AUGUST2009 VOLUME57 NUMBER8 IETMAB (ISSN0018-9480) PAPERS LinearandNonlinearDeviceModeling AnalysisofSeries-ConnectedDiscreteJosephsonTransmissionLine .................... H.R.MohebbiandA.H.Majedi 1865 SmartAntennas,PhasedArrays,andRadars AProgrammableLens-ArrayAntennaWithMonolithicallyIntegratedMEMSSwitches.................................... ........................................................... C.-C.Cheng,B.Lakshminarayanan,andA.Abbaspour-Tamijani 1874 ActiveCircuits,SemiconductorDevices,andICs AnalysisandCompensationofPhaseVariationsVersusGaininAmplifiersVerifiedbySiGeHBTCascodeRFIC ....... .............................................................................. F.Ellinger,U.Jörges,U.Mayer,andR.Eickhoff 1885 A40-GHzLow-NoiseAmplifierWithaPositive-FeedbackNetworkin0.18- mCMOS...... H.-H.HsiehandL.-H.Lu 1895 A22–29-GHzUWBPulse-RadarReceiverFront-Endin0.18- mCMOS .... V.Jain,S.Sundararaman,andP.Heydari 1903 CMOSActiveInductorLinearityImprovementUsingFeed-ForwardCurrentSourceTechnique ........................... ...................................................................................C.-L.Ler,A.K.B.A’ain,andA.V.Kordesch 1915 A90-WPeakPowerGaNOutphasingAmplifierWithOptimumInputSignalConditioning ................................ J.H.Qureshi,M.J.Pelk,M.Marchetti,W.C.E.Neo,J.R.Gajadharsing,M.P.vanderHeijden,andL.C.N.deVreede 1925 TheoryandExperimentalResultsofaClassFAB-CDohertyPowerAmplifier .............................................. .........................................................................P.Colantonio,F.Giannini,R.Giofrè,andL.Piazzon 1936 SignalGeneration,FrequencyConversion,andControl Design of 24-GHz 0.8-V 1.51-mW Coupling Current-Mode Injection-Locked Frequency Divider With Wide Locking Range................................................................................Z.-D.Huang,C.-Y.Wu,andB.-C.Huang 1948 LowPhase-NoisePlanarOscillatorsEmployingElliptic-ResponseBandpassFilters......................................... .............................................................................................J.Choi,M.Nick,andA.Mortazawi 1959 Analysis and Design of Reduced-Size Marchand Rat-Race Hybrid for Millimeter-Wave Compact Balanced Mixers in 130-nmCMOSProcess ............................ C.-H.Lien,C.-H.Wang,C.-S.Lin,P.-S.Wu,K.-Y.Lin,andH.Wang 1966 A5-GHzCMOSType-IIPLLWithLow andExtendedFine-TuningRange ........ S.P.BrussandR.R.Spencer 1978 (ContentsContinuedonBackCover) (ContentsContinuedfromFrontCover) FieldAnalysisandGuidedWaves AnalysisofaPostDiscontinuityinanOversizedCircularWaveguide ......................................................... ........................................................................S.B.Sharma,V.K.Singh,R.Dey,andS.Chakrabarty 1989 CharacterizationofthePropagationPropertiesoftheHalf-ModeSubstrateIntegratedWaveguide ......................... ...............................................................................Q.Lai,C.Fumeaux,W.Hong,andR.Vahldieck 1996 CADAlgorithmsandNumericalTechniques ImplicitElementClusteringforTetrahedralTransmission-LineModeling(TLM)............................................ ......................... P.D.Sewell,T.M.Benson,C.C.Christopoulos,D.W.P.Thomas,A.Vukovic,andJ.G.Wykes 2005 A3-DRadialPointInterpolationMethodforMeshlessTime-DomainModeling........................ Y.YuandZ. Chen 2015 A Linear-Time Complex-Valued Eigenvalue Solver for Full-Wave Analysis of Large-Scale On-Chip Interconnect Structures .................................................................. J.Lee,V.Balakrishnan,C.-K.Koh,andD.Jiao 2021 IncorporationofMultiportLumpedNetworksIntotheHybridTime-DomainFinite-ElementAnalysis .................... ............................................................................................................ R.WangandJ.-M.Jin 2030 Packaging,Interconnects,MCMs,Hybrids,andPassiveCircuitElements RFDesign,PowerHandling,andHotSwitchingofWaveguideWater-BasedAbsorptiveSwitches......................... ......................................................................................................C.-H.ChenandD.Peroulis 2038 Design and Modeling of a Stopband-Enhanced EBG Structure Using Ground Surface Perturbation Lattice for Power/GroundNoiseSuppression ................................ T.-K.Wang,C.-Y.Hsieh,H.-H.Chuang,andT.-L.Wu 2047 BroadbandLumped-ElementIntegrated -WayPowerDividersforVoltageStandards ..................................... ............................ M.M.Elsbury,P.D.Dresselhaus,N.F.Bergren,C.J.Burroughs,S.P.Benz,andZ.Popovic´ 2055 OptimumDesignofWidebandCompensatedandUncompensatedMarchandBalunsWithStepTransformers ........... ........................................................................................................Z.XuandL.MacEachern 2064 Physics-BasedViaandTraceModelsforEfficientLinkSimulationonMultilayerStructuresUpto40GHz .............. .............................................................................................................. R.Rimolo-Donadio, X. Gu, Y. H. Kwark, M. B. Ritter, B. Archambeault, F. de Paulis, Y. Zhang, J. Fan, H.-D. Brüns, and C. Schuster 2072 Microwave Photonics OpticalMillimeter-WaveUp-ConversionEmployingFrequencyQuadruplingWithoutOpticalFiltering .................. ..................................... C.-T.Lin,P.-T.Shih,J.Chen,W.-J.Jiang,S.-P.Dai,P.-C.Peng,Y.-L.Ho,andS.Chi 2084 SampledAnalogOpticalLinks ............................................................ J.D. McKinneyandK.J.Williams 2093 InformationforAuthors ............................................................................................................ 2100 CALLSFORPAPERS SpecialIssueonTHzTechnology:BridgingtheMicrowave-to-PhotonicsGap .............................................. 2101 IEEEMICROWAVETHEORYANDTECHNIQUESSOCIETY TheMicrowaveTheoryandTechniquesSocietyisanorganization,withintheframeworkoftheIEEE,ofmemberswithprincipalprofessionalinterestsinthefieldofmicrowavetheory andtechniques.AllmembersoftheIEEEareeligibleformembershipintheSocietyuponpaymentoftheannualSocietymembershipfeeof$14.00,plusanannualsubscriptionfee of$23.00peryearforelectronicmediaonlyor$46.00peryearforelectronicandprintmedia.Forinformationonjoining,writetotheIEEEattheaddressbelow.Membercopiesof Transactions/Journalsareforpersonaluseonly. ADMINISTRATIVECOMMITTEE B.PERLMAN, President S.M.EL-GHAZALY PresidentElect W.CHAPPELL, Secretary N.KOLIAS, Treasurer L.BOGLIONE M.HARRIS L.KATEHI J.LIN V.J.NAIR D.ROSEN W.SHIROMA B.SZENDRENYI R.WEIGEL M.GUPTA J.HAUSNER B.KIM A.MORTAZAWI Y.NIKAWA D.SCHREURS R.SNYDER K.VARIAN K.WU J.HACKER K.ITOH T.LEE HonoraryLifeMembers DistinguishedLecturers PastPresidents T.ITOH T.S.SAAD K.TOMIYASU A.CANGELLARIS F.GHANNOUCHI V.NAIR P.TASKER J.MODELSKI(2008) A.A.OLINER P.STAECKER L.YOUNG F.ELLINGER A.HAJIMIRI R.SNYDER H.WANG J.S.KENNEY(2007) S.GEVORGIAN L.MAURER A.SUAREZ K.WU K.VARIAN(2006) MTT-SChapterChairs Albuquerque:H.J.WAGNON Czech/Slovakia: P.HAZDRA Kitchener-Waterloo: Philadelphia: J.NACHAMKIN SoutheasternMichigan: T.OZDEMIR Atlanta: D.LEATHERWOOD Dallas:Q.ZHANG R.R.MANSOUR Phoenix:S.ROCKWELL SouthernAlberta:E.FEAR Austria:A.SPRINGER Dayton:A.TERZUOLI Lithuania: V.URBANAVICIUS Poland:W.J.KRZYSZTOFIK Spain:J.I.ALONSO Baltimore:N.BUSHYAGER Delhi/India:S.KOUL LongIsland/NewYork:J.COLOTTI Portugal: C.PEIXEIRO Springfield:P.R.SIQUEIRA Bangalore: T.SRINIVAS Denver:M.JANEZIC LosAngeles,Coastal:W.DEAL Princeton/CentralJersey:A.KATZ Sweden: A.RYDBERG Beijing:Z.FENG EasternNo.Carolina:T.NICHOLS LosAngeles,Metro/SanFernando: Queensland: A.RAKIC Switzerland: M.MATTES Belarus: A.GUSINSKY Egypt: E.HASHISH F.MAIWALD RiodeJaneiro: J.BERGMANN Syracuse: E.ARVAS Benelux: Finland:A.LUUKANEN Malaysia:M.ESA Rochester: S.CICCARELLI/ Taegu:Y.-H.JEONG D.VANHOENACKER-JANVIER FloridaWestCoast: Malaysia,Penang:Y.CHOW J.VENKATARAMAN Taipei:F.-T.TSAI Boston: J.MULDAVIN K.A.O’CONNOR Melbourne:K.LAMP Romania: G.LOJEWSKI Thailand: P.AKKARAEKTHALIN Brasilia: J.DACOSTA/ Foothills:F.FREYNE Mexico: R.M.RODRIGUES-DAGNINO Russia,Moscow: V.A.KALOSHIN Toronto:G.V.ELEFTHERIADES A.KLAUTAU France:P.EUDELINE Milwaukee: S.G.JOSHI Russia,Nizhny:Y.BELOV Tucson: N.BURGESS Buenaventura: M.QUDDUS Germany:K.SOLBACH MohawkValley: E.P.RATAZZI Russia,Novosibirsk: A.GRIDCHIN Turkey: I.TEKIN Buffalo: J.WHALEN Greece: R.MAKRI Montreal:K.WU Russia,SaintPetersburg: TwinCities:M.J.GAWRONSKI Bulgaria: K.ASPARUHOVA Harbin:Q.WU Nanjing:W.X.ZHANG M.SITNIKOVA UK/RI:A.REZAZADEH CedarRapids/CentralIowa: Hawaii: R.MIYAMOTO NewHampshire:D.SHERWOOD Russia,Saratov: N.M.RYSKIN Ukraine,Kiev: Y.POPLAVKO M.ROY HongKong: W.S.CHAN NewJerseyCoast:D.REYNOLDS Russia,Tomsk:R.V.MESCHERIAKOV Ukraine,East,Kharkov: Central&SouthItaly:G.D’INZEO Houston:J.T.WILLIAMS NewSouthWales: SaintLouis:D.MACKE O.V.SHRAMKOVA CentralNo.Carolina: Houston,CollegeStation: A.M.SANAGAVARAPU SanDiego:G.TWOMEY Ukraine,EastStudentBranchChapter,Kharkov: N.S.DOGAN G.H.HUFF NewZealand:A.WILLIAMSON SantaClaraValley/SanFrancisco: M.KRUSLOV Chengdu:Z.NEI Hungary:T.BERCELI NorthItaly:G.VECCHI M.SAYED Ukraine,Rep.ofGeorgia:D.KAKULIA Chicago: H.LIU Huntsville:H.G.SCHANTZ NorthJersey:H.DAYAL/K.DIXIT Seattle:K.A.POULSON Ukraine,Vinnitsya:V.DUBOVOY Cleveland: M.SCARDELLETTI Hyderabad:M.CHAKRAVARTI NorthernAustralia:M.JACOB Seoul:S.NAM Ukraine,West,Lviv: I.ISAYEV Columbus:F.TEXEIRA India/Calcutta: B.GUPTA NorthernNevada: B.S.RAWAT SerbiaandMontenegro: A.MARINCIC Venezuela: J.PENˇA Connecticut:C.BLAIR India:D.BHATNAGER Norway:Y.THODESEN Shanghai:M.-J.FA Victoria: K.GHORBANI Croatia:Z.SIPUS Indonesia:E.T.RAHARDO OrangeCounty: H.J.DELOSSANTOS Singapore: A.ALPHONES VirginiaMountain:T.A.WINSLOW Israel:S.AUSTER Oregon: T.RUTTAN SouthAfrica: C.VANNIEKIRK WashingtonDC/NorthernVirginia: Japan:K.ARAKI Orlando: X.GONG SouthAustralia:H.HANSON J.QIU Kansai:T.OHIRA Ottawa: Q.YE SouthBrazil:R.GARCIA Winnipeg: V.OKHMATOVSKI Editors-In-Chief AssociateEditors DYLAN WILLIAMS DANIEL DE ZUTTER JEN-TSAI KUO MAURO MONGIARDO RICHARD SNYDER NIST Universiteit Gent Nat.ChiaoTungUniv. Univ. of Perugia RSMicrowaveCompany Boulder,CO80305USA Belgium Taiwan Italy USA Phone:+13034973138 email:[email protected] email:[email protected] email:[email protected] email:[email protected] Fax:+13034973970 email:[email protected] WOLFGANG HEINRICH YOUNGWOOKWON JOSÉ PEDRO CHI WANG Ferdinand-Braun-Institut(FBH) Seoul Nat. Univ. Univ. of Aveiro OrbitalSciencesCorp. AMIRMORTAZAWI Germany Korea Portugal USA Univ. of Michigan email:[email protected] email:[email protected] email:jcp.mtted.av.it.pt email:[email protected] AnnArbor,MI48109-2122USA Phone:+17349362597 WEI HONG JENSHAN LIN ZOYA POPOVIC KE-LI WU Fax:+17346472106 Southeast Univ. Univ. of Florida Univ.ofColorado,Boulder ChineseUniv.ofHongKong email:[email protected] China USA USA Hong Kong email:[email protected] email:[email protected] email:[email protected] email:[email protected] ROBERT W. JACKSON Univ.ofMassachusetts,Amherst USA email:[email protected] K.REMLEY, Editor-in-Chief,IEEEMicrowaveMagazine G.E.PONCHAK, Editor-in-Chief,IEEEMicrowaveandWirelessComponentLetters T.LEE, WebMaster IEEE Officers JOHNR.VIG, President JONG.ROKNE, VicePresident,PublicationServicesandProducts PEDROA.RAY, President-Elect JOSEPHV.LILLIE, VicePresident,MembershipandGeographicActivities BARRYL.SHOOP, Secretary W.CHARLTON(CHUCK)ADAMS, President,IEEEStandardsAssociation PETERW.STAECKER, Treasurer HAROLDL.FLESCHER, VicePresident,TechnicalActivities LEWISM.TERMAN, PastPresident GORDONW.DAY, President,IEEE-USA TEOFILORAMOS, VicePresident,EducationalActivities ROGERW.SUDBURY, Director,DivisionIV—ElectromagneticsandRadiation IEEE Executive Staff DR.E.JAMESPRENDERGAST, ExecutiveDirector&ChiefOperatingOfficer BETSYDAVIS, SPHR,HumanResources MATTHEWLOEB, CorporateStrategy&Communications ANTHONYDURNIAK, PublicationsActivities RICHARDD.SCHWARTZ, BusinessAdministration JUDITHGORMAN, StandardsActivities CHRISBRANTLEY, IEEE-USA CECELIAJANKOWSKI, MemberandGeographicActivities MARYWARD-CALLAN, TechnicalActivities DOUGLASGORHAM, EducationalActivities IEEE Periodicals Transactions/JournalsDepartment StaffDirector:FRANZAPPULLA EditorialDirector: DAWNMELLEY ProductionDirector: PETERM.TUOHY ManagingEditor:MONAMITTRA SeniorEditor:CHRISTINAM.REZES IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES(ISSN0018-9480)ispublishedmonthlybytheInstituteofElectricalandElectronicsEngineers,Inc.Responsibilityforthe contentsrestsupontheauthorsandnotupontheIEEE,theSociety/Council,oritsmembers.IEEECorporateOffice:3ParkAvenue,17thFloor,NewYork,NY10016-5997.IEEEOperations Center:445HoesLane,Piscataway,NJ08854-4141.NJTelephone:+17329810060.Price/PublicationInformation:Individualcopies:IEEEMembers$20.00(firstcopyonly),nonmember $108.00percopy.(Note:Postageandhandlingchargenotincluded.)Memberandnonmembersubscriptionpricesavailableuponrequest.Availableinmicroficheandmicrofilm.Copyright andReprintPermissions:Abstractingispermittedwithcredittothesource.Librariesarepermittedtophotocopyforprivateuseofpatrons,providedtheper-copyfeeindicatedinthecode atthebottomofthefirstpageispaidthroughtheCopyrightClearanceCenter,222RosewoodDrive,Danvers,MA01923.Forallothercopying,reprint,orrepublicationpermission,write toCopyrightsandPermissionsDepartment,IEEEPublicationsAdministration,445HoesLane,Piscataway,NJ08854-4141.Copyright©2009byTheInstituteofElectricalandElectronics Engineers,Inc.Allrightsreserved.PeriodicalsPostagePaidatNewYork,NYandatadditionalmailingoffices.Postmaster:SendaddresschangestoIEEETRANSACTIONSONMICROWAVE THEORYANDTECHNIQUES,IEEE,445HoesLane,Piscataway,NJ08854-4141.GSTRegistrationNo.125634188.CPCSalesAgreement#40013087.ReturnundeliverableCanadaaddresses to:PitneyBowesIMEX,P.O.Box4332,StantonRd.,Toronto,ONM5W3J4,Canada. DigitalObjectIdentifier10.1109/TMTT.2009.2029418 IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,VOL.57,NO.8,AUGUST2009 1865 Analysis of Series-Connected Discrete Josephson Transmission Line HamidRezaMohebbi,StudentMember,IEEE, and A.HamedMajedi,Member,IEEE Abstract—Employingageneralizedresistive–capacitiveshunted signal from a dc-bias voltage. Since the inductance associated junctionmodelforJosephsonjunctions(JJs),thenonlinearwave with each JJ is quite small, an array or stack of JJs can be propagation in the series-connected discrete Josephson trans- effectively used to achieve any desired amount of inductance mission line (DJTL) is investigated. A DJTL consists of a finite [6], [7]. Incorporation of an unbiased array of JJs in a typical numberofunitcells,eachincludingasegmentofsuperconducting transmission line with a single array stack, or generally a block superconducting TL will produce an ultra-low-loss nonlinear including an identical lumped JJ element. As the governing TL. Propagation characteristics of such nonlinear TLs are nonlinearwavepropagationisasystemofnonlinearpartialdiffer- highly dependent on the collective behavior of the JJs that ential equations with mixed boundary conditions, the method of are in either series connection or parallel connection geome- thefinitedifferencetimedomainisusedtosolvetheequations.By tries across the TL. These structures are called either series- thisnumericaltechnique,thebehaviorofwavepropagationalong the DJTL can be monitored in time and space domains. Cutoff or parallel-connected discrete Josephson transmission line propagation, dispersive behavior, and shock-wave formation (DJTL). Although the parallel-connected DJTL has already throughtheDJTLisaddressedinthispaper. been investigated in the past [7], more emphasis was placed Index Terms—Dispersion equation, finite-difference time-do- onthestudyofnonlinearfluxondynamicsforrapidsingleflux main(FDTD)method,Josephsonjunction(JJ)devices,microwave quantum (RSFQ) applications rather than microwave device superconductivity, nonlinear inductance, nonlinear transmission applications [8]. Moreover, the analysis of such a structure lines(TLs),nonlinearwavepropagation,shockwaves. was previously performed based on circuit analysis [7], [9] or frequency-domaintechniques[10].Inthispaper,weuseanon- linearfinite-differencetime-domain(FDTD)techniquetosolve I. INTRODUCTION TL equations in order to monitor transient and steady-state S IGNIFICANT improvements on the performance of a responseoftheseries-connectedDJTL. wide variety of passive microwave devices and systems WeaimtodevelopasystematicstudyofJJ-basedmicrowave/ can be achieved by using superconducting materials due to millimeter-wave and terahertz devices, to take advantage of their ultra-low surface resistance, frequency-independent pen- theiruniquepropertiesformakingplanarsuperconductivepara- etration depth, and kinetic inductance. Ultra-low loss, high metric devices and integrated active/passive superconducting quality factor, and ultra-low dispersive behavior in supercon- microwave/millimeter-wave/terahertz circuits for applications ducting microwave devices, such as transmission lines (TLs), insuperconductingopto-electronics[11]andquantuminforma- cavityresonators,bandpassfilters,anddelaylinesarethemain tionprocessing[12]wherehighsensitivityandultra-low-noise consequencesoftheseproperties.Superconductingmicrowave operationareondemand. devices have found niche applications in satellite and mobile Inthispaper,wefocusontheanalysisofpropagationcharac- communication systems, high-quality signal processing sys- teristicsandfeaturesoftheseries-connectedDJTLasthesim- tems, RADAR [1]–[3], and more recently in circuit cavity plest and the most natural way to incorporate JJs in a typical quantumelectrodynamicsandquantuminformationprocessors superconducting TL, e.g., microstrip line. In Sections II, the [4], [5]. circuit model of the JJ and the equivalent nonlinear inductor Greater flexibility in the design of superconductive pas- are briefly described. In Section III, the physical implemen- sive and active microwave devices can be obtained by using tation and mathematical analysis of a series-connected DJTL Josephsonjunctions(JJs).TwobasicelectricalpropertiesofJJs, is presented. Details of the new nonlinear FDTD method to usefulformicrowavedevices,arenonlinearcurrent-dependent analyze the nonlinear microwave propagation are discussed in inductivebehaviorandtheabilitytoproduceahigh-frequency Section IV. Section V reports our simulation results based on the FDTD technique. With this new approach, we observe all the features associated with a typical nonlinear TL. They in- ManuscriptreceivedOctober31,2008;revisedApril18,2009.Firstpub- lishedJuly07,2009;currentversionpublishedAugust12,2009.Thisworkwas cludecutoffpropagation,controllabledispersivebehavior,and supportedinpartunderanOntarioGraduateScholarship(OGS),byQuantum shock-waveformation. Works,andbytheInstituteforQuantumComputing(IQC),UniversityofWa- terloo. TheauthorsarewiththeDepartmentofElectricalandComputerEngineering II. CIRCUITMODELFORLUMPEDJJ andtheInstituteforQuantumComputing(IQC),UniversityofWaterloo,Wa- terloo,ON,CanadaN2L3G1(e-mail:[email protected];ah- AJJisaweaklinkbetweentwosuperconductorelectrodes. [email protected]). The weak link can be provided by several ways such as a Colorversionsofoneormoreofthefiguresinthispaperareavailableonline thin-film insulator, microbridge, or point contact [13]. In the athttp://ieeexplore.ieee.org. DigitalObjectIdentifier10.1109/TMTT.2009.2025413 basic JJ, the current that can be driven through the junction is 0018-9480/$26.00©2009IEEE 1866 IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,VOL.57,NO.8,AUGUST2009 Fig.2. Series-connectedDJTLonamicrostripline(S–I–Sjunctions). Fig.1. (a)GeneralizedRCSJmodelofJJ.Theelementdenotedbythecross signinthismodelisreferredasabasicJJelement.(b)BasicJJisreplacedbya anonlinearoscillatorinalossymedium,asdepictedinFig.(1b), nonlinearinductance. whichoscillatesattheplasmafrequency restrictedtobelessthanthecriticalvalue,whichisdenotedby (8) . Two canonical relations that describe the circuit model of a basicJJare Thecharacteristic“qualityfactor”oftheoscillatoris (1) (9) (2) where is called the Stewart–McCumber parameter de- scribingtheshapeofthedcI–Vcharacteristicsofthejunction. where is a magnetic flux quanta with a value of Plasmafrequencyofthejunctiondeterminesthecharacteristic T m , and is the critical cur- timescaleofthedynamicalprocessinthejunction. rent of the JJ. By eliminating the phase difference between For a 3 m 3 m JJ constructed by Nb–AlO –Nb tech- twosuperconductors,abasicJJcanbereplacedbyanonlinear nologyofferedbyHYPRESSinahighcurrentdensityprocess, inductance [6], as shown in Fig. (1b). This nonlinear inductor thejunction’sparametersare A, K, satisfiesthefollowingequations: K, pF,and [15],[16],whichyields pH, Trad/s,and .Consid- (3) eringanotherjunctionmadeofPb–PbO–Pb,themeasuredjunc- tion’sparametersare A, K, K, (4) fF,and ,thus pH,whichisso small [13],[17].Therefore,arrays orstacks of JJs are used toincreasethetotalinductanceofthestructure.Thisarraycan berepresentedbyasinglejunctionwith timeslargerinduc- where tance, times larger resistance, and times smaller capaci- (5) tancecomparedtoasinglejunction,upontheconditionofiden- tical junctions, because there exists three distinct channels for currentflowinatypicalJJ:inductivechannelforcooperpairs, The advantage of describing the Cooper pairs flow by a resistive channel for normal electron, and capacitive channel nonlinear inductive channel over the conventional relation fordisplacementcurrent.Thetotalinductivechannels,Cooper is the fact that we can only deal with voltage pair’s flow, can be delineated by the total phase difference and current rather than phase difference. The complete elec- acrossthearrayintheform[6] trical characteristics of the generalized JJ are captured by the resistive–capacitive shunted junction (RCSJ) circuit model, as (10) illustrated in Fig. (1a). The equations describing the behavior The plasma frequency of junctions fabricated by ofthegeneralizedJJare[14] Al–Al O –Al technology reduces to the order of 20–100Grad/s;moreover,itpossessesmuchlargerinductance (6) and smaller , which is usually referred to as a overdamped junction with large dissipation (small ) and small (7) capacitance [18]. These features are suitable for microwave superconductingelectronics. Josephsoncriticalcurrent isafigureofmeritforthejunc- tion,whichdependsonthequalityofsuperconductorsandthe III. DJTL geometryofthejunctions.Accordingto(4),nonlinearityplays a significant role when the driving current is very close to the To construct a series-connected DJTL, a microstrip line is critical current; as a result, the effect of nonlinearity becomes loaded in a periodic fashion bya seriesof unbiased JJ blocks, strongerwhenthecriticalcurrentofthejunctionissmall(typ- assketchedinFig.2. ically lessthan 10 A). Replacingthe basicJJ element with a Thisblockcanbeasinglejunction, -foldstackedJJs,array nonlinearinductor,aJosephsontunneljunctioncanbeviewedas oftrilayerjunctions,oranyothercombinationofjunctions.The MOHEBBIANDMAJEDI:ANALYSISOFSERIES-CONNECTEDDJTL 1867 Fig.3. JJblockwithRCSJmodelofeachjunctioncanberepresentedbya singleeffectivejunction. Fig.5. Dispersiondiagramofseries-connectedDJTL.(cid:0) (cid:0)(cid:2)(cid:2)(cid:3)(cid:4)nH,(cid:3) (cid:0) (cid:3)(cid:2)fF,(cid:4) (cid:0) (cid:5)(cid:2)(cid:6),(cid:5) (cid:0) (cid:3)(cid:2)(cid:2)(cid:2),(cid:4) (cid:0) (cid:5)(cid:2)(cid:6),(cid:3) (cid:0) (cid:7)(cid:7)pF,(cid:6) (cid:0) (cid:5)(cid:2)(cid:6), (cid:0)(cid:0)(cid:3)(cid:8)(cid:8)nH/m,(cid:3) (cid:0)(cid:8)(cid:8)pF/m,(cid:7)(cid:0)(cid:3)cm. Fig.4. Unitcellofperiodicallyloadedseries-connectedDJTL. that ,wecanlinearizetheaboveequationsbyletting .Wetheninsertharmonicsolutions givenby , forallvariablesof , proposedJJblock,whichisusedinoursimulationpart,asde- , ,and into(11)–(14).Thisprocedureyieldsahomoge- pictedinFig.3.Itconsistsofanarrayofanidenticalunbiased nous matrix equation in terms of complex coefficients of , junction in parallel to a fit capacitor and also fit shunt re- , ,and .Thedeterminantofthismatrixshouldvanishin sistance . These extra fit elements are used to control the ordertohaveanontrivialsolution.Finally,itresultsinadisper- resistance, capacitance, and plasma frequency associated with sionrelationbetweencomplexpropagationconstant the junction. andangularfrequency givenby Thecriticalcurrents,capacitances,normal-statejunctionre- sistances, and self-inductances are taken tobe identical for all junctions. Moreover, like an array of JJ, this JJ block can be representedbyasingleeffectivejunction.TheTLmodelofthis structureincludingitsunitcellisillustratedinFig.4. Iftheperiodofthestructure ismuchlessthanthewave- (15) length of the microwave signal, i.e., , we can Puttingavoltagesource withthe associatedseriesre- exploit the long wave approximation to form sistance andaloadimpedance attheendsoftheDJTL a set of differential equations to elucidate the nonlinear mi- andsettingallvariablestozerobefore ,asetofcomplete crowavepropagationthroughthisstructure.Therefore,inalow- well-posed equations including a system of partial differential frequencylimit,thisstructurecanbedescribedbyasystemof equations (11)–(14) with mixed boundary conditions and zero partialdifferentialequationsintheformof initialvaluesintheformof (11) (16) (17) (12) (18) Byusing anarrayof1000Al–Al O –Al junctionswithpa- rameters[18],[19] A, fF, , (13) nH,andfitelementsof and pF,the (14) dispersiondiagramisshowninFig.5.TheseJosephsonblocks aremountedona microstriplinewithdistributed Note that and are lumped elements, but and inductance nH/m and distributed capacitance are distributed elements. This is the reason of appearance pF/mattheequal-distancepositionswithaspatialperiodof in (12). is also the flux associated to the nonlinear cm.Thewavelengthat Grad/sisequalto20cm, inductor (JJ), , , and sotheperiodof cmissmallenoughtoholdtheslow- . varying approximation, which has been assumed to derive the Theseequationsarederivedinasimilarmanner,whichisusu- TL(11)–(14).Withtheseparameters,the plasmafrequencyof ally used to form state equations in circuit theory. Supposing the Josephson block is Grad/s, and the Stewart– 1868 IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,VOL.57,NO.8,AUGUST2009 McCumberparameterofasinglejunctionis ,allsuit- where , isthevalueofmatrix evaluatedat ableformicrowaveapplications.AstheJJblockismodeledby and and isthe4-by-4Jacobianmatrixwhose aresonantcircuit,theresonancebehaviorisexpectedatplasma entriesaredefinedby frequency.Atthe low-frequencydomain, theinductivepartof theJJblockbehavesasashortcircuitandathighfrequenciesthe (22) capacitivepartoftheblockexhibitsthesamebehavior.There- fore,inbothregimes,theeffectoftheresistivepartisreduced where and arethe thand thelementincolumnvectors andweexpectlowattenuation.Ontheotherhand,atthereso- and .Toavoidmidpointevaluations,theJacobianmatrices nantfrequencyoccurringattheplasmafrequency,inductorand canbefoundby capacitorcomponentsofeachblockcanceleachother,andthere- sistancepartbecomesmoreprominentbyinducinglargeattenua- (23) tion.Furthermore,accordingtoFig.5,weobservenondispersive behaviorbelowtheplasmafrequency(lowfrequency)andalso (24) faraboveit(highfrequency).Atlowfrequencies,theinductorel- ementsaredominantcomponents;however,athighfrequencies, Obviously, by applying an update equation of (21) into the thecapacitorsofeachblockbecomedominantelements.Thus, endingpointsatthetwoboundaries,twofictitiouspointsappear slowwavepropagationisexpectedatlowfrequenciesincompar- ateachtimestep.Duetothepossibilityofgeneratinginstability, isontohighfrequencies.Alltheaboveexpectationsareobserved careshouldbetakentocomputesuchpoints.Thus,weusethe clearlyinthedispersiondiagramofFig.5. followingrelationstocalculateextra-leftandextra-rightpoints, respectively,[20]: IV. FDTDMETHOD The first step in obtaining an FDTD solution is to set up a (25) regulargridinspaceandtime.Timeandspacestepsaredenoted (26) by and ,respectively,andthetotalnumberoftemporaland spatialgridsinthecomputationaldomainisreferredby and Basedon(16)and(17),updateequationsforboundarycon- . A few extra points beyond the computation domain might ditionsatthetwoendsoftheTLareasfollows: beaddedfornumericalreasons.Thenextstepistoapproximate thedifferentialequationswithaproperfinite-differencescheme. (27) WeusedanexplicitLax–Wendroffscheme[20],[21],whichis well suited for our problem. This scheme provides a second- (28) order accuracy by itself so there is no need to complicate the implementationbydefiningadditionalgridspointsathalf-time Itcanbeperceivedthat(21)involvesfourunknownsthatare and half-space [22]–[24]. To apply the Lax–Wendroff scheme coupled to each other through four nonlinear equations so at inourmodel,(11)–(14)arerestatedinthematrixform each grid in the computational domain, a system of nonlinear simultaneousequationsmustbesolved.Adetailedprocedureof (19) theFDTDimplementationisillustratedintheflowchartshown inFig.6. wherecolumnvectors , ,and aredefinedas , and V. NUMERICALRESULTS Formanynumericalsimulations,whenverysmallorverybig numbersareinvolved,itisoftenhelpfultonormalizeallparam- etersandvariablestospecialvalues.ThescalingrulesforFDTD analysis of the DJTL is described in Table I. Basically, any scaling rule must have this important property such that when (20) wesubstitutenewnormalizedvariablesandparametersintothe Note that is a nonlinear function of . Applying the setofmasterequationsfortheproblem,theseequationsholdthe Lax–Wendroffscheme,theupdateequationcanbeobtainedas sameformastheyhaveforthenonnormalizedvariablesandpa- follows: rameters.Hence,inordertoestablishanormalizationruleinour problem,wechoosefourarbitraryconstants,namely, , , , and , to normalize frequency, wavenumber, impedance, and current by dividing them by these constants, respectively. All other remaining parameters and variables are then normalized into the proper form by using these four assumed parameters, as described in Table I. By putting new normalized variables into(11)–(14)orthedispersionrelationof(15),thisconclusion isdrawnfromtheabovediscussionthat , ,and canbe takenasarbitraryconstants,but mustbeequalsto1m .A (21) summaryoftheaboveprocessisshowninTableI. MOHEBBIANDMAJEDI:ANALYSISOFSERIES-CONNECTEDDJTL 1869 Fig.7. WavepropagationinaDJTLanalyzedbytheRCSJmodel,(cid:0)(cid:0)(cid:2)(cid:2)(cid:0)(cid:2) (cid:3)m ,(cid:3)(cid:0) (cid:2)(cid:3)(cid:0) (cid:2)(cid:3)(cid:0) (cid:2)(cid:3),(cid:2)(cid:0) (cid:2)(cid:4)(cid:4)(cid:5),(cid:0)(cid:0) (cid:2)(cid:3),(cid:5)(cid:0) (cid:2)(cid:6),(cid:6)(cid:0) (cid:2)(cid:4)(cid:4)(cid:3), (cid:7)(cid:0) (cid:2)(cid:7),(cid:8)(cid:0) (cid:2)(cid:7),(cid:9)(cid:2)(cid:4)(cid:4)(cid:4)(cid:3),(cid:10) (cid:2)(cid:4)(cid:4)(cid:4)(cid:4)(cid:3). Fig.6. FlowchartincludingalldetailsforexplicitimplementationofFDTDto analyzetheDJTL. TABLEI NORMALIZATIONRULE Fig.8. GroupandphasevelocityforwavepropagationinaDJTLbasedonthe RCSJmodel. , m , , and . Fig.7illustratesthevoltagewavepropagationinaseries-con- nectedDJTLoverbothspaceandtimeaxes.Duetotheabrupt jump from the resting initial condition to some values by the voltage source, many Fourier components (frequency compo- In order to conduct the FDTD simulation, we choose the nents)areexcited;hence,weobservedispersivebehaviorinthe samestructureandalsothesamephysicalandgeometricalpa- forefrontofthewaveasmoreclearlyshowninFig.8,whichis rameters as described in Section III for calculating the disper- thetopperspectiveofFig.7. siondiagramofFig.5.ThenormalizationruleofTableIisap- Duetothenormalresistivechannel ,thewavewillatten- plied into the actual parameters and variables of the problem uategraduallyassketchedinthevoltageprofileofFig.9.How- by reference parameters , rad/s, ever,theleadingcycleofthewavetraindecaysmorecompared A, and m . To be in a small am- toothercyclesbecauseofthedispersioneffectthatbroadensit. plitude regime, we drive the structure by a sinusoidal voltage Bymeasuringthedistancebetweentwosuccessivecrestsofthe source with amplitude of V and frequency of wavedepictedinFig.9,thephaseconstantofthewaveisfound Grad/s( GHz).Theseriesresistanceasso- tobe rad/m.Moreover,bysimplealgebraiccalcula- ciatedwiththevoltagesourceandalsotheloadimpedanceatthe tionbasedonthedataofFig.9,theattenuationconstantisgiven endofthestructureare .Afternormal- as Np/m.Both and areinagreementwiththere- ization, the new variables are given as , , sultshownindispersiondiagramofFig.5.Themagnitudeofthe 1870 IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,VOL.57,NO.8,AUGUST2009 Fig.9. Profileofthevoltagepatterninseries-connectedDJTL.Attenuationand Fig.11. Whendrivingfrequencyiscloseenoughtoplasmafrequency,DJTL phaseconstantcanbefoundfromthisfigure. revealscutoffpropagation. OnekindofcutoffconditionhappenswhentheDJTLisdriven with frequencies very close to the plasma frequency. At these frequencies, resonance occurs in the series JJ blocks and the line becomes very lossy; therefore, the wave decays very fast. Fig.11showsthecutoffpropagationwhenthefrequencyofthe voltagesourceis Grad/s.Thisfrequencyislocatedin theintervalofthedispersion curve(Fig.5), whereattenuation is large. Spatialdiscretenesscancauseanother typeofcutoff,which happens at the Brag frequency. This observation is similar to thecutoffpropagationintheparallelDJTL,whichhasbeende- scribed by the discreteness factor [7], [25], [26]. This fact is fully explained in the Appendix. To simplify the problem, we replaceallJosephsonblockswithbasicjunctionsbyassuming Fig.10. WavepacketpropagationinDJTL,(cid:0)(cid:0) (cid:2)(cid:3)(cid:4),(cid:0)(cid:0) (cid:2)(cid:4). that , andremovingallfitelements , .Inthiscase,thepropagationconditionisgivenby voltageatthebeginningofthelineishalfofthemagnitudeof (30) thevoltagesource,asseeninFig.9,becauseoftheimpedance matchingbetweenthesourceandline. For example, by setting m , , Thestudyofthewavepacketintroducesanotherinteresting andsinusoidal sourcewith frequency , these aspect of the DJTL. In the generalized RCSJ model of the JJ, parameters fail to satisfy (30) and instead of propagation we theresistiveelementcausesthedispersionbehavior,whichhas haveacutoffpropagationinthesteady-statesolutionoftheanal- alreadybeenseeninFigs.7and8.Thisdispersivebehaviorcan ysis,asillustratedinFig.12for .Accordingto(30), bemonitoredbythewavepacket.Thewavepacketthatweuse atagivenfrequency,byincreasing , ,or ,thecutofffre- isinthe formof quencydecreases,soforlargevaluesofcircuitparameters,we (29) encounter blocking in wave propagation at lower frequencies. This fact has been reported for the parallel-connected DJTL where . The wave is a relatively smooth [25],[26]. function and plays the role of an envelope for the wave func- According to (4), nonlinear Josephson inductance increases tion . The envelope travels at the group velocity and withincreasingcurrent,soweexpectthathigh-currentsections the crestsof the wavefunction moveswith phasevelocity. As of the waveform to propagate slower than the low-current observedinFig.10,atdifferentzero-crossingpointsoftheen- sections. Qualitatively, as time evolves, the peak of a current velope,thephaseofthewavefunctionchanges,andthisisevi- (orvoltagesincebothhavethesameprofile)leavesbehindthe denceofdispersivebehavior. bottom. As a result, a wave with a steeping end can develop, Numericalsimulationsrevealthisimportantfactthat,insome which eventually leads to a jump discontinuity [27], as repre- particularcases,thecutoffconditionhappensintheseriesDJTL. sentedinFig.13.Thistypeofwave,whichtakestheformofa MOHEBBIANDMAJEDI:ANALYSISOFSERIES-CONNECTEDDJTL 1871 Fig.14. DiscretecircuitmodelofDJTL. theDJTLhasdemonstratedmoremicrowavecompatibilitybe- causeofitsimplementationonaregularTL.AdiscreteJJblock canbeanycombinationofJJsandcircuitelements,aspointed outinthispaper.Moreover,asampleofaJJblockwithitsprac- ticalparameterswasillustrated.Dispersionequationshavebeen derivedanddifferentregimesbasedonthedispersiondiagram andplasmafrequencyhavebeendiscussed.Arigorous,robust, andstablenonlinearFDTDbasedontheexplicitLax–Wendroff Fig.12. Stopped-propagationofvoltagewavethroughaDJTL,(cid:0)(cid:0) (cid:2) (cid:2)(cid:0) (cid:2) scheme has been developedto solve the nonlinear waveequa- (cid:3)m ,(cid:0)(cid:0) (cid:2)(cid:3)(cid:4)m ,(cid:3)(cid:2)(cid:4)(cid:4)(cid:4)(cid:5),(cid:5)(cid:2)(cid:4)(cid:4)(cid:4)(cid:4)(cid:5)(cid:6)(cid:0) (cid:2)(cid:6),(cid:7)(cid:0) (cid:2)(cid:4)(cid:4)(cid:5). tions.Goodagreementbetweentheresultsofthedispersiondia- gram,whichisbasedontheanalyticaltreatmentofthestructure inthefrequencydomainandtheresultsoftheFDTDsolverin timedomainhasbeendemonstrated.Thecutoffpropagationdue totheresonancebehavioroftheJosephsonblockandalsodueto thediscretenessofthestructurehasbeendescribed.Shock-wave formationhasbeenobservedwhentheDJTLwasexcitedsuch thattheflowingcurrentisveryclosetothecriticalcurrentofthe junctions.Thisisanindicationoftheexistenceofahighnon- linearpropertyinatypicalDJTLwithapotentialapplicationin realizing parametric devices such as traveling-wave amplifiers and mixers. APPENDIX By dividing a series-connected DJTL into identical unit cells, we can have another view of the DJTL, as illustrated in Fig.14.Insteadofcontinuousvariable ,index isdesignated Fig.13. SketchoftheformationofashockwaveinanonlinearJJtransmission line,(cid:3)(cid:2)(cid:5)(cid:0)(cid:3)(cid:4) ,(cid:7)(cid:8)(cid:9)(cid:10)(cid:2)(cid:4)(cid:4)(cid:4)(cid:4)(cid:11)(cid:12),(cid:0)(cid:0)(cid:2)(cid:2)(cid:0)(cid:2)(cid:3)m ,(cid:0)(cid:0) (cid:2)(cid:3). foreachunitcell. Similartotheparallel-connectedDJTL[7],weattainthefol- lowingequationtoexpressfluxpropagationinthestructure: very sharp change, is called as a shock wave. To see this, the voltagesourceischosentobeaGaussianpulseintheformof (31) Thefullwavehalfmaximum(FWHM)oftheGaussianpulse hastherelation (33) where is the flux associated to the JJ in the th segment. (32) In above equation, the first, second, third, and fourth deriva- Wechoose [28],where isanormalized tives of with respect to time are denoted by , , , time step, which is 2.82 10 , and some other parameters and , respectively. Considering a particular harmonic so- are mentioned in Fig. 13. We have reduced the effect of the lution and small amplitude approximation numerical dispersion, as displayed in Fig. 13, by having fine , substituting this into (33), this yields the fol- gridding and also running at a rate very close to the stability lowingdispersionrelation: conditionofCourant–Friedrichs–Lewy(CFL). VI. CONCLUSION In this paper, a series-connected DJTL has been analyzed basedonTLtheory.ComparedtothecontinuousJosephsonTL, (34)