ebook img

IEEE Transaction on Image processing (October) PDF

252 Pages·2005·47.025 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview IEEE Transaction on Image processing (October)

OCTOBER2005 VOLUME14 NUMBER10 IIPRE4 (ISSN1057-7149) PAPERS Source/ChannelCoding FastAlgorithmforDistortion-BasedErrorProtectionofEmbeddedImageCodes.... ... ... ... ... ... ... ... .... .. ... ... .... ... ... ... ... ... ... ... ... ... ... ... .... ... ... . R.Hamzaoui,V.Stankovic´,andZ.Xiong 1417 MotionDetectionandEstimation Image Registration Using Log-Polar Mappings for Recovery of Large-Scale Similarity and Projective Transformations .. ... ... .... ... ... ... ... ... ... ... ...... ... ... ... .... ... ... ... ... ... ... . S.ZokaiandG.Wolberg 1422 Noise Modeling ImageDenoisingBasedonWaveletsandMultifractalsforSingularityDetection . ... ..... .... ... .J.ZhongandR.Ning 1435 Restoration FastImageRestorationwithBoundaryArtifacts. .. ... ... ... .... ... .... ..... ... ... ... ... ... ... ..S.J.Reeves 1448 Edge-BasedImageRestoration... ... ... ... ... ...... ... ... .... ... .. A.Rares¸,M.J.T.Reinders,andJ.Biemond 1454 ASpatiallyAdaptiveNonparametricRegressionImageDeblurring.. ..... .... V.Katkovnik,K.Egiazarian,andJ.Astola 1469 Salt-and-PepperNoiseRemovalbyMedian-TypeNoiseDetectorsandDetail-PreservingRegularization .. ... ... .... .. ... ... .... ... ... ... ... ... ... ... ... ... ... ... .... ... ... .. R.H.Chan,C.W.Ho,andM.Nikolova 1479 (ContentsContinuedonBackCover) (ContentsContinuedfromFrontCover) Segmentation ANonparametricStatisticalMethodforImageSegmentationUsingInformationTheoryandCurveEvolution. ... .... .. ... ... .... ... ... ... ... ... ... ... ... ... ... J.Kim,J.W.Fisher,III,A.Yezzi,M.Çetin,andA.S.Willsky 1486 SegmentingaLow-Depth-of-FieldImageUsingMorphologicalFiltersandRegionMerging.. ... .... ..... ... ..C.Kim 1503 BayesianImageSegmentationUsingLocalIso-IntensityStructuralOrientation... .....W.C.K.WongandA.C.S.Chung 1512 AdaptivePerceptualColor-TextureImageSegmentation.... .....J.Chen,T.N.Pappas,A.Mojsilovic´,andB.E.Rogowitz 1524 ImageSegmentationandSelectiveSmoothingbyUsingMumford–ShahModel.. ... ..... .... ... .S.GaoandT.D.Bui 1537 Image SequenceProcessing Rate-DistortionOptimalVideoSummaryGeneration.. ..... .... Z.Li,G.M.Schuster,A.K.Katsaggelos,andB.Gandhi 1550 3-DModel-BasedVehicleTracking. .. ... ... ... ...... ... ... .... .J.Lou,T.Tan,W.Hu,H.Yang,andS.J.Maybank 1561 WaveletsandMultiresolutionProcessing ImageDecompositionviatheCombinationofSparseRepresentationsandaVariationalApproach ... ... ... ... .... .. ... ... .... ... ... ... ... ... ... ... ... ... ... ... .... ... ... ..J.-L.Starck,M.Elad,andD.L.Donoho 1570 QuantizationandHalftoning InverseHalftoningAlgorithmUsingEdge-BasedLookupTableApproach... ... ...... ... ...K.–L.ChungandS.–T.Wu 1583 AuthenticationandWatermarking ErgodicChaoticParameterModulationwithApplicationtoDigitalImageWatermarking. ..... ....S.ChenandH.Leung 1590 Modeling “Shape Activity”: A Continuous-State HMM for Moving/Deforming Shapes With Application to Abnormal Activity Detection. .... ... ... ... ... .... ..... ... ... ... ... ... .. N.Vaswani,A.K.Roy-Chowdhury,andR.Chellappa 1603 Image SearchandSorting RelevanceFeedbackUsingGeneralizedBayesianFrameworkWithRegion-BasedOptimizationLearning. ... ... .... .. ... ... .... ... ... ... ... ... ... ... ... ... ... ... .... ... ... ... ... ... ... ...C.-T.HsuandC.-Y.Li 1617 Video Coding Transform and Embedded Coding Techniques for Maximum Efficiency and Random Accessibility in 3-D Scalable Compression .. ... ... ... ... ... ... ... ... ..... .... ... .... ... ... ... ... ... ...R.LeungandD.Taubman 1632 InterpolationandSpatialTransformations ImageUp-SamplingUsingTotal-VariationRegularizationWithaNewObservationModel. .... .. H.A.AlyandE.Dubois 1647 EDICS—Editor’sInformationClassificationScheme.. ... ... .... ... ... ... .... ..... ... ... ... ... ... ... .... 1660 InformationforAuthors.. ... ... ... ... ... ... ... ... ... .... ...... ... ... ... ... ... ... ... ... ... ... .... 1661 ANNOUNCEMENTS CallforPapers—IEEESignalProcessingSociety2006InternationalWorkshoponMultimediaSignalProcessing . ....... 1663 CallforPapers—IEEEOdyssey2006 . ... ... ... ... ... ... .... ... .... ..... ... ... ... ... ... ... ... ... .... 1664 IEEE SIGNAL PROCESSING SOCIETY TheSignalProcessingSocietyisanorganization,withintheframeworkoftheIEEE,ofmemberswithprincipalprofessionalinterestinthetechnologyoftransmission,recording,repro- duction,processing,andmeasurementofspeechandothersignalsbydigitalelectronic,electrical,acoustic,mechanical,andopticalmeans,thecomponentsandsystemstoaccomplish theseandrelatedaims,andtheenvironmental,psychological,andphysiologicalfactorsconcernedtherewith.AllmembersoftheIEEEareeligibleformembershipintheSocietyand willreceivethisTRANSACTIONSuponpaymentoftheannualSocietymembershipfeeof$27.00plusanannualsubscriptionfeeof$50.00.Forinformationonjoining,writetotheIEEE attheaddressbelow.MembercopiesofTransactions/Journalsareforpersonaluseonly. SOCIETY PUBLICATIONS Publications Board Chair Trans. on Signal Processing Trans.onImageProcessing Trans. on Speech ARYE NEHORAI, VP-Publications A. H. SAYED, Editor in-Chief J. KOVAC˘EVIC´ andAudioProcessing Univ. of Illinois at Chicago Univ. California Editor-in-Chief I.TRANCOSO,Editor-in-Chief Chicago,IL60607-7053 LosAngeles,CA90095-0001 CarnegieMellonUniv. INESC ID Pittsburgh,PA15213 Lisboa,Portugal Signal Processing Letters SP Magazine Trans. on SP, IP, and SAP A.-J.VAN DERVEEN K. J. R. LIU, Editor-in-Chief SPS Publications Office Editor-in-Chief Univ. Maryland IEEE Signal Processing Society DelftUniv.Technol. CollegePark,MD20742 Piscataway,NJ08855 2628CDDelft,TheNetherlands TRANSACTIONS AREA EDITORS P. MOULIN J. ZERUBIA G. SHARMA Univ.Illinois INRIA Univ. Rochester Urbana,IL SophiaAntipolis,France Rochester, N.Y. TRANSACTIONS ASSOCIATE EDITORS T. AACH G. DANUSER R. KIMMEL G. MARCU N. K. RATHA I. SELESNICK Univ. Luebeck Dept.CellBiology Stanford Univ. Apple Computer IBMT.J.WatsonRes.Ctr. PolytechnicUniv. Luebeck,Germany TheScrippsRes.Ctr. Stanford,CA Cupertino,CA Hawthorne,NY Brooklyn,NY J. BLANC-TALON LaJolla,CA A. KOKARAM NSi.emMeEnRsLCEoTmputer-Aided STAN REEVES GUn.iSv.HRARoMchAester DGA/D4S/MRIS R. ESCHBACH Trinity College Diagnosis Auburn Univ. Rochester,NY France XWeerbosxterC,oNrYp. Dublin,Ireland Jerusalem,Israel AuburnAL L. STANKOVIC T. BLU Z. FAN A. KUBA CSa.nMofiO-SLIyNnAthelaboRecherche NIn.st.RNOUatG.OTNelecommun. UPondivg.oMricoan,tSeneerbgirao, EPFL Xerox Corp. Univ. Szeged LaBege,France Evry,France andMontenegro LJ.auMsa.nBnUe,HSMwAiNtzNerland WMe.bAst.eTr,.NFYIGUEIREDO SRz.egLeEdN,ZHungary AUn.ivN.OTSeRxAaTsINaItADallas ER.ocShAesBtEeRrInstit.ofTechnol. SUP.ondiSvgT.oAMrNicKoanO,tVSeIneCerbgirao, ETH InstitutoSuperiorTecnico Linköping Univ. Richardson,TX Rochester,NY andMontenegro Zurich,Switzerland Lisboa,Portugal Norrköping,Sweden F. M. B. PEREIRA T. SZIRANYI BUBa.nriCov.nAiSRstsPuiE,dNIitTadIlEiyRSIalerno HUOnr.liavFn.OdCRoOe,nOFtSLrHalFlorida RXW.eerboLsxOteCrC,EoNrYp. ILGniIssOtbiVtoAuatN,oNPSIourPtpuOegGraiGolIrTecnico AHPae.lwoSlAeAtIltDt-oP,aCckAard MBDu.TdATaApSUeszBtTM,AHAKuNnIgary Universita’FedericoIIdiNapoli Univ.NewSouthWales VINCENTCASELLES ODo.CGo.MGoUCLEoRmYmUZunications L. LUCCHESE Napoli,Italy PU.PSCALEMBIER Sydney,Australia UniversitatPimpeuFabra LaboratoriesUSA,Inc. Oregon State Univ. R. RAJKUMAR Barcelona,Spain T. D. TRAN Barcelona,Spain SanJose,CA Corvalis,OR CarnegieMellonUniv. JohnsHopkinsUniv. Pittsburgh,PA M. SAMUELIDES Baltimore,MD H. CHOI Z. KATO B. MACQ G. RAMPONI EcoleNationalSuperieurede Z. XIONG Rice Univ. Univ. Szeged Univ.CatholiquedeLouvain Univ. Trieste l’Aeronautiqueetdel’Espace TexasA&MUniv. Houston,TX Szeged,Hungary Louvain-la-Neuve,Belgium Trieste,Italy Toulouse,France CollegeStation,TX Officers W. CLEON ANDERSON, President and CEO LEAHH.JAMIESON,VicePresident,PublicationServicesandProducts MICHAEL R. LIGHTNER, President-Elect MARCT.APTER,VicePresident,RegionalActivities MOHAMED EL-HAWARY, Secretary DONALDN.HEIRMAN,President,IEEEStandardsAssociation JOSEPH V. LILLIE, Treasurer JOHN R.VIG, Vice President,Technical Activities ARTHUR W. WINSTON, Past-President GERARDA.ALPHONSE,President,IEEE-USA MOSHEKAM,VicePresident,EducationalActivities JOHNA.REAGAN,Director,DivisionIX—SignalsandApplications Executive Staff DONALD CURTIS, Human Resources MATTHEWLOEB,CorporateStrategy&Communications ANTHONY DURNIAK, Publications Activities RICHARD D. SCHWARTZ, Business Administration JUDITH GORMAN, Standards Activities CHRIS BRANTLEY, IEEE-USA CECELIA JANKOWSKI, Regional Activities MARY WARD-CALLAN, Technical Activities BARBARACOBURNSTOLER,EducationalActivities SALLYA.WASELIK,InformationTechnology IEEE Periodicals Transactions/Journals Department Staff Director: FRAN ZAPPULLA Editorial Director: DAWN MELLEY Production Director: ROBERT SMREK ManagingEditor:MARTINJ.MORAHAN AssociateEditor:MEGANVOREL IEEETRANSACTIONSONIMAGEPROCESSING(ISSN1057-7149)ispublishedmonthlybytheInstituteofElectricalandElectronicsEngineers,Inc.Responsibilityforthecontentsrests upontheauthorsandnotupontheIEEE,theSociety/Council,oritsmembers.IEEECorporateOffice:3ParkAvenue,17thFloor,NewYork,NY10016-5997.IEEEOperations Center:445HoesLane,P.O.Box1331,Piscataway,NJ08855-1331.NJTelephone:+17329810060.Price/PublicationInformation:Individualcopies:IEEEMembers$20.00(first copyonly),nonmembers$89.00percopy.(Note:Postageandhandlingchargenotincluded.)Memberandnonmembersubscriptionpricesavailableuponrequest.Availableinmicrofiche andmicrofilm.CopyrightandReprintPermissions:Abstractingispermittedwithcredittothesource.Librariesarepermittedtophotocopyforprivateuseofpatrons,providedthe per-copyfeeindicatedinthecodeatthebottomofthefirstpageispaidthroughtheCopyrightClearanceCenter,222RosewoodDrive,Danvers,MA01923.Forallothercopying,reprint, orrepublicationpermission,writetoCopyrightsandPermissionsDepartment,IEEEPublicationsAdministration,445HoesLane,P.O.Box1331,Piscataway,NJ08855-1331.Copyright ©2005bytheInstituteofElectricalandElectronicsEngineers,Inc.Allrightsreserved.PeriodicalsPostagePaidatNewYork,NYandatadditionalmailingoffices.Postmaster:Send addresschangestoIEEETRANSACTIONSONIMAGEPROCESSING,IEEE,445HoesLane,P.O.Box1331,Piscataway,NJ08855-1331.GSTRegistrationNo.125634188.PrintedinU.S.A. DigitalObjectIdentifier10.1109/TIP.2005.857134 IEEETRANSACTIONSONIMAGEPROCESSING,VOL.14,NO.10,OCTOBER2005 1417 Fast Algorithm for Distortion-Based Error Protection of Embedded Image Codes RaoufHamzaoui,Member,IEEE,VladimirStankovic´,Member,IEEE,andZixiangXiong,SeniorMember,IEEE Abstract—We consider a joint source-channel coding system that protects an embedded bitstream using a finite family of channel codes with error detection and error correction capa- bility. The performance of this system may be measured by the Fig. 1. (Top) Fixed-length channel codewords with variable-length expected distortion or by the expected number of correctly de- information blocks. (Bottom) Fixed-length information blocks with coded sourcebits. Whereas arate-based optimalsolution canbe variable-lengthchannelcodewords.Thewhiteareascorrespondtoinformation bitsandtheshadedareastoprotectionbits. foundinlineartime,thecomputationofadistortion-basedoptimal solution is prohibitive.Under the assumption of the convexity of the operational distortion-rate function of the source coder, we error probability is an affine function of the channel packet givealowerboundontheexpecteddistortionofadistortion-based length, the channel code rates of an optimal solution should optimalsolutionthatdependsonlyonarate-basedoptimalsolu- tion. Then, we propose a local search (LS) algorithm that starts be nondecreasing in the information block number, which fromarate-basedoptimalsolutionandconvergesinlineartimeto significantly reduces the complexity of an exhaustive search. alocalminimumoftheexpecteddistortion.Experimentalresults Also in the fixed-length information block case, Chande and for a binary symmetric channel show that our LS algorithm is Farvardin [5] provide a dynamic programming solution to the near optimal, whereas its complexity is much lower than that of optimization problem and report a quadratic time complexity thepreviousbestsolution. in the target transmission rate. In the fixed-length channel IndexTerms—Jointsource-channelcoding,imagetransmission, codeword case, however, no fast exact solution is known. localsearch,unequalerrorprotection. To the best of our knowledge, the best approximation to an optimal solution was given in [2]. It is based on a Viterbi I. INTRODUCTION algorithm and has a quadratic time complexity in the number ONE OF THE most efficient systems for the progressive of transmitted channel codewords . However, this result is transmissionofimagesovermemorylessnoisychannels guaranteed only for channel code rates that are a subset of , where and are positive without feedback was proposed by Sherwood and Zeger [1]. integers with . For channel codes that do not fulfill Thebasicideaistouseanembeddedwaveletcoderforsource this condition, including rate-compatible punctured codes, the codingandaconcatenationofanoutercyclicredundancycheck (CRC) coderand an innerrate-compatiblepuncturedconvolu- worstcasetimecomplexityisexponentialin . An alternative to minimizing the expected distortion is to tional (RCPC) coder for channel coding. Error propagation is maximizetheexpectednumberofcorrectlydecodedsourcebits avoided by stopping the decoding when the first error is de- (this approach was introduced by Chande et al. in [6] for a tected.Intheoriginalsetting[1],theinformationbitswereor- ganized in blocks of fixed length, each of which was mapped similar system that uses a feedback channel). Though subop- timal in the distortion sense, the rate-based optimization has toachannelcodewordofavariablelength.However,itismore twomainadvantages:anoptimalsolutioncanbecomputedwith convenienttofixthesizeofthechannelcodewordsandtoallow a linear-time algorithm (see [5] for fixed-length information theblocksofinformationbitstohaveavariablelength[2],[3] (Fig. 1). blocksand[3]forfixed-lengthchannelcodewords),anditisin- dependentofboththesourcecoderperformanceandtheimage; Achallengingproblemforthissystemistofindanallocation thus,itcanbedeterminedbythereceiver,whichavoidstheneed of the total transmission rate between the source coder and forsideinformation.In[5],experimentalresultsshowthatthe the channel coder that minimizes the expected distortion. For the fixed-length information block case, Lu et al. [4] show solutionstothetwooptimizationproblemshaveasimilarper- that, by assuming that the logarithm of the block decoding formancefortheSPIHTcoder[7]andanRCPCchannelcoder [thelossinaveragepeaksignal-to-noiseratio(PSNR)wasless than0.2dBforthe512 512grayscaleLennaimage].Hedayat ManuscriptreceivedMarch3,2004;revisedSeptember10,2004.Thispaper andNosratinia[8]analyticallyconfirmtheseresultsundermany waspresentedinpartatDCC’02,theDataCompressionConference,Snowbird, UT,April2002.Theassociateeditorcoordinatingthereviewofthismanuscript assumptions, including an independent identically distributed andapprovingitforpublicationwasDr.AriaNosratinia. Gaussian source and a perfect progressive source coder that R.HamzaouiiswiththeDepartmentofComputerandInformationScience, achievestherate-distortionfunction. University of Konstanz, 78457 Konstanz, Germany (e-mail: hamzaoui@ inf.uni-konstanz.de). Inthispaper,westudytherate-basedandthedistortion-based V. Stankovic´ and Z. Xiong are with the Department of Electrical Engi- optimization problems in the context of fixed-length channel neering, Texas A&M University, College Station, TX 77843 USA (e-mail: codewords.InSectionIII,weprovideatheoreticalupperbound [email protected];[email protected]). DigitalObjectIdentifier10.1109/TIP.2005.854497 onthedifferenceinexpecteddistortionbetweenthesolutionsof 1057-7149/$20.00©2005IEEE 1418 IEEETRANSACTIONSONIMAGEPROCESSING,VOL.14,NO.10,OCTOBER2005 thetwooptimizationproblemsundertheassumptionofthecon- the minimization of (1) by the maximization of the expected vexity of the operational distortion-rate function of the source numberofcorrectlyreceivedsourcebits coder.Wealsoconjecturethatthetotalnumberofinformation bits of a distortion-based optimal solution is smaller than or equal to that of a rate-based optimal solution. In Section IV, (2) we propose a fast local search (LS) algorithm that starts from arate-basedoptimalsolutionandtriestominimizetheexpected thenanoptimalsolutioncanbecomputedin time[3]. distortionbysuccessivelyreducingthenumberofinformation Maximizing (2) is reasonable for an efficient embedded coder bits (or equivalently by increasing the number of protection becauseweexpecttheaveragedistortiontodecreasewhenthe bits). Section V presents numerical results for SPIHT [7] and average number of correctly received source bits increases. JPEG2000 [9]. We show, in particular, that the LS algorithm Note, however, that the two optimizations do not necessarily yields a comparable solution to that obtained with the Viterbi yield the same EPS (see Section V). In the following, we say algorithmof[2],butatamuchlowercomplexity. thatanEPSthatminimizes(1)isdistortionoptimalandthatan EPSthatmaximizes(2)israteoptimal(RO). II. OPTIMIZATIONCRITERIA InanROsolution,thechannelcoderatesarenondecreasing with the packet number [3]. This is not necessarily true in a Weconsiderasource-channelcodingsystemthatusesanem- distortion-optimal solution as shown by the following counter beddedsourcecoderandafinitefamily ofchannel example.Supposethatwehavetwopackets( )andtwo codes with error detection and error correction capability. We channel code rates and with ( ). Then recall that a source coder is called embedded if for any inte- , , ,and arethefourpossibletwo- gers and with ,theoutputbitstreamoflength packetEPSs.Suppose,now,that and . is a prefix of the output bitstream of length . Given a Let , , transmission bit budget and a channel packet size , the , , channelencodertransforms successiveblocksof ,and .Then thesourcecoderoutputbitstreamintoasequenceof channel codewordsoffixedlength .Supposethatwewanttosendsuc- cessivelythe packets overa memorylessnoisy channeland let ( )bethesetofcode ratescorrespondingto .Then,weusean -packet Thus, the EPS is distortion optimal but . An error protection scheme (EPS) , -packet EPS that minimizes (1) under the constraint which encodes the th information block with a channel code willbecalledconstraineddistortionoptimal.Inthe rate .Ifthedecoderdetectsanerror,thenthedecoding aboveexample, isaconstraineddistortion-optimalEPS. isstopped,andtheimageisreconstructedfromthecorrectlyde- Note thatthe constrainedminimization reduces the number of codedpackets.Weassumethatallerrorscanbedetected. candidatesfrom to . For , let denote the probability of a de- codingerrorinapacketoflength protectedbycode .We may assume without loss of generality that III. RATE-BASEDVERSUSDISTORTION-BASEDPROTECTION . For the -packet EPS , the When islarge,thesearchspaceistoolargetoallowthede- probability of a decoding error in the first packet is terminationofadistortionoptimalEPSbyexhaustivesearch.In- ,theprobabilitythatnodecodingerrorsoccurinthefirst steadofadistortionoptimalsolution,onecoulduseanROone, packets, , with an error in the next one is butwhatisinthiscasethelossinquality?Thefollowingpropo- , and the probabilitythat sitionshowshowtocomputeatightupperboundonthequality all packets are correctly decoded is lossifweassumethattheoperationaldistortion-ratefunctionof .Thus,theexpecteddistortionforthe -packetEPS thesourcecoderisnonincreasingandconvex. is Proposition1: Let betheoperationaldistortion-ratefunc- tion of the source coder. Suppose that is nonincreasing and convex.Let beadistortion-optimal -packetEPSandlet (1) beanRO -packetEPS.Then, . Proof: Let be an -packet EPS. Then, where isaconstant,andfor , isthere- . Thus, since is convex, Jensen’s constructionerrorusingthefirst packets.Notethatif denotes inequalitygives .Ontheotherhand, theoperationaldistortion-ratefunctionofthesourcecoder,then, . Since is nonincreasing, this gives for , , where and ,whichcompletestheproof. for , with being The proposition says that the approximation error thenumberofsourcebitsinthe thpacket.Sincethenumberof is bounded by possible -packetEPSsisequalto ,bruteforcecannotbe ,whichcanbeeasilycomputedbecause can usedtominimize(1)when islarge.However,ifwereplace bedeterminedin timewiththealgorithmof[3]. HAMZAOUIetal.:FASTALGORITHMFORDISTORTION-BASEDERRORPROTECTIONOFEMBEDDEDIMAGECODES 1419 Thefollowingconjecture1comparesunderthesameassump- largest code rate smaller than and de- tionthetotalnumberofinformationbitsforanROandadistor- fine to be the EPS obtained from by tion-optimalEPSs. protecting packet with . Conjecture1: Let betheoperationaldistortion-ratefunc- 3. If , set , tion of the source coder. Suppose that is nonincreasing and , , , and go to step 2. convex. Let be a distortion-optimal -packet EPS and let 4. If and is greater than the rate beanRO -packetEPS.Then, andthe of packet in , set . If inequalityisstrictif isnotRO. and is equal to the rate of packet , Theconjectureiscorroboratedbyalloursimulations,andit set and . If and , canbeprovedfor (see[11]). set . If and , stop. 5. Go to step 2. IV. LOCALSEARCHALGORITHM In this section, we propose a heuristic LS algorithm that Proposition 2: The LS algorithm converges after a finite rapidlyfindsalocalminimumoftheexpecteddistortion(1)(see number of steps. Moreover, its time complexity is in [12,p.3]forthedefinitionofalocalminimum).Experimental theworst case. results in Section V show that this local minimum is near a Proof: When the current solution is updated, one globalone.Wefirstdefinetheneighborsofasolution. channel code rate is decreased while all the other ones are Definition 1: Let be a set of code rates and let kept fixed. This ensures convergence in a finite number of be an -packet EPS with steps. More precisely, the initialization (step 1) requires at nondecreasingcoderates.Wesaythat most steps [3]. In the worst case, the refinement part isaneighborof if of the algorithm starts from the -packet EPS a) ; andconvergesto in steps.Thus,thetime b) thereexistsaunique suchthat ; complexityis intheworstcase. c) thecoderatesof arenondecreasing. Simulationsshowthatthealgorithmcanbeslightlyimproved Wedenotethesetofneighborsof by andthecode byremoving fromstep3(thismodificationchangesthe rate inDefinition1b)by . setofneighborsofasolution).Weusedthisvariantinourex- We also sort the neighbors of by order of decreasing perimentalresults. .Moreprecisely,forpositiveinteger ,the thneighbor of an EPS is the EPS such that is the V. RESULTS th largest code rate in the set . For In this section, we compare the time complexity and the example, let and expected mean-squared error (MSE) of an RO solution com- be a four-packet EPS. Then has three neighbors, putedwiththealgorithmof[3],thesolutioncomputedwiththe being the firstone, Viterbi algorithm of [2] (this algorithm uses the monotonicity the second, and the third. Note that constraint on the channel code rates), and the solution of the . LSalgorithmofSectionIV.TheCPUtimewasmeasuredona OurLSalgorithmworksbyiterativeimprovement.Westart 1466-MHz AMD Athlon XP 1700 processor. The test images fromanROsolution.Then,weconsiderthefirstneighborofthis were the standard 8 bits per pixel (bpp) grayscale 512 512 solution. If the expected distortion of this neighbor is smaller Lenna, Goldhill, and Peppers. The embedded source coders thanthatofthecurrentsolution,thenweupdatethecurrentso- were Jim Fowler’s implementation of the SPIHT algorithm lutionandrepeattheprocedure;otherwise,weconsiderthenext [13] and the Kakadu implementation of JPEG2000 in the neighborandrepeattheprocedure.Ifthereisnoneighborthat distortion scalable mode [9]. Note that the operational dis- isbetterthanthecurrentsolution,thealgorithmreturnsthecur- tortion-rate curves of these coders can be well modeled with rentsolution.Notethat,motivatedbyConjecture1,allsolutions nonincreasing convex functions [14]. The packets were sent testedbythealgorithmhavefewerinformationbitsthananRO overabinarysymmetricchannel(BSC).Werecallthat and EPS.ApseudocodeforourLSalgorithmisgivenbelow. denotethenumberofpacketssentandthelengthofachannel codeword, respectively. Thus, the transmission rate in bpp is LS algorithm for images. Initialization. 1. Set , , and Inafirstexperiment,theembeddedbitstreamwasprotected . Use the algorithm of [3] to compute withaconcatenationofaCRC-32coderandarate-compatible an RO -packet EPS . puncturedturbo(RCPT)coder[15].Thegeneratorpolynomial Refinement. of the CRC code was (32,26,23,22,16,12,11,10,8,7,5,4,2,1,0). 2. Let be the th largest code rate used The turbo coder consisted of two identical recursive system- by . Let be the index of the first atic convolutional coders with memory length four and gen- packet that protects with . If , erator polynomials (31, 27) (octal). The mother code rate was stop. Otherwise, let be the th ,andthepuncturingratewas20,yielding41pos- sible channel code rates. The length of a packet was equal to 1Thisconjecturewaserroneouslygivenasapropositionin[10]. 2048bits,consistingofavariablenumberofsourcebits, 1420 IEEETRANSACTIONSONIMAGEPROCESSING,VOL.14,NO.10,OCTOBER2005 TABLE I TABLE III EXPECTEDMSEATVARIOUSTRANSMISSIONRATESFORAROSOLUTION, EXPECTEDMSEATVARIOUSTRANSMISSIONRATESFORAROSOLUTION, ASOLUTIONFOUNDWITHTHEVITERBIALGORITHM[2],ANDONE ASOLUTIONFOUNDWITHTHEVITERBIALGORITHM[2],ANDONE OBTAINEDWITHOURLSALGORITHM.RESULTSAREFORTHE OBTAINEDWITHOURLSALGORITHM.RESULTSAREFORTHE 512(cid:2)512LENNAIMAGE,THESPIHTSOURCECODER,AN 512(cid:2)512PEPPERSIMAGE,THESPIHTSOURCECODER,AN RCPTCHANNELCODER,ANDABSCWITHBER=0:01 RCPTCHANNELCODER,ANDABSCWITHBER=0:01 TABLE II EXPECTEDMSEATVARIOUSTRANSMISSIONRATESFORAROSOLUTION, ASOLUTIONFOUNDWITHTHEVITERBIALGORITHM[2],ANDONE TABLE IV OBTAINEDWITHOURLSALGORITHM.RESULTSAREFORTHE EXPECTEDMSEATVARIOUSTRANSMISSIONRATESFORAROSOLUTION,A 512(cid:2)512GOLDHILLIMAGE,THESPIHTSOURCECODER,AN SOLUTIONFOUNDWITHTHEVITERBIALGORITHM[2]ANDONEOBTAINED RCPTCHANNELCODER,ANDABSCWITHBER=0:01 WITHOURLSALGORITHM.RESULTSAREFORTHE512(cid:2)512LENNAIMAGE, JPEG2000,THECHANNELCODERUSEDIN[2],ANDABSCWITHBER=0:1 32 CRC bits, 4 bits to set the turbo encoder into a state of all zeroes,andprotectionbits.Weusediterativemaximumapos- Thefastestalgorithmwastheoneof[3],and,exceptforthe terioridecoding,whichwasstoppedifnocorrectsequencewas lowest transmission rates, it provided high-quality solutions. foundafter20iterations. TheLSalgorithmwasalwaysabletoimprovethesolutionsof Theprobabilityofapacketdecodingerrorforeachchannel [3]. Moreover, its performance was close to the lower bound, coderatewascomputedwithsimulations.Weusedonlyasubset whileitsCPUtimewasupto timeslowerthanthatofthe ofthesetof41admissibleRCPTcoderates.Indeed,whenmany Viterbi algorithm. For example, for transmission rate 1 bpp, code rates have the same decoding error probability, only the 128 packets were sent. Thus, the total number of candi- largest one has to be kept. Also, one can ignore any code rate datesis ,andthenumberofcandidateswithnondecreasing whose residual bit-error rate is greater than the bit-error rate coderates is 7177979000.Forthe Lenna image,the (BER).ForBER0.01,theretainedcoderateswere , LS algorithm checked only 112 candidates in the refinement , , , , stage. In contrast, the total number of considered paths in the , and . The corresponding numbers of in- Viterbitrelliswasequalto3649922,ofwhich52661hadthe formation bits per packet were , , maximumlengthof128. , , , , Wealsotestedthealgorithmsforaconcatenationofthe16-bit and . The probabilities of packet decoding error CRC coder used in [1] and an RCPC coder with mother code were , , , memorylength6,mothercoderate1/4,generatorpolynomials , , , and (147,163,135,135),andpuncturingperiod8.Here,thepacket . lengthwas 512bits.Thesimulationsweredoneforvarious Table I compares the performance of the algorithms for the BERs(0.1,0.01,0.001).Inallcases,ourLSalgorithmwassig- SPIHT bitstream of the Lenna image. The lower bound of nificantlyfasterthantheViterbialgorithm. Proposition1isalsoprovided.Wepointoutthatthetransmis- TheViterbialgorithmof[2]ismuchfasterforchannelcode sion rate does not include the overhead needed to specify the rates in , where . solutionwhenadistortion-basederrorprotectionisused.Since We now compare the LS algorithm with the Viterbi algorithm we consider only EPSs with nondecreasing code rates and for such channel code rates. Let us consider, for example, the since generally , one can use run-length encoding to puncturedturbocodesusedin[2].Here, 512bytes,andthe compresstheoverheadto bits coderatesare11/12,10/12,9/12,8/12,6/12,5/12,and4/12.For in the worst case. Alternatively, the encoder can approximate BER ,onlycoderates4/12,5/12,and6/12withrespective the distortion-rate curve with a parametric model [14] and packet decoding error probabilities 0.00001, 0.0003, and 0.88 sendonlythemodelparameterstothedecoder,whichcanthen arerelevant.Evenwiththesettingsof[2],theLSalgorithmwas recomputethesolutiononitsside. uptotentimesfasterthantheViterbialgorithm.Moreover,the Tables II and III show the results for Goldhill and Peppers, MSE performance of the two algorithms was almost identical respectively.WeobtainedsimilarresultsforBER0.1(see[11]). (Table IV). HAMZAOUIetal.:FASTALGORITHMFORDISTORTION-BASEDERRORPROTECTIONOFEMBEDDEDIMAGECODES 1421 VI. CONCLUSION [9] D.TaubmanandM.Marcellin,JPEG2000:ImageCompressionFunda- mentals,StandardsandPractice. Norwell,MA:Kluwer,2001. We provided an easily computable tight lower bound [10] R.Hamzaoui,V.Stankovic´,andZ.Xiong,“Rate-basedversusdistortion- on the smallest possible expected distortion for the joint basedoptimaljointsource-channelcoding,”inProc.DataCompression Conf.,J.A.StorerandM.Cohn,Eds.,Snowbird,UT,Apr.2002,pp. source-channel coding system of [2], [3]. This lower bound is 63–72. usefultoevaluatethequalityofapproximatesolutions.Wealso [11] R. Hamzaoui, V. Stankovic´, and Z. Xiong. (2003) “Rate-based proposed an LS algorithm that finds a high-quality local min- versusdistortion-basedoptimal errorprotectionofembedded codes,” Konstanzer Schriften in Mathematik und Informatik, Preprint no. imumoftheexpecteddistortion.Ourgoalwastominimizethe 194. Univ. Konstanz, Konstanz, Germany. [Online]. Available: expected distortion; the extension to maximizing the expected http://www.inf.uni-konstanz.de/Preprints/ PSNRisstraightforward. [12] E.H.L.AartsandJ.K.Lenstra,Eds.,LocalSearchinCombinatorial Optimization. NewYork:Wiley,1997. [13] J.E.Fowler,“Anopensourcesoftwarelibraryforquantization,com- ACKNOWLEDGMENT pressionandcoding,”inProc.ApplicationsofDigitalImageProcessing, vol.SPIE4115,Aug.2000,pp.294–301. TheauthorswouldliketothankM.Hillerforimplementing [14] Y.Charfi,R.Hamzaoui,andD.Saupe,“Model-basedreal-timeprogres- theViterbialgorithmof[2],G.Constantinescuforhelpingwith sivetransmissionofimagesovernoisychannels,”inProc.IEEEWCNC, theprogramming,andB.Banisterforfruitfuldiscussions. vol.2,NewOrleans,LA,Mar.2003,pp.784–789. [15] D. N. Rowitch and L. B. Milstein, “On the performance of hybrid FEC/ARQ systems using rate compatible punctured turbo (RCPT) REFERENCES codes,”IEEETrans.Commun.,vol.48,no.6,pp.948–959,Jun.2000. [1] P.G.SherwoodandK.Zeger,“Progressiveimagecodingfornoisychan- nels,”IEEESignalProcess.Lett.,vol.4,no.5,pp.189–191,May1997. [2] B.A.Banister,B.Belzer,andT.R.Fischer,“Robustimagetransmission usingJPEG2000andturbo-codes,”IEEESignalProcess.Lett.,vol.9, no.4,pp.117–119,Apr.2002. [3] V.Stankovic´,R.Hamzaoui,andD.Saupe,“Fastalgorithmforrate-based RaoufHamzaoui,photographandbiographynotavailableatthetimeofpub- optimalerrorprotectionofembeddedcodes,”IEEETrans.Commun., lication. vol.51,no.11,pp.1788–1795,Nov.2003. [4] J. Lu, A. Nosratinia, and B. Aazhang, “Progressive source-channel codingofimagesoverburstyerrorchannels,”inProc.IEEEInt.Conf. ImageProcessing,Chicago,IL,Oct.1998,pp.127–131. [5] V.ChandeandN.Farvardin,“Progressivetransmissionofimagesover memorylesschannels,”IEEEJ.Sel.AreasCommun.,vol.18,no.6,pp. 850–860,Jun.2000. VladimirStankovic´,photographand biographynotavailableatthetimeof [6] V. Chande, H. Jafarkhani, and N. Farvardin, “Joint source-channel publication. codingofimagesforchannelswithfeedback,”presentedattheIEEE InformationTheoryWorkshop,SanDiego,CA,Feb.1998. [7] A.SaidandW.A.Pearlman,“Anewfastandefficientimagecodecbased onsetpartitioninginhierarchicaltrees,”IEEETrans.CircuitsSyst.Video Technol.,vol.6,no.6,pp.243–250,Jun.1996. [8] A.HedayatandA.Nosratinia,“Rateallocationinsource-channelcoding ofimages,”inProc.IEEEInt.Conf.ImageProcessing,vol.1,Thessa- ZixiangXiong,photographandbiographynotavailableatthetimeofpublica- loniki,Greece,Oct.2001,pp.189–192. tion. 1422 IEEETRANSACTIONSONIMAGEPROCESSING,VOL.14,NO.10,OCTOBER2005 Image Registration Using Log-Polar Mappings for Recovery of Large-Scale Similarity and Projective Transformations Siavash Zokaiand George Wolberg, Senior Member, IEEE Abstract—This paper describes a novel technique to recover fromdifferentsensors(i.e.,multisensordatafusion),2)finding large similarity transformations (rotation/scale/translation) and changes in images taken at different times or under different moderate perspective deformations among image pairs. We in- conditions, 3) inferring three-dimensional (3-D) information troduce a hybrid algorithm that features log-polar mappings from images in which either the camera or the objects in the and nonlinear least squares optimization. The use of log-polar techniquesinthespatialdomainisintroducedasapreprocessing scenehavemoved,and4)formodel-basedobjectrecognition. moduletorecoverlargescalechanges(e.g.,atleastfour-fold)and The most common task associated with image registration arbitraryrotations.Althoughlog-polartechniquesareusedinthe is the generation of large panoramic images for viewing and Fourier–Mellin transform to accommodate rotation and scale in analysis. Image mosaics, created by warping and blending the frequency domain, its use in registering images subjected to togetherseveraloverlappingimages,arecentraltothisprocess. verylargescalechangeshasnotyetbeenexploitedinthespatial domain.Inthispaper,wedemonstratethesuperiorperformance Othercommonregistrationtasksincludeproducingsuper-reso- ofthelog-polartransforminfeaturelessimageregistrationinthe lutionimagesfrommultipleimagesofthesamescene,change spatial domain. We achieve subpixel accuracy through the use detection, motion stabilization, topographic mapping, and of nonlinear least squares optimization. The registration process multisensorimagefusion. yieldstheeightparametersoftheperspectivetransformationthat This work attempts to register two images using one global bestalignsthetwoinputimages.Extensivetestingwasperformed on uncalibrated real images and an array of 10,000 image pairs perspectivetransformationeveninthepresenceofarbitraryro- withknowntransformationsderivedfromtheCorelStockPhoto tation angles and large scale changes (up to 5 zoom). Our Libraryofroyalty-freephotographicimages. work is motivated by the problem of registering airborne im- Index Terms—Image registration, Levenberg–Marquardt non- ages.Theseimagesaretakenatvastlydifferenttimes,altitudes, linearleast-squaresoptimization,log-polartransform,perspective anddirections.Therefore,theimagesdifferbylargerotationand transformation,similaritytransformation. scale.Also,thepitchandrollintroducesmoderateperspective. Ingeneral,imagesofa3-Dscenedonotdifferbyjustoneper- spectivetransformationbecausethedepthbetweenthecamera I. INTRODUCTION and the objects introduces parallax. A global transformation DIGITALimageregistrationisabranchofcomputervision cannotalignallfeaturesinsuchcases.Wemust,therefore,place that deals with the geometric alignment of a set of im- constraintsoncameramotionand/orour3-Dscenetoproduce ages.Thesetmayconsistoftwoormoredigitalimagestaken images that are free of parallax. One constraint requires the of a single scene at different times, from different sensors, or cameramotiontobelimitedtorotation,pan,tilt,andzoomabout from different viewpoints. A large body of research has been afixedpoint,e.g,onatripod.Ifthisconstraintisnotsatisfied, drawntothisareaduetoitsimportanceinremotesensing,med- thenwemaystillhaveimagesfreeofparallaxiftheobject’s3-D icalimaging,computergraphics,andcomputervision.Despite points inthescenearefarawayfromthecamera,i.e., comprehensiveresearchspanningoverthirtyyears,robusttech- .Thismeansthatthesceneisflatandwearelooking niquestoregisterimagesinthepresenceoflargedeformations at a planar object. In either case, we assume that the scene is remains elusive. Most techniques fail unless the input images staticandthelightingisfixedbetweenimages.Nevertheless,we aremisalignedbymoderatedeformations. have relaxed these conditions to accommodate local disparity Thegoalofregistrationistoestablishgeometriccorrespon- andlinearchangesinillumination. dence between the images so that they may be transformed, AsurveybyBrown[1]introducesaframeworkinwhichall compared,andanalyzedinacommonreferenceframe.Regis- registrationtechniquescanbeunderstood.Theframeworkcon- tration is often necessary for 1) integrating information taken sistsofthefeaturespace,similaritymeasure,searchspace,and search strategy. The feature space extracts the information in ManuscriptreceivedApril27,2004;revisedOctober11,2004.Thisworkwas theimagesthatwillbeusedformatching.Thesearchspaceis supportedinpartbyanONRHBCU/MIResearchandEducationProgramGrant theclassoftransformations,ordeformationmodels,thatisca- (N000140310511)andaPSC-CUNYGrant.Theassociateeditorcoordinating pableofaligningtheimages.Thesearchstrategydecideshow thereviewofthismanuscriptandapprovingitforpublicationwasDr.Luca Lucchese. tochoosethenexttransformationfromthisspace,tobetestedin S.ZokaiiswithBrainstormTechnologyLLC,NewYork,NY10011USA. the search for the optimal transformation. The similarity mea- G.WolbergiswiththeDepartmentofComputerScience,CityCollegeof suredeterminestherelativemeritforeachtest.Searchcontinues NewYork,NewYork,NY10031USA(e-mail:[email protected]). DigitalObjectIdentifier10.1109/TIP.2005.854501 accordingtothesearchstrategyuntilatransformationisfound 1057-7149/$20.00©2005IEEE ZOKAIANDWOLBERG:IMAGEREGISTRATIONUSINGLOG-POLARMAPPINGS 1423 Fig.1. Airborneimagery.(a)Observedimages.(b)Referenceimage.(c)Registrationoverlays. whosesimilaritymeasureissatisfactory.Numerousregistration The primary drawback of the optimization-based approach techniqueshavebeenproposedbasedonchoosingaspecificfea- is that it may fail unless the two images are misaligned by a ture,deformationmodel,optimizationmethod,and/orsimilarity moderatedifferenceinscale,rotation,andtranslation.Inorder measure.See[2]forarecentsurveyofimageregistrationtech- to address this problem, we introduce a log-polar registration niques. moduletobringtheimagesintoapproximatealignment,evenin For image registration, we need to recover the geo- thepresenceofarbitraryrotationanglesandlargescalechanges. metric transformation and/or intensity function. Let Itspurposeistofurnishagoodinitialestimatetotheperspec- and be the reference and observed images, re- tiveregistrationmodulethatisbasedonnonlinearleastsquares spectively. The relationship between these images is optimization. ,where isatwo-dimensional The scope of this work shall prove useful for various ap- (2-D) geometrictransformation operatorthatrelatesthe plications, including the registration of aerial images, and the coordinates in to the coordinates in and is the formation of image mosaics. Note that aerial imagery may be intensityfunction. acquiredfromuncalibratedairbornecamerassubjectedtoyaw, Theestimationoftheintensityfunction isusefulwhenwe pitch,androllatvariousaltitudes.Sincetheterrainappearsflat wanttoregisterimagestakenfromdifferentsensorsorwhenil- from moderatelyhigh altitude,it is an ideal candidatefor reg- luminationischangedbyautomaticgainexposureofacamera. istrationusingasingleperspectivetransformation.Anexample Comparametricequationshavebeenintroducedtomodelthein- demonstratingtheregistrationoftwoaerialimagesinthepres- tensityfunction [3].Althoughtheseequationsarenonlinear, enceoflargescale/rotationandmoderateperspectiveisshown a piecewise linear method has been developed to estimate inFig.1.Theimage inFig.1(a) isautomatically registeredto and simultaneously[4]. thatinFig.1(b),asdepictedbythehighlightedrectangle. In Section II, we discuss related work on the standard Lev- Mutualinformationisasimilaritymeasurethathasrecently enberg–Marquardtalgorithm(LMA)andlog-polartechniques. beenintroducedformultimodalmedicalimageregistration[5], Section III describes a modified LMA for improving the per- [6]. Correlation ratio is another similarity measure for multi- formance of the standard LMA and Section IV presents our modalimageregistrationandhasproventoperformbetterthan proposed log-polar method. In Section V, we demonstrate the mutualinformation[7].Multimodalimageregistrationhasbeen successofthelog-polartransforminrecoveringlargedeforma- studiedextensivelyinthemedicalimagingdomain.Inthiswork, tions bycomparingregistrationaccuracywithand withoutthe weassumethattheintensityfunctionislinear.Similaritymea- log-polarregistrationmodule.Asignificantincreaseincorrect sureslikethezero-meannormalizedsumofsquareddifferences matches is attributed to our algorithm. A secondary compar- (SSD)andcorrelationcoefficientareinvarianttothelinearin- isonwasmadebyreplacingthelog-polarmodulewiththewell- tensitychanges. knownFourier–Mellintransform.Again,ourlog-polarmodule Thispaperdescribesahierarchicalimageregistrationsystem. provedsuperior to the Fourier–Mellin transform for achieving We model the mapping function as a perspective transforma- highperspectiveregistrationaccuracy. tion.Thealgorithmestimatestheperspectiveparametersneces- sarytoregisteranytwomisaligneddigitalimages.Theparame- II. PREVIOUSWORK tersareselectedtominimizetheSSDbetweenthetwoimages. They are computed iteratively in a coarse-to-fine hierarchical Inthissection,wediscussrelatedworkontheLMAandthe framework using a variation of the Levenberg–Marquadt non- log-polartechniques.InSectionII-A,wepresentabackground linearleastsquaresoptimizationmethod.Thisapproachyields oftheLevenberg–Marquardtnonlinearleast-squaresoptimiza- a robust solution that precisely registers images with subpixel tionalgorithmthatisusefulforachievingsubpixelregistration accuracy. accuracy.Thelog-polartransformisdescribedinSectionII-B.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.