ebook img

IEEE MTT-V056-I02 (2008-02) PDF

308 Pages·2008·40.746 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview IEEE MTT-V056-I02 (2008-02)

FEBRUARY2008 VOLUME56 NUMBER2 IETMAB (ISSN0018-9480) PAPERS SmartAntennas,PhasedArrays,andRadars Millimeter-Wave-RadarSensorBasedonaTransceiverArrayforAutomotiveApplications ................................ .......................................................................... M.Steinhauer,H.-O.Ruoß,H.Irion,andW.Menzel 261 AMonolithicPhasedArrayUsing3-bitDistributedRFMEMSPhaseShifters............................................... ...........................................................................K.Topalli,O.A.Civi,S.Demir,S.Koc,andT.Akin 270 24-GHzFrequency-ModulationContinuous-WaveRadarFront-EndSystem-on-Substrate ................ Z.LiandK.Wu 278 ActiveCircuits,SemiconductorDevices,andICs ASubthresholdLow-NoiseAmplifierOptimizedforUltra-Low-PowerApplicationsintheISMBand .................... ..................................................................... A.V.Do,C.C.Boon,M.A.Do,K.S.Yeo,andA.Cabuk 286 -and -BandCompactOctaveBandwidth4-bitMMICPhaseShifters ........................ I.J. BahlandD.Conway 293 A2-GHzGaAsHBTRFPulsewidthModulator .....................................................M.NielsenandT.Larsen 300 ACompactHighlyReconfigurableCMOSMMICDirectionalCoupler ....................................................... .......................................................................... M.A.Y.Abdalla,K.Phang,andG.V.Eleftheriades 305 FastEstimationofSpectralSpreadinginGSMOPLLTransmittersBasedonFoldingEffectsAnalysisinQuadraturePhase Modulator ................................................................................................................H. Shin 320 AnalysisofaFullyMatchedSaturatedDohertyAmplifierWithExcellentEfficiency ........................................ ............................................................. J.Kim,J.Moon,Y.Y.Woo,S.Hong,I.Kim,J.Kim,andB.Kim 328 16.6-and28-GHzFullyIntegratedCMOSRFSwitchesWithImprovedBodyFloating ..................................... ................................................................................... Q.Li,Y.P.Zhang,K.S.Yeo,andW.M.Lim 339 SignalGeneration,FrequencyConversion,andControl ATriple-TunedUltra-WidebandVCO ............................................................................................ ....................... M.Tsuru,K.Kawakami,K.Tajima,K.Miyamoto,M.Nakane,K.Itoh,M.Miyazaki,andY.Isota 346 AnalysisandDesignofaDouble-QuadratureCMOSVCOforSubharmonicMixingat -Band ......................... .............................................................................A.Mazzanti,E.Sacchi,P.Andreani,andF.Svelto 355 Millimeter-WaveandTerahertzTechnologies SchottkyBarrierDiodeCircuitsinSiliconforFutureMillimeter-WaveandTerahertzApplications ........................ ...................................................... U.R.Pfeiffer,C.Mishra,R.M.Rassel,S.Pinkett,andS.K.Reynolds 364 (ContentsContinuedonBackCover) (ContentsContinuedfromFrontCover) WirelessCommunicationSystems Multi-LookupTableFPGAImplementationofanAdaptiveDigitalPredistorterforLinearizingRFPowerAmplifiersWith MemoryEffects .....................................P.L.Gilabert,A.Cesari,G.Montoro,E.Bertran,andJ.-M.Dilhac 372 ANewWidebandAdaptiveDigitalPredistortionTechniqueEmployingFeedbackLinearization........................... ......................................................................................... J.Kim,Y.Y.Woo,J.Moon,andB.Kim 385 CADAlgorithmsandNumericalTechniques Phase-NoiseAnalysisofInjection-LockedOscillatorsandAnalogFrequencyDividers ..................................... .............................................................................. F.Ramírez,M.Pontón,S.Sancho,andA.Suárez 393 EfficientAlgorithmsforCrank–Nicolson-BasedFinite-DifferenceTime-DomainMethods ...................... E.L.Tan 408 ExactEquivalentStraightWaveguideModelforBentandTwistedWaveguides ............................. D.M. Shyroki 414 FiltersandMuliplexers ModelingandOptimizationofCompactMicrowaveBandpassFilters .............. M. Bekheit,S.Amari,andW.Menzel 420 ACompactOpen-LoopFilterWithMixedElectricandMagneticCoupling ...................... Q.-X.ChuandH.Wang 431 MiniaturizedHexagonalStepped-ImpedanceResonatorsandTheirApplicationstoFilters ................................. ................................................................................ R.-J.Mao,X.-H.Tang,L.Wang,andG.-H.Du 440 RFAmplitudeandPhase-NoiseReductionofanOpticalLinkandanOpto-ElectronicOscillator .......................... ............................................................................................D.Eliyahu,D.Seidel,andL.Maleki 449 ASeriesSolutionfortheSingle-ModeSynthesisProblemBasedontheCoupled-ModeTheory ........................... ............................................................ I.Arnedo,M.A.G.Laso,F.Falcone,D.Benito,andT.Lopetegi 457 Packaging,Interconnects,MCMs,Hybrids,andPassiveCircuitElements DesignConsiderationsofMiniaturizedLeastDispersivePeriodicSlow-WaveStructures .... C.ZhouandH.Y.D.Yang 467 VerticalTopologiesofMiniatureMultispiralStackedInductors ................................................................ ................................................................W.-Y.Yin,J.-Y.Xie,K.Kang,J.Shi,J.-F.Mao,andX.-W.Sun 475 ANovelApproachtotheDesignandImplementationofDual-BandPowerDivider ........ K.-K.M.ChengandC.Law 487 InstrumentationandMeasurementTechniques Six-PortReflectometerBasedonModifiedHybridCouplers ...........................................J.J.YaoandS.P.Yeo 493 Microwave(8–50GHz)CharacterizationofMultiwalledCarbonNanotubePapersUsingRectangularWaveguides...... ....................................................................................................L.Wang,R.Zhou,andH.Xin 499 SynthesisofaWidebandMultiprobeReflectometer ............................................................................. ................................................. B.M.Kats,A.A.Lvov,V.P.Meschanov,E.M.Shatalov,andL.V.Shikova 507 Comb-GeneratorCharacterization .............................. H.C.Reader,D.F.Williams,P.D.Hale,andT.S.Clement 515 MEMSandAcousticWaveComponents Wafer-ScalePackagedRFMicroelectromechanicalSwitches................................................................... ............................................................. J.Muldavin,C.O.Bozler,S.Rabe,P.W.Wyatt,andC.L.Keast 522 NovelHigh- MEMSCurled-PlateVariableCapacitorsFabricatedin0.35- mCMOSTechnology....................... ............................................................................. M.Bakri-Kassem,S.Fouladi,andR.R.Mansour 530 Photonic Generation of Chirped Millimeter-Wave Pulses Based on Nonlinear Frequency-to-Time Mapping in a NonlinearlyChirpedFiberBraggGrating............................................................... C.WangandJ.Yao 542 Biological,Imaging,andMedicalApplications FDTDCalculationsofSpecificAbsorptionRateinFetusCausedbyElectromagneticWavesFromMobileRadioTerminal UsingPregnantWomanModel.................................................................................................. ...................................... T.Togashi,T.Nagaoka,S.Kikuchi,K.Saito,S.Watanabe,M.Takahashi,andK.Ito 554 InformationforAuthors ............................................................................................................ 560 CALLSFORPAPERS SpecialIssueonRFIDHardwareandIntegrationTechnologies ................................................................ 561 IEEEMICROWAVETHEORYANDTECHNIQUESSOCIETY TheMicrowaveTheoryandTechniquesSocietyisanorganization,withintheframeworkoftheIEEE,ofmemberswithprincipalprofessionalinterestsinthefieldofmicrowavetheory andtechniques.AllmembersoftheIEEEareeligibleformembershipintheSocietyuponpaymentoftheannualSocietymembershipfeeof$14.00,plusanannualsubscriptionfee of$22.00peryearforelectronicmediaonlyor$44.00peryearforelectronicandprintmedia.Forinformationonjoining,writetotheIEEEattheaddressbelow.Membercopiesof Transactions/Journalsareforpersonaluseonly. ADMINISTRATIVECOMMITTEE J.MODESKI, President B.PERLMAN, PresidentElect B.SZENDRENYI, Secretary N.KOLIAS, Treasurer L.BOGLIONI D.HARVEY L.KATEHI T.LEE A.MORTAZAWI A.ROSEN W.SHIROMA K.VARIAN K.WU S.M.EL-GHAZALY J.HAUSNER B.KIM J.LIN V.J.NAIR R.SNYDER R.WEIGEL R.YORK J.HACKER K.ITOH N.KOLIAS M.HARRIS HonoraryLifeMembers DistinguishedLecturers PastPresidents T.ITOH T.S.SAAD K.TOMIYASU G.BOECK B.KIM V.NAIR P.SIEGEL J.S.KENNEY(2007) A.A.OLINER P.STAECKER L.YOUNG A.HAJIMIRI V.LUBECKE J.C.RAUTIO R.SNYDER K.VARIAN(2006) W.HOEFER L.MAURER D.ROOT A.SUAREZ K.C.GUPTA(2005) MTT-SChapterChairs Albuquerque:L.H.BOWEN Foothill:C.ANTONIAK NorthJersey:H.DARAL/K.DIXIT SouthAfrica:P.W.VANDERWALT Atlanta: D.KOKOTOFF France:P.EUDELINE NorthQueensland: M.V.JACOB SouthAustralia:B.BATES Austria:A.SPRINGER Germany:W.HEINRICH NorthernNevada: B.S.RAWAT SouthBrazil:L.C.KRETLY Baltimore:N.BUSHYAGER Greece:I.XANTHAKIS Norway:U.HANKE SoutheasternMichigan: L.M.ANNEBERG Beijing:Z.FENG HongKong:W.Y.TAM OrangeCounty:H.J.DELOSSANTOS SouthernAlberta:S.BOUMAIZA Beijing,Nanjing:W.X.ZHANG Houston:J.T.WILLIAMS Oregon:T.RUTTAN Spain:L.FEHARO Belarus: A.GUSINSKY Houston,CollegeStation: C.MADSEN Orlando: X.GONG Springfield:P.R.SIQUEIRA Benelux: D.V.-JANVIER Hungary:T.BERCELI Ottawa: Q.YE Sweden: A.RYDBERG Brasilia: A.KLAUTAU,JR. Huntsville:H.G.SCHANTZ Philadelphia:J.NACHAMKIN Switzerland: C.FUMEAUX Buenaventura: M.QUDDUS India/Calcutta:P.K.SAHA Phoenix:C.WEITZEL Syracuse: E.ARVAS Buffalo: VACANT IndiaCouncil:K.S.CHARI Poland:W.J.KRZYSZTOFIK Taipei:C.-S.LU Bulgaria: K.ASPARUHOVA Israel:S.AUSTER Portugal: C.PEIXEIRO Thailand: P.AKKARAEKTHALIN CedarRapids/CentralIowa:D.JOHNSON JapanCouncil:Y.TAKAYAMA Princeton/CentralJersey:W.CURTICE/A.KATZ Toronto:G.V.ELEFTHERIADES CentralNewEngland:G.CHU Kitchener-Waterloo:R.R.MANSOUR Queensland: A.ROBINSON Tucson: VACANT Central&SouthItaly:G.D’INZEO Lithuania:V.URBANAVICIUS RiodeJaneiro:J.R.BERGMANN Turkey: I.TEKIN CentralNo.Carolina:I.KATEEB LongIsland/NewYork:J.COLOTTI Rochester: S.M.CICCARELLLI/J.VENKATARAMAN TwinCities:M.J.GAWRONSKI Chengdu:Z.NEI LosAngeles,Coastal:A.SHARMA Romania:G.LOJEWSKI UK/RI:A.REZAZADEH Chicago: H.LIU LosAngeles,Metro:J.WEILER Russia,Nizhny-Novgorod: Y.BELOV Ukraine,CentralKiev: Y.POPLAVKO Cleveland: M.SCARDELLETTI Malaysia:Z.AWANG Russia,SaintPetersburg: M.SITNIKOVA Ukraine,East:A.NOSICH Columbus:M.CARR Melbourne:J.KRALOVEC Russia,Moscow:V.KALOSHIN Ukraine,Rep.ofGeorgia:D.KAKULIA Connecticut:C.BLAIR/R.ZEITLER Milwaukee:S.G.JOSHI Russia,Saratov-Penza: N.RYSKIN Ukraine,Vinnitsya:V.DUBOVOY Croatia:Z.SIPUS MohawkValley: P.RATAZZI SaintLouis:D.MACKE Ukraine,West:I.ISAYEV Czech/Slovakia: M.POLIVKA Monterrey Mexico: SanDiego: J.TWOMEY Venezuela: J.PENˇA Dallas:L.ZHANG R.M.RODRIGUEZ-DAGNINO SantaClaraValley/SanFrancisco: M.SAYED Victoria: K.GHORBANI Dayton:A.TERZUOLI, JR. Montreal:K.WU Seattle:W.P.HALL VirginiaMountain:T.WINSLOW Denver:M.JANEZIC NewHampshire:T.PERKINS SeoulCouncil:H.-Y.LEE WashingtonDC/NorthernVirginia: EasternNo.Carolina:D.PALMER NewJerseyCoast:D.REYNOLDS SerbiaMontenegro: B.MILOVANOVIC B.LEVINE Egypt: I.A.SALEM NewSouthWales:G.TOWN Siberia,Novosibirsk: V.SHUBALOV Winnipeg: V.OKHMATOVSKI Finland:A.LUUKANEN NewZealand:J.MAZIERSKA Siberia,Tomsk:R.V.MESCHERIAKOV Youngnam/Taegu:Y.-H.JEONG FloridaWestCoast:K.O’CONNOR NorthItaly:G.GHIONE Singapore: A.ALPHONES Editors-In-Chief AMIRMORTAZAWI AssociateEditors Univ. of Michigan AnnArbor,MI48109-2122USA DANIELDEZUTTER JENSHAN LIN ZOYA POPOVIC KE-LI WU Phone:+17349362597 Universiteit Gent Univ. of Florida Univ.ofColorado,Boulder ChineseUniv.ofHongKong Fax:+17346472106 Belgium USA USA Hong Kong email:[email protected] email:[email protected] email:[email protected] email:[email protected] email:[email protected] DYLAN WILLIAMS YOUNGWOO KWON JOSÉ PEDRO SANJAY RAMAN RUEY-BEEI WU NIST Seoul Nat. Univ. Univ. of Aveiro VirginiaPolytech.Inst.andStateUniv. NationalTaiwanUniv. Boulder,CO80305USA Korea Portugal USA Taiwan, R.O.C. Phone:+13034973138 email:[email protected] email:jcp.mtted.av.it.pt email:[email protected] email:[email protected] Fax:+13034973970 RICHARD SNYDER ALEXANDERYAKOVLEV email:[email protected] RSMicrowaveCompany Univ. of Mississippi USA USA email:[email protected] email:[email protected] M.GOLIO, Editor-in-Chief,IEEEMicrowaveMagazine G.E.PONCHAK, Editor-in-Chief,IEEEMicrowaveandWirelessComponentLetters T.LEE, WebMaster IEEE Officers LEWISM.TERMAN, President JOHNBAILLIEUL, VicePresident,PublicationServicesandProducts JOHNR.VIG, President-Elect JOSEPHV.LILLIE, VicePresident,MemberandGeographicActivities BARRYL.SHOOP, Secretary GEORGEW.ARNOLD, President,IEEEStandardsAssociation DAVIDG.GREEN, Treasurer J.ROBERTOB.DEMARCA, VicePresident,TechnicalActivities LEAHH.JAMIESON, PastPresident RUSSELLJ.LEFEVRE, President,IEEE-USA EVANGELIAMICHELI-TZANAKOU, VicePresident,EducationalActivities EDWARDDELLATORRE, Director,DivisionIV—ElectromagneticsandRadiation IEEE Executive Staff JEFFRYW.RAYNES, CAE,ExecutiveDirector&ChiefOperatingOfficer BETSYDAVIS, SPHR,HumanResources MATTHEWLOEB, CorporateStrategy&Communications ANTHONYDURNIAK, PublicationsActivities RICHARDD.SCHWARTZ, BusinessAdministration JUDITHGORMAN, StandardsActivities CHRISBRANTLEY, IEEE-USA CECELIAJANKOWSKI, MemberandGeographicActivities MARYWARD-CALLAN, TechnicalActivities DOUGLASGORHAM, EducationalActivities SALLYA.ERICKSEN, CIO-InformationTechnology IEEE Periodicals Transactions/JournalsDepartment StaffDirector:FRANZAPPULLA EditorialDirector: DAWNMELLEY ProductionDirector: PETERM.TUOHY ManagingEditor:MONAMITTRA SeniorEditor:CHRISTINAM.REZES IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES(ISSN0018-9480)ispublishedmonthlybytheInstituteofElectricalandElectronicsEngineers,Inc.Responsibilityforthe contentsrestsupontheauthorsandnotupontheIEEE,theSociety/Council,oritsmembers.IEEECorporateOffice:3ParkAvenue,17thFloor,NewYork,NY10016-5997.IEEEOperations Center:445HoesLane,Piscataway,NJ08854-4141.NJTelephone:+17329810060.Price/PublicationInformation:Individualcopies:IEEEMembers$20.00(firstcopyonly),nonmember $96.00percopy.(Note:Postageandhandlingchargenotincluded.)Memberandnonmembersubscriptionpricesavailableuponrequest.Availableinmicroficheandmicrofilm.Copyright andReprintPermissions:Abstractingispermittedwithcredittothesource.Librariesarepermittedtophotocopyforprivateuseofpatrons,providedtheper-copyfeeindicatedinthecode atthebottomofthefirstpageispaidthroughtheCopyrightClearanceCenter,222RosewoodDrive,Danvers,MA01923.Forallothercopying,reprint,orrepublicationpermission,write toCopyrightsandPermissionsDepartment,IEEEPublicationsAdministration,445HoesLane,Piscataway,NJ08854-4141.Copyright©2008byTheInstituteofElectricalandElectronics Engineers,Inc.Allrightsreserved.PeriodicalsPostagePaidatNewYork,NYandatadditionalmailingoffices.Postmaster:SendaddresschangestoIEEETRANSACTIONSONMICROWAVE THEORYANDTECHNIQUES,IEEE,445HoesLane,Piscataway,NJ08854-4141.GSTRegistrationNo.125634188.CPCSalesAgreement#40013087.ReturnundeliverableCanadaaddresses to:PitneyBowesIMEX,P.O.Box4332,StantonRd.,Toronto,ONM5W3J4,Canada. DigitalObjectIdentifier10.1109/TMTT.2008.917703 IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,VOL.56,NO.2,FEBRUARY2008 261 Millimeter-Wave-Radar Sensor Based on a Transceiver Array for Automotive Applications MatthiasSteinhauer, Member, IEEE, Hans-Oliver Ruoß, Member, IEEE, Hans Irion, and Wolfgang Menzel, Fellow, IEEE Abstract—Thispaperdescribesanewradarsensorarchitecture comprising an array of transceiver modules. Target applications of the sensor are automotive driver assistance systems. In con- junction with a monolithic integration of each transceiver, the conceptoffersthepossibilityforacost-effectiverealizationofdig- ital-beamforming radar sensors at millimeter-wave frequencies. A modulation sequence is investigated based on simultaneously transmittedfrequency-modulatedcontinuous-wavesignals,which are separated by frequency multiplexing. Appropriate signal processingfortheestimationofrange,speed,andazimuthangle inmultipleobjectsituationsispresented. Experimentalresultswithaneight-channelradarsensorinthe 76–77-GHzfrequencybandarepresented,whichdemonstratethe feasibilityoftheproposedarchitectureandshowtheperformance ofthemodulationsequenceandsignalprocessing. Index Terms—Array, automotive radar, digital beamforming (DBF), frequency-modulated continuous wave (FMCW), trans- ceiver. Fig.1. BlockdiagramofatypicalDBFradarsensorfrontend. I. INTRODUCTION MILLIMETER-WAVE (MMW) radar is an important main.Atypicaldigitalbeamforming(DBF)frontendarchitec- ture is shown in Fig. 1. The main circuit blocks are a signal sensing principle for automotive driver assistance sys- source, which feeds a single transmitantenna, and an array of tems. The main automotive application of radar sensors today receivers where a part of the transmit signal is used as a local is adaptive cruise control, which is based on forward-looking oscillatorsignaltodown-converttheRFsignalstobaseband. long-rangesensorsinthe76–77-GHzfrequencybandcovering The cost associated with this architecture has prohibited its a range up to 150 m and an azimuth field of view of 8 . implementationforautomotiveradarsensorsthusfar.Different Accordingtotheevolutionofdriverassistancesystemstowards concepts based on switching in the transmit or receive paths active safety systems, the radar sensors will also be employed havebeen proposed toreduce the required numberof receiver for functions such as collision warning, brake assistance, or channels [2]–[7]. However, switching operation at MMW fre- automatic emergency braking. These applications demand quencies of 76 GHz introduces significant losses, which are a higher detection performance compared to current radar disadvantageous in the receive path due to an increased noise sensors. The azimuthal angular resolution has to especially be figureandinthetransmitpathduetothelimitedtransmitpower improved significantly to values below 2 to achieve a better ofmonolithicsignalsources.Switchingtypicallyalsorequires objectseparation[1],[2].Simultaneously,alargerfieldofview anincreasedbandwidthinthebaseband,whichadditionallyin- is required. creasesnoisepowerand,therefore,reducessystemsensitivity. Asuitablesensorarchitectureforimprovedangulardetection A different approach to reduce the cost of an array sensor performanceisanantennaarraywithbeamformingorhigh-res- architecture is pursued with the sensor concept proposed in olutiondirectionofarrival(DOA)estimationinthedigitaldo- this paper. The proposed architecture comprises an array of transmit–receivemodules,whichcanbecost-effectivelyimple- mented by monolithically integrating each transceiver module ManuscriptreceivedFebruary1,2007;revisedAugust28,2007. M. Steinhauer is with Chassis Systems Control, Robert Bosch GmbH, includingantennastructures,therebyavoidinginterconnectsat D-74232Abstatt,Germany([email protected]). MMWfrequencies. H.-O.RuoßiswithAutomotiveElectronics,RobertBoschGmbH,D-72703 Reutlingen,Germany([email protected]). H. Irion is with Gasoline Systems, Robert Bosch GmbH, D-71701 II. SENSORCONCEPT Schwieberdingen,Germany([email protected]). A block diagram of the radar sensor frontend is depicted W.MenzeliswiththeInstituteofMicrowaveTechniques,UniversityofUlm, in Fig. 2. The channels of the array are realized as identical D-89069Ulm,Germany([email protected]). DigitalObjectIdentifier10.1109/TMTT.2007.914635 transmit–receivemodulesinsteadofreceiversinaconventional 0018-9480/$25.00©2008IEEE 262 IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,VOL.56,NO.2,FEBRUARY2008 Fig.2. Principleblockdiagramofproposedtransceiverarrayfrontend. Fig.3. Timesectionofthetransmitsignalswithfrequencymultiplexbetween array frontend architecture. This arrangement is advantageous thedifferenttransceivermodules. from a cost perspective in combination with a monolithic integration of each transceiver including antenna structures. The monolithic integration of the transceiver modules allows be achieved, and no additional signal processing effort is re- anassemblywithouttheneedofinterconnectsandwirebonds quiredtoeliminatepotentialambiguitiesresultingfromaliasing in the carrier frequency range of 76 GHz as no MMW signal effects. has to be distributed between the transceivers. Therefore, the TheFMCWtransmitsignalofthe thsourcecanbedescribed assembly is simplified, and a standard printed circuit board as substratematerialcanbeused.Themultipledeploymentofone monolithicmicrowaveintegratedcircuit(MMIC)alsoleadsto (1) ahighmodularityofthesensorconcept. In principle, all basic radar modulation signals as FMCW, where and arethebandwidthanddurationofthemodu- pulse Doppler, or pseudonoise phase coding can be used as lation,respectively, isthereferencecarrierfrequency, is transmitsignalsofthetransceivermodules.TheFMCWmodu- thefrequencyshiftbetweenthecarrierfrequenciesofadjacent lationischosenherebecauseofthelowcomplexityrequiredfor modules,and istheconstantcarriersignalphaseofthe th thetransceivermodulesandtheefficientuseofavailablesignal source.Areceivedechosignalofthe thmodule,resultingfrom power.Theavailabilityofindependentsignalsourcesforeach areflectionofitsowntransmitsignalatamovingobject,isan arraymodulefacilitatestheformationofdifferenttransmit–re- attenuatedandtime-delayedreplicaofthetransmitsignalwith ceive configurations of the array. A favorable configuration is aDopplershiftofthecarrierfrequency themonostatictransmit–receivemodeofeachtransceiverwith homodyne conversion of the received signals, as depicted in Fig. 2. The main advantage of this configuration is the elim- ination of the carrier signal phases by the homodyne mixing (2) process whereby the need for exact phase synchronization of thesourcesisavoided.Aprerequisiteofthismodeisthedecou- where istheattenuation, istheobjectrangetothereference plingofthemodulestoavoidtransmitterinterference. module, istheobjectspeed,and isthefree-spacepropaga- The modulation schemes developed for switched FMCW tionvelocity. arrays represent a time-domain multiplex of the channels and The baseband signal results from the multiplication of could,therefore,be appliedtothetransceiverarray.Examples transmit and receive signal. For further analysis, only the are the processing of sequential fast frequency-modulated phase of the resulting signal is relevant. Taking the module continuous-wave(FMCW)sweeps[6],[7]orthefragmentation at the left edge of the array as the reference, the phase of the ofasingleFMCWsweepuponthedifferentchannels[2]. basebandsignalofthe thmodulecanbeexpressedaftersome Here,adifferentmodulationschemeisproposed,makinguse approximationsas of the available signal sources in each channel. The time–fre- quencyrelationofthetransmitsignalsofthedifferent sources is depicted in Fig. 3. All sources are transmitting simultane- ously,andtransmitterinterferenceisavoidedbyfrequencymul- (3) tiplexing of the carrier frequencies. Advantages of this mod- ulation scheme are the avoidance of switching operations and theminimizedcycletimeduetothesimultaneoustransmission. where is theazimuthangleoftheincomingsignal, isthe Bythepreventionofswitching,abettersystemsensitivitycan free-spacewavelength,and istheelementspacingofthearray. STEINHAUERetal.:MMW-RADARSENSORBASEDONTRANSCEIVERARRAYFORAUTOMOTIVEAPPLICATIONS 263 Basebandsignalsresultingfromtransmitsignalsofallother modules can be suppressed by a low-pass filter as they are shiftedbythetransmitfrequencydifference . Thetime-dependentphasetermin(3)representsthebaseband frequency, which is dependent on distance and velocity of an object (4) The progression of the time-independent baseband signal phasealongthearraycorrespondstothephasesofthesteering vector components and is dependent on the angle of arrival Fig.4. Modulationsequence. of the incoming signal. Additionally the phase progression is dependent on the distance of the reflecting object. This basebandfrequencyaccordingto(4).Acommonapproachtore- relation is caused by the carrier frequency shift between the solvetheambiguityofthebasebandfrequencyistheprocessing transceiver modules. By evaluating time-shifted sections of ofseveralFMCWsweepswithdifferentmodulationparameters, the baseband signals, an effective time and frequency shift is e.g.,atriangularwaveformwithanascendingandadescending realized between the FMCW signals of adjacent modules, as frequency sweep [8]. This yields two linear equations, which depicted in Fig. 3. For the effective time and frequency shift canbesolvedunambiguouslyonlyforasingleobject.Inmul- andthephysicalfrequencyshift,thefollowingrelationholds: tipleobjectsituationswith objects,thisleadsto pos- sibleobjects,andtheso-calledghosttargetshavetoberesolved (5) byfurtherFMCWsweeps.Thisresultsinahighprocessingef- where and are the effective frequency and time shifts, fort,andtheriskofunresolvedghosttargetsremains. respectively. This leads to a total phase progression along the The unambiguous estimation of distance and speed is pos- array, which is dependent on azimuth angle, distance, and ve- sible by the utilization of frequency- or time-shifted FMCW locityofanobject sweepsbyusingtheadditionalphaseinformation[9],[10].The underlying principle is the dependency of the baseband phase (6) difference from distance and velocity when applying a time or frequency shift. With the system concept and modulation schemeproposedhere,thevirtualshiftoftheestimatedazimuth The result is a virtual shift of the detected azimuth angle ac- anglefromtheactualvaluecanbedeployedtoextracttherele- cording to vantphaseinformation. Asuitablemodulationsequenceisrepresentedbythefirsttwo (7) FMCWsweepsdepictedinFig.4.Inthefirststepofthesignal processing,basebandfrequenciesandassociatedazimuthangles withtheestimatedazimuthangle ,therealazimuthangle , areestimatedforanyreflectedsignalwithineachsweep.Dueto andtheobjectvelocityanddistance and . the identical sweep rate of each channel, equal baseband fre- Furthermore, the phase lags between adjacent modules are quenciesresultforeachchannel.Thebasebandfrequenciescan doubledcomparedtoaconventionalreceiverarraywithasingle be efficiently estimated by a fast Fourier transform (FFT) and transmit source. This results from the simultaneous variation subsequent peak detection. The associated azimuth angles are oftransmitterand receiverlocationduetothe monostaticpro- estimated by the application of DBF algorithms to the ampli- cessing of the respective transmit and receive signals as the tudeandphaseinformationinthefrequencydomain. phaselagsoftransmitandreceivepathareadded[3]–[5].The For the ease of calculation, the wavenumber in direction of additionofthephaselagsis,inthecurrentcase,equivalenttoa the array doublingofthephysicalapertureofthearray.Therefore,are- quiredangularresolutioncanbeachievedwithasmallerphys- (9) icalaperture.Asthenumberofelementsiskeptconstant,theun- ambiguousangularrangedeterminedbythedistanceofgrating isusedinsteadoftheazimuthangle,assumingthe -axisisori- lobesofthearrayfactorisreducedto entedalongthearray.Rewriting(7)resultsin (8) (10) III. MODULATIONSEQUENCEANDSIGNALPROCESSING Togetherwiththebasebandfrequency,oneFMCWsweepre- The additional dependence of the estimated azimuth angle sultsintwolinearindependentequations,whichareconnected fromobjectdistanceandspeedaccordingto(7)canbedeployed for each object, containing and . The equations cannot be fortheunambiguousestimationofdistanceandspeed.Adraw- directly solved, as after (10), the estimated wavenumber backoftheFMCWmodulationisthecouplingof and inthe isalsodependentontheunknownactualwavenumber .Two 264 IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,VOL.56,NO.2,FEBRUARY2008 consecutive FMCW sweeps according to the first two sweeps TABLEI in Fig. 4 can be used to eliminate , as its value can be as- ARRAY, MODULATION, AND SIGNAL PARAMETERS DEPLOYEDFORVARIANCECALCULATION sumedtostayconstantduringthemeasurementcycle.Usinga different carrier frequency shift between adjacent transceivers in each sweep, two linearindependent equations result, which canbesubtractedtoyield (11) From(11)and(4), and canbedirectlyestimatedas (12) (13) The actual azimuth angle can subsequently be calculated from(7)usingtheestimateddistanceandvelocity. In general,the achievableaccuracy ofdistance and velocity estimationusing(12)and(13)islowercomparedtotheuseof twoindependentbasebandfrequencies.Thisisduetothelower The estimation accuracy is dependent on the variance of fre- accuracy of angle or phase estimation compared to frequency quency estimation and angle estimation , respectively. estimation. Therefore, if a higher accuracy is required, a third Forthe modulationparameters andunambiguous distanceand FMCW sweep can be used, as depicted in Fig. 4. Using the velocityrangeslistedinTableI,the minimumstandarddevia- resultingbasebandfrequency,theestimationaccuracyfromthe tionisachievedformaximumadmissibleeffectivetimeshiftand firststepaccordingto(12)and(13)isimproved. zeroeffectivefrequencyshiftbetweenadjacenttransceiversig- A. UnambiguousRange nals.Here,themaximumadmissibleeffectivetimeshiftequals safter(15). The phase difference or angle difference, respectively, in- Using an FFT of length 512 with subsequent maximum de- volvedinthedistanceandvelocityestimationaccordingto(12) tectionandcenterofgravityestimation,astandarddeviationfor and (13) is ambiguous. The unambiguous phase range corre- the frequency estimation of approximately can sponds to , where is the phase difference beachievedforasignaloflength .Asapracticalestimation betweenthebasebandsignalsofadjacenttransceivers.Therel- accuracy for estimation of the azimuth angle, a standard devi- evantphasedifferencebetweenthebasebandsignalsoftwoad- ation of corresponding to a standard deviation of jacenttransceiverscanbederivedfrom(11)as m is assumed here, which is achievedwith the experimentalradarsensordescribedinSectionIV.Theresulting (14) standarddeviationsfortheestimationof and can,therefore, becalculatedas Considering the unambiguous phase range, the effective time andfrequencyshiftsforunambiguousdistanceandvelocityes- m (18) timationmustsatisfythefollowingrelation: m/s (19) (15) It has to be considered that deviations of the nominal fre- quencyoffsetbetween the carrierfrequencies lead toa bias in theestimationofdistanceandvelocity.Asynchronizationofthe wheretheunambiguousdistancerangeisassumedas carrierfrequenciesis,therefore,requiredtoachievetheestima- andtheunambiguousvelocityrangeas . tionaccuracyderivedabove. B. EstimationAccuracy Thevarianceoftheestimationof and using(12)and(13) IV. EXPERIMENTALRADARSENSOR canbederivedbyerrorpropagationas A prototypical radar sensor for the 76–77-GHz frequency range has been realized to investigate the feasibility of the (16) system concept with emphasis on the modulation sequence and signal-processing scheme. A block diagram of the sensor is depicted in Fig. 5. The sensor comprises eight parallel transmit–receive circuits, which are realized in a hybrid as- (17) sembly of MMICs and discrete components on an organic STEINHAUERetal.:MMW-RADARSENSORBASEDONTRANSCEIVERARRAYFORAUTOMOTIVEAPPLICATIONS 265 Fig.6. RFcircuitboard. Fig.5. Blockdiagramofexperimentalradarsensorconsistingofeightseparate transmit–receivemodules. A photograph of the RF frontend is depicted in Fig. 6. In high-frequency substrate. A hybrid assembly on a high-fre- thecenter,theMMICsforthesignalsourcesarerecognizable. quency laminate is used, as no fully monolithic transceiver Theoutputsignalsaretransferredtotheantennacircuitsbymi- modules were available yet. The essential properties of the crostriplineswhoselengthvariesbetweenthetransceiversdue sensor concept can be evaluated independent from the as- toassemblyconstraints.Thepolyrodantennasarevisibleatthe sembly technology. In parallel, a development of monolithic topofthepicture. transceivermodulesforMMWfrequenciesisongoing.Inafirst The attenuation of the transmission lines between signal step,thefeasibilityofkeycomponentsasoscillatorsandmixers source and transfer mixers varies from 1.5 to 5 dB due to the forfrequenciesbeyond100GHzisshowninanSiGe–BiCMOS differentlinelengths.Theinsertionlossofthetransmitpathof technology[11]. the mixer amounts to 3 dB. With the typical output power of Atthecurrentprototypicsensor,MMICoscillatorsatanom- thefrequencydoublerof18dBmfrom76to77GHz,thesignal inalfrequencyof38GHzareusedassignalsources.Foreach powerattheantennafeedpointscanbeestimatedtovaryfrom channel, a subsequent frequency doubler and power amplifier 10to13.5dBmamongthechannels. MMIC transfers the oscillator signal to the target frequency Thelow-frequencycircuitsasPLLapplication-specificinte- range and provides a typical output power of 18 dBm. The gratedcircuits(ASICs),basebandamplifiersandfiltersareas- mixers are realized as transfer mixers consisting of a single sembledonanFR4substrate,whichislaminatedtothebackside series diode. A part of the source signal is coupled with a oftheRFsubstrate.Forthesensorcontrolanddataacquisition, directional coupler and a bandpass filter to a harmonic mixer, aseparateboardwithaMotorolaMPC5200microprocessoris where it is converted to an intermediate frequency of 2 GHz. used. The microprocessor is controlled from a PC using Lab- A 18.6-GHz dielectric resonator oscillator provides the local View,andacontrollerareanetwork(CAN)interfaceisusedfor oscillator signal for all eight channels. Its signal is distributed communication. to the eight subharmonic mixers by a three-stage Wilkinson The bandwidth of the system is limited by the maximum power-divider network. The nonlinear component of the sub- sweepbandwidthofthePLL-ASICtoapproximately500MHz. harmonicmixersisasinglediodeofthesametype,asitisused forthereceivingmixers.A15-MHzquartzoscillatorisusedas a common reference source for the phase locked-loop (PLL) V. MEASUREMENTRESULTS circuits. The antennas consist of half-wavelength microstrip patches A. PhaseNoiseofTransmitSignals asradiatingelementswithdielectricrodsontop.Thedielectric rods have a lower cylindric and an upper conical section with For characterization of the phase noise of the sources, the an overall length of approximately 8 mm. The geometric pa- transmitted signals at a fixed frequency of approximately rameters as length, diameter, and taper of the conical section 76.5GHzarereceivedbymeansofahornantennaclosetothe have been optimized with the help of a full-wave electromag- sensor.A40-GHzspectrumanalyzerwithanexternal -band neticsimulationtoachieveanefficientilluminationofthesub- downconverterisusedtomeasurethepowerspectrum. sequentlens.Acylindricdielectriclensisdeployedtoobtaina ThepowerspectrumofonechannelisdepictedinFig.7.The narrowelevationbeamandanincreasedantennagain.Theinflu- phasenoisecanbeestimatedtoapproximately 80dBc/Hzat enceontheazimuthradiationcharacteristicisintentionallylow 100-kHz offset from the carrier. At this measurement, the fre- toachievethelargestpossiblebeamoverlapoftheeightchan- quencyspacingbetweenthetransmitsignalsofdifferentchan- nels. A spacing of the patch antennas of one free-spacewave- nelsis18MHz.Withdecreasingfrequencyspacing,thephase lengthischosen. noiseincreasesduetoparasiticcouplingbetweenthePLLs.For 266 IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,VOL.56,NO.2,FEBRUARY2008 Fig.7. Powerspectrumoftransmitsignalofonetransceiverchannel. Fig. 9. Normalized array pattern for reflector at 0 with 25-dB Chebyshev weightingappliedtothebasebandsignals. The azimuth pattern has a sector-like form with a 6-dB two-way beamwidth, corresponding to the one-way 3-dB beamwidth of approximately 52 , and a steep transition from themainlobetothesideloberegion.Theelevationpatternhas a6-dBtwo-waybeamwidthof4 duetothedielectriclens.The highestsidelobesareapproximately30dBbelowthemainlobe forthetwo-waypattern. 2) ArrayPattern: Thearraypatternresultingafterarraycal- ibrationisdepictedinFig.9.AChebyshevwindowwith25-dB sidelobesuppressionisappliedtothesignalsoftheeightchan- nels.Arraycalibrationhasbeenperformedusingthealgorithm describedin[12].The3-dBbeamwidthofthemainlobeis3.9 andthefirstzeroofthearraypatternislocatedat4.6 .Grating lobesoccurat 30 and 90 ,whichresultfromtheeffective spacingoftheantennasoftwowavelengthsduetothesynthetic doublingofthephysicalspacingwhenmonostatictransmit–re- ceiveprocessingisapplied.TheChebyshevweightingiseffec- Fig.8. Normalizedtwo-waysingle-channelazimuthandelevationradiation tiveonlyforsidelobesbeyond 10 .Theclose-insidelobesare pattern. limitedtoapproximately20dBbelowthemainlobeduetocali- brationimperfections.Ithastobenotedthatthedynamicrange withrespecttointerferingsignalsbeyond 30 issubstantially all measurement results, presented below, the same frequency enhancedduetothesingle-channelpattern. spacingof18MHzischosen. C. RangeandVelocityEstimation B. AntennaRadiationPattern 1) StaticObjects: Theestimationofrangeandvelocityusing 1) Single-ChannelPattern: Withmonostaticoperationofthe the principle modulation scheme, as presented in Section III, transceivermodules,theeffectiveantennacharacteristicscorre- hasbeeninvestigatedexperimentallyforstaticanddynamicob- spond to the two-way radiation pattern. This characteristic is jects.Thestaticmeasurementsetupconsistsofacornerreflector measured here for all eighttransceiversby analyzing the peak in a distance of approximately 6 m to the sensor. The size of power of the FMCW baseband signals resulting from the re- thereflectorisvariedtoanalyzetheinfluenceofsignal-to-noise flected power of a corner reflector in a fixed distance of 6 m. ratio.Thewholesetupisplacedinananechoicchamber.Sweep Themeasuredtwo-wayazimuthandelevationcharacteristicsof bandwidth and duration of the FMCW sweep are chosen as onechannelaredepictedinFig.8.Theantennacharacteristicis MHzand msforalleightsignalsources. normalizedtothemaximumbasebandsignalpower.Asimula- Thecarrierfrequencydifferencebetweenthetransmitsignalsof tion of the antenna system including losses shows an absolute adjacentmodulesischosenlargeenoughtoallowadecoupling antennagainof20dB. ofthetransceiversignalsbyfilteringinthebaseband. STEINHAUERetal.:MMW-RADARSENSORBASEDONTRANSCEIVERARRAYFORAUTOMOTIVEAPPLICATIONS 267 Fig.10. StandarddeviationofthedirectestimationofRfrom(12)indepen- Fig.12. EstimateddistanceofanapproachingtargetforestimationofRfrom denceofeffectivefrequencyshift(cid:14)f andsignal-to-noiseratio. (12)andusingtwoindependentbasebandfrequencies. ,whicharerealisticvaluesfortheexperimental sensor. The measured curves show the principal reciprocal rela- tionship of the standard deviation to the effective time and frequency shifts according to (16). The standard deviation decreases, as expected, with increasing signal-to-noise ratio. Consideringtherequiredunambiguousdistancerangeof200m and unambiguous velocity range of 250 km/h, the maximum permissible time shift is s and the maximum fre- quency shift is kHz. For a signal-to-noise ratio of 20dB,theresultingstandarddeviationforatimeshiftof14 s is cm. The corresponding standard deviation for the velocityestimationyields m/s. 2) Dynamic Objects: The estimation of and using the proposed signal-processing scheme utilizes differential phase informationfromtwoconsecutiveFMCWsweeps,asdepicted in the modulation cycle in Fig. 4. A prerequisite for unbiased rangeandvelocityestimationisthattheazimuthangleofatarget Fig.11. StandarddeviationofthedirectestimationofRfrom(12)indepen- denceofeffectivetimeshift(cid:14)tandsignal-to-noiseratio. shows a negligible change between the two measurements as theazimuthangleisassumedasequal.Toconfirmthevalidity of this assumption, measurements with dynamic objects have Thestandarddeviationforthedistanceestimationisdepicted been conducted. In Fig. 12, the results of distance estimation inFigs.10and11fordifferenteffectivefrequencyshiftsanddif- overtimeforameasurementsetupwithastaticsensorandacar ferenteffectivetimeshifts,respectively.Themeasuredstandard approachingthesensoraredepicted.Duringthemeasurement, deviationforvelocityestimationisnotdepicted.Itshowsqual- thecarisacceleratingfrom10to30km/h.Theresultsofdirect itativelyequalresultsduetothecouplingof and according estimationof and areshownforaneffectivefrequencyshift to (4). The standard deviation is estimated from the results of of only kHz and for an effective time shift of only 15measurementsforeachparameter.Here,timeandfrequency s.Additionallytheresultsofthefollowingdistanceand shift denote the difference of the effective time or frequency velocityestimationaredepictedusingthebasebandfrequencies shiftofadjacenttransmitsignalsbetweenthefirsttwocommen- of the second FMCW sweep and a third sweep with different surable frequency sweeps according to Fig. 4. Physically, the frequencyslope.Theresultsshowthatthedistanceandvelocity frequencyshiftisvaried.Theeffectivetimeandfrequencyshifts estimation deploying differential phase information is reliably areappliedbyanalyzingappropriatelytime-shiftedsectionsof applicabletodynamicscenarios. thebasebandsignals.Additionally,thetheoreticalcurvesforthe D. AzimuthAngleEstimation standarddeviationafter(16)atasignal-to-noiseratioof20dB are depicted, assuming a standard deviation of angle estima- Fortheevaluationofangularresolutionintheazimuthdirec- tion of and of baseband frequency estimation of tion, a measurement setup with two equidistant corner reflec-

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.