7230–7234. alpha-induced phosphorylation and activation of cytosolic Colamonici, O. R., Pfeffer, L. M., D’Alessandro, F., phospholipase A is required for the formation of interferon- 2 Platanias, L. C., Gregory, S. A., Rosolen, A., Nordan, R., stimulatedgenefactorthree.EMBOJ.15,1566–1571. Cruciani, R. A., andDiaz, M. O. (1992). Multichain structure Gaboriaud, C., Uze, G., Lutfalla, G., and Mogensen, K. (1990). of the IFN-alpha receptor on hematopoietic cells. J. Immunol. Hydrophobicclusteranalysisrevealsduplicationintheexternal 148,2126–2132. structure of human alpha-interferon receptor and homology Colamonici,O.,Yan,H.,Domanski,P.,Handa,R.,Smalley,D., with gamma-interferon receptor external domain. FEBS Lett. Mullersman, J., Witte, M., Krishnan, K., and Krolewski, J. 269,1–3. (1994a). Direct binding to and tyrosine phosphorylation of Gauzzi, M. C., Barbieri, G., Richter, M. F., Uze, G., Ling, L., the alpha subunit of the type I interferon receptor by Fellous, M., and Pellegrini, S. (1997). The amino-terminal p135tyk2tyrosinekinase.Mol.CellBiol.14,8133–8142. regionofTYK2sustainsthelevelofinterferonalphareceptor1, 1852 S. Jaharul Haque and B. R. G. Williams a component of the interferon. Proc. Natl Acad. Sci. USA 94, ofhumaninterferonbetaat2.2-Aresolution.Proc.NatlAcad. 11839–11844. Sci.USA94,11813–11818. Gibbs, V. C., Takahashi, M., Aguet, M., and Chuntharapai, A. Kishimoto, T., Taga, T., and Akira, S. (1994). Cytokine signal (1996).Anegativeregulatoryregionintheintracellulardomain transduction.Cell76,253–262. of the human interferon-alpha receptor. J. Biol. Chem. 271, Kohlhuber,F.,Rogers,N.C.,Watling,D.,Feng,J.,Guschin,D., 28710–28716. Briscoe, J., Witthuhn, B. A., Kotenko, S. V., Pestka, S., Goh, K. C., Haque, S. J., and Williams, B. R. (1999). p38MAP Stark, G. R., Ihle, J. N., and Kerr, I. M. (1997). A JAK1/ kinaseisrequiredforSTAT1serinephosphorylationandtran- JAK2 chimera can sustain alpha and gamma interferon scriptional activation induced by interferons. EMBO J. 18, responses.Mol.CellBiol.17,695–706. 5601–5608. Krishnan, K., Yan, H., Lim, J. T., and Krolewski, J. J. (1996). Goldman,L.A.,Cutrone,E.C.,Dang,A.,Hao,X.,Lim,J.,and Dimerization of a chimeric CD4-interferon-alpha receptor Langer,J.A.(1998).Mappinghumaninterferon-alpha(IFN(cid:11)2) reconstitutesthesignalingeventsprecedingSTATphosphoryla- binding determinants of the type I interferon receptor subunit tion.Oncogene13,125–133. IFNAR-1 with human/bovine IFNAR-1 chimeras. Krishnan,K.,Singh,B.,andKrolewski,J.J.(1998).Identification Biochemistry37,13003–13010. ofaminoacidresiduescriticalfortheSrc-homology2domain- Hanks,S.K.,Quinn, A.M.,andHunter,T.(1988).Theprotein dependent docking of Stat2 to the interferon alpha receptor. kinasefamily:conservedfeaturesanddeducedphylogenyofthe J.Biol.Chem.273,19495–19501. catalyticdomains.Science241,42–52. Krowlewski, J. J. (1995). In ‘‘The Protein Kinase Facts Book, Hannigan, G., and Williams, B. R. G. (1986). Transcriptional Protein-Tyrosine Kinases’’ (ed G. Hardie and S. Hanks), regulation of interferon-responsive genes is closely linked to Interferon-(cid:11) regulated PTK (vertebrate)(p135tyk2) pp. 114– interferonreceptoroccupancy.EMBOJ.5,1607–1613. 116.AcademicPress,London. Hannigan, G. E., Gewert, D. R., Fish, E. N., Read, S. E., and Lau, A. S., Hannigan, G. E., Freedman, M. H., and Williams,B.R.G.(1983).Differentialbindingofhumaninter- Williams, B. R. G. (1986). Regulation of interferon receptor feron-alpha subtypes to receptors on lymphoblastoid cells. expression in human blood lymphocytes in vitro and during Biochem.Biophys.Res.Commun.110,537–544. interferontherapy.J.Clin.Invest.77,1632–1638. Hannigan, G. E.,Gewert, D.R., and Williams, B. R. G. (1984). Leonard, W. J., and O’Shea, J. J. (1998). Jaks and STATs: bio- Characterization of interferon receptor binding to interferon logicalimplications.Annu.Rev.Immunol.16,293–322. sensitive and resistant human lymphoblastoid cells. J. Biol. Levy, D. E. (1995). Interferon induction of gene expression Chem.259,9456–9460. throughtheJak-Statpathway.Semin.Virol.6,181–189. Hannigan, G. E., Lau, A. S., and Williams, B. R. G. (1986). Lewerenz, M., Mogensen, K. E., and Uze, G. (1998). Shared Differential human interferon alpha receptor expression on receptor components but distinct complexes for alpha and proliferating and non-proliferating cells. Eur. J. Biochem. 157, betainterferons.J.Mol.Biol.282,585–599. 187–193. Li,X.,Leung,S.,Kerr,I.M.,andStark,G.R.(1997).Functional Haque,S.J.,andWilliams,B.R.G.(1998).Signaltransductionin subdomains of STAT2 required for preassociation with the theinterferonsystem.Semin.Oncol.25,(Suppl.1),14–22. alphainterferon receptorandforsignaling. Mol.CellBiol.17, Heldin, C. H. (1995). Dimerization of cell surface receptors in 2048–2056. signaltransduction.Cell80,213–223. Ling, L. E., Zafari, M., Reardon, D., Brickelmeier, M., Hertzog, P. J., Hwang, S. Y., Holland, K. A., Tymms, M. J., Goelz,S.E.,andBenjamin,C.D.(1995).HumantypeIinter- Iannello, R., and Kola, I. (1994). A gene on human chromo- feron receptor, IFNAR, is a heavily glycosylated 120–130kD some 21 located in the region 21q22.2 to 21q22.3 encodes a membraneprotein.InterferonCytokineRes.15,55–61. factor necessary for signal transduction and antiviral response Lu,J.,Chuntharapai,A.,Beck,J.,Bass,S.,Ow,A.,DeVos,A.M., totypeIinterferons.J.Biol.Chem.269,14088–14093. Gibbs, V., and Kim, K. J. (1998). Structure–function study of Hwang,S.Y.,Hertzog,P.J.,Holland,K.A.,Sumarsono,S.H., the extracellular domain of the human IFNalpha receptor Tymms,M.J.,Hamilton,J.A.,Whitty,G.,Bertoncello,I.,and (hIFNAR1) using blocking monoclonal antibodies: the role of Kola, I.(1995).A nullmutation inthegene encodingatypeI domains1and2.J.Immunol.160,1782–1788. interferon receptor component eliminates antiproliferative and Lundgren, E., and Langer, J. A. (1997). Nomenclature of inter- antiviral responses to interferons alpha and beta and alters feron receptors and interferon-delta. Interferon Cytokine Res. macrophage responses. Proc. Natl Acad. Sci. USA 92, 11284– 17,431–432. 11288. Lutfalla, G., Roeckel, N., Mogensen, K. E., Mattel, M.-G., and Ihle,J.N.(1995).Cytokinereceptorsignalling.Nature377,591– Uze,G.(1990).Assignmentofthehumaninterferonalphagene 594. tochromosome21q22.1byinsituhybridization.J.IFNRes.10, Ihle, J. N. (1996). STATs: signal transducers and activators of 515–517. transcription.Cell84,331–334. Lutfalla,G.,Gardiner,K.,Proudhon,D.,Vielh,E.,andUze,G. Ihle,J.N.,andKerr,I.M.(1995).JaksandStatsinsignalingby (1992).Thestructureofthehumaninterferonalpha/betarecep- thecytokinereceptorsuperfamily.TrendsGenet.11,69–74. torgene.J.Biol.Chem.267,2802–2809. Ihle, J. N., Witthuhn, B. A., Quelle, F. W., Yamamoto, K., and Lutfalla,G.,Holland,S.J.,Cinato,E.,Monneron,D.,Reboul,J., Silvennoinen, O. (1995). Signaling through the hematopoietic Rogers, N. C., Smith, J. M., Stark, G. R., Gardiner, K., cytokinereceptors.Annu.Rev.Immunol.13,369–398. Mogensen, K. E., Kerr, I. M., and Uze, G. (1995). Mutant Isaacs,A.,andLindenmann,J.(1957).VirusinterferenceII.Some U5Acellsarecomplementedbyaninterferon-alphabetarecep- properties of interferon. Proc. R. Soc. Lond. B Biol. Sci. 147, torsubunitgeneratedbyalternativeprocessingofanewmem- 268–273. berofacytokinereceptorgenecluster.EMBOJ.14,5100–5108. Joshi, A. R., Sarkar, F. H., and Gupta, S. L. (1982). Interferon Merlin,G.,Falcoff,E.,andAguet,M.(1985).125-labeledhuman receptors.Cross-linkingtohumanleukocytesinterferonalpha-2 interferonalpha,betaandgamma:Comparativereceptorbind- toitsreceptoronhumancell.J.Biol.Chem.257,13884–13887. ingdata.J.Gen.Virol.66,1149–1152. Karpusas, M., Nolte, M., Benton, C. B., Meier, W., Mitsui, Y., and Senda, T. (1997). Elucidation of the basic three- Lipscomb, W. N., and Goelz, S. (1997). The crystal structure dimensional structure of type I interferons and its functional IFN(cid:11)/(cid:12) Receptor 1853 and evolutionary implications. J. Interferon Cytokine Res. 17, Reboul,J.,Gardiner,K.,Monneron,D.,Uze,G.,andLutfalla,G. 319–326. (1999). Comparative genomic analysis of the interferon/inter- Mu¨ller, M., Briscoe, J., Laxton, C., Guschin, D., Ziemiecki, A., leukin-10receptorgenecluster.GenomeRes.9,242–250. Silvennoinen,O.,Harpur,A.G.,Barbieri,G.,Witthuhn,B.A., Rehberg, E., Kelder, B., Hoal, E. G., and Pestka, S. (1982). Schindler, C., Pellegrini, S., Wilks, A. F., Ihle, J. N., Specific molecular activities of recombinant and hybrid leuko- Stark,G.R.,andKerr,I.M.(1993).Theproteintyrosinekinase cyteinterferons.J.Biol.Chem.257,11497–11502. JAK1 complements defects in interferon-alpha/beta and Richter, M. F., Dumenil, G., Uze, G., Fellous, M., and -gammasignaltransduction.Nature366,129–135. Pellegrini, S. (1998). Specific contribution of Tyk2 JH regions Muller, U., Steinhoff, U., Reis, L. F., Hemmi, S., Pavlovic, J., to the binding and the expression of the interferon alpha/ Zinkernagel, R. M., and Aguet, M. (1994). Functional role of beta receptor component IFNAR1. J. Biol. Chem. 273, typeIandtypeIIinterferonsinantiviraldefense.Science264, 24723–24729. 1918–1921. Rubinstein, M., Dinarello, C. A., Oppenheim, J. J., and Nadeau, O. W., Domanski, P., Usacheva, A., Uddin, S., Hertzog, P. (1998). Recent advances in cytokines, cytokine Platanias, L. C., Pitha, P., Raz, R., Levy, D., Majchrzak, B., receptors and signal transduction. Cytokine Growth Factor Fish,E.,andColamonici,O.R.(1999).Theproximaltyrosines Rev.9,175–181. ofthecytoplasmicdomainofthebetachainofthetypeIinter- Runkel,L.,Pfeffer,L.,Lewerenz,M.,Monneron,D.,Yang,C.H., feronreceptor are essentialfor signal transducer and activator Murti,A.,Pellegrini,S.,Goelz,S.,Uze,G.,andMogensen,K. oftranscription(Stat)2activation.EvidencethattwoStat2sites (1998). Differences in activity between alpha and beta type I are required to reach a threshold of interferon alpha-induced interferons explored by mutational analysis. J. Biol. Chem. Stat2 tyrosine phosphorylation that allows normal formation 273,8003–8008. of interferon-stimulated gene factor 3. J. Biol. Chem. 274, Sen,G.C.,andLengyel,P.(1992).Theinterferonsystem:abird’s 4045–4052. eyeviewofbiochemistry.J.Biol.Chem.267,5017–5020. Novick,D.,Cohen,B.,andRubinstein,M.(1992).Solubleinter- Spencer, S. D., Di Marco, F., Hooley, J., Pitts-Meek, S., feron-alphareceptormoleculesarepresentinbodyfluids.FEBS Bauer, M., Ryan, A. M., Sordat, B., Gibbs, V. C., and Lett.314,445–448. Aguet, M. (1998). The orphan receptor CRF2–4 is an essen- Novick, D., Cohen, B., and Rubinstein, M. (1994). The human tial subunit of the interleukin 10 receptor. J. Exp. Med. 187, interferon (cid:11)/(cid:12) receptor: characterization and cloning. Cell 77, 571–578. 391–400. Stancato, L. F., David, M., Carter-Su, C., Larner, A. C., and Pellegrini,S.,John,J.,Shearer,M.,Kerr,I.M.,andStark,G.R. Pratt, W. B. (1996). Preassociation of STAT1 with STAT2 (1989).Useofaselectablemarkerregulatedbyalphainterferon and STAT3 in separate signaling complexes prior to cytokine toobtainmutationsinthesignalingpathway.Mol.Cell.Biol.9, stimulation.J.Biol.Chem.271,4134–4137. 4605–4612. Stark, G. R., Kerr, I. M., Williams, B. R. G., Silverman, R. H., Pestka, S., Langer, J. A., Zoon, K. C., and Samuel, C. (1987). andSchreiber, R.D.(1998).Howcells respondtointerferons. Interferonsandtheiractions.Annu.Rev.Biochem.56,727–777. Annu.Rev.Biochem.67,227–264. Pfeffer,L.M.,Mullersman,J.E.,Pfeffer,S.R.,Murti,A.,Shi,W., Steinhoff, U., Muller, U., Schertler, A., Hengartner, H., andYang,C.H.(1997).STAT3asanadaptertocouplephos- Aguet,M.,andZinkernagel,R.M.(1995).Antiviralprotection phatidylinositol 3-kinase to the IFNAR1 chain of the type I by vesicular stomatitis virus-specific antibodies in alpha/beta interferonreceptor.Science276,1418–1420. interferonreceptor-deficientmice.J.Virol.69,2153–2158. Platanias, L. C., Pfeffer, L. M., Cruciani, R., and Stewart II, W.E. (1979). In ‘‘The Interferon System’’ Springer- Colamonici,O.R.(1993).Characterizationofthealphasubunit Verlag,Vienna. of the IFNalpha receptor. Evidence of N- and O-linked gly- Thoreau, E., Petridou, B., Kelly, P. A., Djiane, J., and cosylation and association with other surface proteins. J. Mornon, J. P. (1991). Structuralsymmetry ofthe extracellular Immunol.150,3382–3388. domain of the cytokine/growth hormone/prolactin receptor Platanias,L.C.,Uddin,S.,Domanski,P.,andColamonici,O.R. familyandinterferonreceptorsrevealedbyhydrophobiccluster (1996). Differences in interferon alpha and beta signaling. analysis.FEBSLett.282,26–31. Interferon beta selectively induces the interaction of the alpha Uddin, S., Majchrzak, B., Woodson, J., Arunkumar, P., and beta subunits of the type I interferon receptor. J. Biol. Alsayed, Y., Pine, R., Young, P. R., Fish, E. N., and Chem.271,23630–23633. Platanias,L.C.(1999).Activationofthep38mitogen-activated Platanias,L.C.,Domanski,P.,Nadeau,O.W.,Yi,T.,Uddin,S., proteinkinasebytypeIinterferons.J.Biol.Chem.274,30127– Fish, E., Neel, B. G., and Colamonici, O. R. (1998). 30131. Identification of a domain in the beta subunit of the type I Uze, G., Lutfalla, G., and Mogensen, K. E. (1995). (cid:11) and (cid:12) interferon (IFN) receptor that exhibits a negative regulatory Interferons and their receptor and their friends and relations. effect in the growth inhibitory action of type I IFNs. J. Biol. J.InterferonCytokineRes.15,3–26. Chem.273,5577–5581. Uze,G.,Lutfalla,G.,andGresser,I.(1990).Genetictransferofa Rani,M.R.S.,Foster,G.R.,Leung,S.,Leaman,D.,Stark,G.R., functionalhumaninterferon (cid:11)receptorintomousecells:clon- and Ransohoff, R. M. (1996). Characterization of beta-R1, a ingandexpressionofitscDNA.Cell60,225–234. gene that is selectively induced by interferon beta (IFNbeta) Van den Broek, M. F., Muller, U., Huang, S., Aguet, M., and comparedwithIFNalpha.J.Biol.Chem.271,22878–22884. Zinkernagel, R. M. (1995a). Antiviral defense in mice lacking Rani,M.R.,Gauzzi,C.,Pellegrini,S.,Fish,E.N.,Wei,T.,and both alpha/beta and gamma interferon receptors. J. Virol. 69, Ransohoff,R.M.(1999).Inductionofbeta-R1/I-TACbyinter- 4792–4796. feron-beta requires catalytically active TYK2. J. Biol. Chem. VandenBroek,M.F.,Muller,U.,Huang,S.,Zinkernagel,R.M., 274,1891–1897. andAguet,M.(1995b).ImmunedefenceinmicelackingtypeI Raziuddin, A., and Gupta, S. L. (1985). In ‘‘The 2-5A System: and/ortypeIIinterferonreceptors.Immunol.Rev.148,5–18. Molecular and Clinical Aspects of Interferon-regulated Vanden Broecke, C., and Pfeffer, L. M. (1988). Characterization Pathway’’ (ed B. R. G. Williams and R. H. Silvermann), of interferon-alpha binding sites on human cell lines. J. IFN Interferonreceptorspp.219–226.NewYork. Res.8,803–811. 1854 S. Jaharul Haque and B. R. G. Williams Velazquez,L.,Fellous,M.,Stark,G.R.,andPellegrini,S.(1992). Phosphorylated interferon-alpha receptor 1 subunit (IFN(cid:11)R1) Aproteintyrosinekinaseintheinterferonalpha/betasignaling actsasadockingsiteforthelatentformofthe113kDaSTAT2 pathway.Cell70,313–322. protein.EMBOJ.15,1064–1074. Wang, H. Y., Zamorano, J., Yoerkie, J. L., Paul, W. E., and Yan, H., Krishnan, K., Lim, J. T., Contillo, L. G., and Keegan, A. D. (1997). The IL-4-induced tyrosine phosphory- Krolewski, J. J. (1996b). Molecular characterization of an lation of the insulin receptor substrate is dependent on JAK1 alphainterferonreceptor1subunit(IFN(cid:11)R1)domainrequired expressioninhumanfibrosarcomacells.J.Immunol.158,1037– forTYK2 bindingand signal transduction.Mol. CellBiol.16, 1040. 2074–2082. Watling, D., Guschin, D., Muller, M., Silvennoinen, O., Yan,H.,Piazza,F.,Krishnan,K.,Pine,R.,andKrolewski,J.J. Witthuhn, B. A., Quelle, F. W., Rogers, N. C., Schindler, C., (1998). Definition of the interferon-alpha receptor-binding Stark, G. R., Ihle, J. N., and Kerr, I. M. (1993). domainontheTYK2kinase.J.Biol.Chem.273,4046–4051. Complementation by the protein tyrosine kinase JAK2 of a Zhang,Z.Q.,Fournier,A.,andTan,Y.H.(1986).Theisolation mutantcelllinedefectiveintheinterferon-gammasignaltrans- ofhumanbetainterferonreceptorbywheatgermlectinaffinity ductionpathway.Nature366,166–170. and immunosorbent column chromatographies. J. Biol. Chem. Weissmann,C.,andWeber,H.(1986).Theinterferongenes.Proc. 261,8017–8022. Nucl.AcidsRes.Mol.Biol.33,251–300. Zoon, K., Zur Nedden, D., and Arnheiter, H. (1982). Specific Wilks, A. (1995). In ‘‘The Protein Kinase Facts Book, Protein- binding of human alpha interferon to a high affinity cell sur- Tyrosine Kinases’’ (ed G. Hardie and S. Hanks), Janus face binding site on bovine kidney cells. J. Biol. Chem. 257, kinases 1 and 2 (vertebrates) (just another kinase 1 and 2) 4695–4697. pp.117–119.AcademicPress,London. Yan, H., Krishnan, K., Greenlund, A. C., Gupta, S., Lim, J. T., Schreiber,R.D.,Schindler,C.W.,andKrolewski,J.J.(1996a).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.