ebook img

IEEE MTT-V056-I01 (2008-01) PDF

264 Pages·2008·32.13 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview IEEE MTT-V056-I01 (2008-01)

JANUARY2008 VOLUME56 NUMBER1 IETMAB (ISSN0018-9480) PAPERS LinearandNonlinearDeviceModeling A0–55-GHzCoplanarWaveguidetoCoplanarStripTransition ................................................................ ................................................D.E.Anagnostou,M.Morton,J.Papapolymerou,andC.G.Christodoulou 1 CompactLarge-SignalShot-NoiseModelforHBTs............ M.Rudolph,F.Korndörfer,P.Heymann,andW.Heinrich 7 SmartAntennas,PhasedArrays,andRadars DesignConsiderationsontheMinimumSizeofBroadbandAntennasforUWBApplications .............................. ................................................................................ A.Saitou,K.Aoki,K.Honjo,andK.Watanabe 15 ActiveCircuits,SemiconductorDevices,andICs AHighlyCompactActiveWidebandBalunWithImpedanceTransformationinSiGeBiCMOS ........................... .......................................................................................................... B.GodaraandA.Fabre 22 ATwo-PointModulationTechniqueforCMOSPowerAmplifierinPolarTransmitterArchitecture ....................... ................................................ A.Shameli,A.Safarian,A.Rofougaran,M.Rofougaran,andF.DeFlaviis 31 SignalGeneration,FrequencyConversion,andControl A1-V9.7-mWCMOSFrequencySynthesizerforIEEE802.11aTransceivers .......... L.L.K. LeungandH.C.Luong 39 Millimeter-WaveandTerahertzTechnologies RapidSimulationofLinearPBGMicrostripStructuresUsingtheRayleighMultipoleMethod ............................. ...................................................................................................D.E.SchaubandD.R.Oliver 49 WirelessCommunicationSystems BroadbandActiveReceivingPatchWithResistiveEqualization ............................................................... ..................................... D.Segovia-Vargas,D.Castro-Galán,L.E.García-Muñoz,andV.González-Posadas 56 Frequency-SelectivePredistortionLinearizationofRFPowerAmplifiers ..................................................... ................................. P.Roblin,S.K.Myoung,D.Chaillot,Y.G.Kim,A.Fathimulla,J.Strahler,andS.Bibyk 65 AHighlyEfficientandLinearClass-AB/FPowerAmplifierforMultimodeOperation ...................................... .............................................. D.Kang,D.Yu,K.Min,K.Han,J.Choi,D.Kim,B.Jin,M.Jun,andB.Kim 77 (ContentsContinuedonBackCover) (ContentsContinuedfromFrontCover) FieldAnalysisandGuidedWaves AnalysisandExperimentsofCompactFoldedSubstrate-IntegratedWaveguide .............................................. ..................................................................................... W.Che,L.Geng,K.Deng,andY.L.Chow 88 CADAlgorithmsandNumericalTechniques Stability and Accuracy of a Finite-Difference Time-Domain Scheme for Modeling Double-Negative Media With High-OrderRationalConstitutiveParameters .......................A.Grande,J.A.Pereda,O.González,andÁ.Vegas 94 CertifiedComputationofOptimalMultibandFilteringFunctions .............. V.Lunot,F.Seyfert,S.Bila,andA.Nasser 105 MixedFinite-ElementTime-DomainMethodforTransientMaxwellEquationsinDoublyDispersiveMedia............. .................................................................................................. B.DondericiandF.L.Teixeira 113 Efficient Full-Wave Analysis of Multilayer Interconnection Structures Using a Novel Domain Decomposition–Model-OrderReductionMethod .................................................. S.-H.LeeandJ.-M.Jin 121 PracticalImplementationoftheSpatialImagesTechniquefortheAnalysisofShieldedMultilayeredPrintedCircuits... ............... J.S.Gómez-Díaz,M.Martínez-Mendoza,F.J.Pérez-Soler,F.Quesada-Pereira,andA.Alvarez-Melcón 131 FiltersandMultiplexers SubstrateIntegratedWaveguideCross-CoupledFilterWithNegativeCouplingStructure .......... X.-P.ChenandK.Wu 142 DesignofDual-BandBandpassFiltersUsingStub-LoadedOpen-LoopResonators ....... P.MondalandM.K.Mandal 150 Quarter-WavelengthSide-CoupledRingResonatorforBandpassFilters ...................................................... ................................................................ M.K.M.Salleh,G.Prigent,O.Pigaglio,andR.Crampagne 156 Packaging,Interconnects,MCMs,Hybrids,andPassiveCircuitElements AnalysisandDesignProcedureofTransmission-LineTransformers........................................................... ......................................................................... P.Gómez-Jiménez,P.Otero,andE.Márquez-Segura 163 ABroadbandPlanarMagic-TUsingMicrostrip–SlotlineTransitions.......................................................... .................................................................... K.U-yen,E.J.Wollack,J.Papapolymerou,andJ.Laskar 172 Analysis and Modeling of Hybrid Planar-Type Electromagnetic-Bandgap Structures and Feasibility Study on Power DistributionNetworkApplications ........................................................ K.H.KimandJ.E.Schutt-Ainé 178 DesignofTriple-PassbandMicrowaveFiltersUsingFrequencyTransformations ................J.LeeandK.Sarabandi 187 DesignofUltra-WidebandThree-WayArbitraryPowerDividers .............................................. A.M. Abbosh 194 BroadbandLow-CostFrequencyMeters .............................................................. T.SokollandA.F.Jacob 202 PredictionofPassiveIntermodulationFromCoaxialConnectorsinMicrowaveNetworks .................................. ................................................................................ J.Henrie,A.Christianson,andW.J.Chappell 209 InstrumentationandMeasurementTechniques AMeasurementProcesstoCharacterizeNaturalandEngineeredLow-LossUniaxialDielectricMaterialsatMicrowave Frequencies ...........................................................................G.Mumcu,K.Sertel,andJ.L.Volakis 217 New Time-Domain Voltage and Current Waveform Measurement Setup for Power Amplifier Characterization and Optimization ........................................ S.Bensmida,P.Poiré,R.Negra,F.M.Ghannouchi,andG.Brassard 224 Microwave Photonics Millimeter-WaveFiber-FedWirelessAccessSystemsBasedonDenseWavelength-Division-MultiplexingNetworks ... ............................................................................................. C.-S.Choi,Y.Shoji,andH.Ogawa 232 GraphicalApproachforEvaluatingPerformanceLimitationsinExternallyModulatedAnalogPhotonicLinks........... ...................................................................... F.Bucholtz,V.J.Urick,M.Godinez,andK.J.Williams 242 All-Fiber Full-Duplex Multimode Wavelength-Division-Multiplexing Network for Radio-Over-Multimode-Fiber DistributionofBroadbandWirelessServices ....................................M.GarcíaLarrodéandA.M.J.Koonen 248 InformationforAuthors ............................................................................................................ 256 CALLSFORPAPERS SpecialIssueonRFIDHardwareandIntegrationTechnologies ................................................................ 257 JointSpecialIssueonMicrowavePhotonics..................................................................................... 258 IEEEMICROWAVETHEORYANDTECHNIQUESSOCIETY TheMicrowaveTheoryandTechniquesSocietyisanorganization,withintheframeworkoftheIEEE,ofmemberswithprincipalprofessionalinterestsinthefieldofmicrowavetheory andtechniques.AllmembersoftheIEEEareeligibleformembershipintheSocietyuponpaymentoftheannualSocietymembershipfeeof$14.00,plusanannualsubscriptionfee of$22.00peryearforelectronicmediaonlyor$44.00peryearforelectronicandprintmedia.Forinformationonjoining,writetotheIEEEattheaddressbelow.Membercopiesof Transactions/Journalsareforpersonaluseonly. ADMINISTRATIVECOMMITTEE J.MODESKI, President B.PARLMAN, PresidentElect B.SZENDRENYI, Secretary N.KOLIAS, Treasurer L.BOGLIONI D.HARVEY L.KATEHI T.LEE A.MORTAZAWI A.ROSEN W.SHIROMA K.VARIAN K.WU S.M.EL-GHAZALY J.HAUSNER B.KIM J.LIN V.J.NAIR R.SNYDER R.WEIGEL R.YORK J.HACKER K.ITOH N.KOLIAS M.HARRIS HonoraryLifeMembers DistinguishedLecturers PastPresidents T.ITOH T.S.SAAD K.TOMIYASU G.BOECK B.KIM V.NAIR P.SIEGEL J.S.KENNEY(2007) A.A.OLINER P.STAECKER L.YOUNG A.HAJIMIRI V.LUBECKE J.C.RAUTIO R.SNYDER K.VARIAN(2006) W.HOEFER L.MAURER D.ROOT A.SUAREZ K.C.GUPTA(2005) 2007MTT-SChapterChairs Albuquerque:S.BIGELOW Foothill: C.ANTONIAK NorthJersey:K.DIXIT SouthAfrica:P.W.VANDERWALT Atlanta: D.LEATHERWOOD France:P.EUDELINE NorthQueensland: A.TSAKISSIRIS SouthAustralia:H.HANSEN Austria: R.WEIGEL Germany: W.HEINRICH NorthernNevada: B.S.RAWAT SouthBrazil: L.C.KRETLY Baltimore: A.D.BROWN Greece:I.XANTHAKIS Norway:S.E.WHEATLEY SoutheasternMichigan: L.M.ANNEBERG Beijing: Z.FENG HongKong: W.Y.TAM OrangeCounty:H.J.DELOSSANTOS SouthernAlberta: S.BOUMAIZA Beijing,Nanjing: W.X.ZHANG Houston:J.T.WILLIAMS Oregon: T.RUTTAN Spain: L.FEHARO Belarus: A.GUSINSKY Houston,CollegeStation: C.MADSEN Orlando:P.WAHID Springfield: P.R.SIQUEIRA Benelux: D.V.-JANVIER Hungary: T.BERCELI Ottawa: Q.YE Sweden: A.RYDBERG Brasilia: A.KLAUTAU,JR. Huntsville:H.G.SCHANTZ Philadelphia:J.NACHAMKIN Switzerland: J.HESSELBARTH Buenaventura: C.SEABURY India/Calcutta:P.K.SAHA Phoenix:C.WEITZEL Syracuse: E.ARVAS Buffalo: E.M.BALSER IndiaCouncil: K.S.CHARI Poland:M.P.MROZOWSKI Taipei: C.-S.LU Bulgaria: K.ASPARUHOVA Israel:S.AUSTER Portugal: C.A.CARDOSOFERNANDES Thailand: M.KRAIRIKSH CedarRapids/CentralIowa: D.JOHNSON JapanCouncil:Y.TAKAYAMA Princeton/CentralJersey:W.CURTICE/A.KATZ Toronto: G.V.ELEFTHERIADES CentralNewEngland: K.ALAVI Kitchener-Waterloo:R.R.MANSOUR Queensland:A.ROBINSON Tucson: N.BURGESS/S.MORALES Central&SouthItaly: S.MACI Lithuania:V.URBANAVICIUS RiodeJaneiro: J.R.BERGMANN Turkey: O.A.CIVI CentralNo.Carolina:T.IVANOV LongIsland/NewYork:J.COLOTTI Rochester:S.M.CICCARELLLI/J.VENKATARAMAN TwinCities: M.J.GAWRONSKI Chicago: Z.LUBIN LosAngeles,Coastal:A.SHARMA Romania:I.SIMA UK/RI: A.REZAZADEH Cleveland: G.PONCHAK LosAngeles,Metro: J.WEILER Russia,Nizhny-Novgorod: Y.BELOV Ukraine,CentralKiev: Y.POPLAVKO Columbus:F.TEIXEIRA Malaysia:Z.AWANG Russia,SaintPetersburg:M.SITNIKOVA Ukraine,East: A.A.KIRILENKO Connecticut:C.BLAIR/R.ZEITLER Melbourne:J.KRALOVEC Russia,Moscow:V.KALOSHIN Ukraine,Rep.ofGeorgia:R.ZARIDZE Croatia: Z.SIPUS Milwaukee:S.G.JOSHI Russia,Saratov-Penza: N.RYSKIN Ukraine,Vinnitsya:V.DUBOVOY Czech/Slovakia: P.HAZDRA MohawkValley: P.RATAZZI SaintLouis:D.MACKE Ukraine,West: I.ISAYEV Dallas: R.EYE MonterreyMexico: R.M.RODRIGUEZ-DAGNINO SanDiego: J.TWOMEY Venezuela: M.PETRIZZELLI Dayton: A.TERZOUOLI, JR. Montreal:K.WU SantaClaraValley/SanFrancisco: J.J.SOWERS Victoria:A.MITCHELL Denver: M.JANEZIC NewHampshire: T.PERKINS Seattle:K.POULSON VirginiaMountain: D.MILLER EasternNo.Carolina: D.PALMER NewJerseyCoast: D.REYNOLDS SeoulCouncil: H.-Y.LEE WashingtonDC/NorthernVirginia:J.QIU Egypt: I.A.SALEM NewSouthWales: G.TOWN Siberia,Novosibirsk: V.SHUBALOV Winnipeg: V.OKHMATOVSKI Finland: T.KARTTAAVI NewZealand: J.MAZIERSKA Siberia,Tomsk: O.STUKACH Yugoslavia: B.MILOVANOVIC FloridaWestCoast: K.O’CONNOR NorthItaly: G.GHIONE Singapore: O.B.LEONG Editors-In-Chief AMIRMORTAZAWI AssociateEditors Univ. of Michigan AnnArbor,MI48109-2122USA DANIELDEZUTTER JENSHAN LIN ZOYA POPOVIC KE-LI WU Phone:+17349362597 Universiteit Gent Univ. of Florida Univ.ofColorado,Boulder ChineseUniv.ofHongKong Fax:+17346472106 Belgium USA USA Hong Kong email:[email protected] email:[email protected] email:[email protected] email:[email protected] email:[email protected] DYLAN WILLIAMS YOUNGWOO KWON JOSÉ PEDRO SANJAY RAMAN RUEY-BEEI WU NIST Seoul Nat. Univ. Univ. of Aveiro VirginiaPolytech.Inst.andStateUniv. NationalTaiwanUniv. Boulder,CO80305USA Korea Portugal USA Taiwan, R.O.C. Phone:+13034973138 email:[email protected] email:jcp.mtted.av.it.pt email:[email protected] email:[email protected] Fax:+13034973970 RICHARD SNYDER ALEXANDERYAKOVLEV email:[email protected] RSMicrowaveCompany Univ. of Mississippi USA USA email:[email protected] email:[email protected] M.GOLIO, Editor-in-Chief,IEEEMicrowaveMagazine G.E.PONCHAK, Editor-in-Chief,IEEEMicrowaveandWirelessComponentLetters T.LEE, WebMaster IEEE Officers LEWISM.TERMAN, President JOHNBAILLIEUL, VicePresident,PublicationServicesandProducts JOHNR.VIG, President-Elect JOSEPHV.LILLIE, VicePresident,MembershipandGeographicActivities BARRYL.SHOOP, Secretary GEORGEW.ARNOLD, President,IEEEStandardsAssociation DAVIDG.GREEN, Treasurer J.ROBERTOB.DEMARCA, VicePresident,TechnicalActivities LEAHH.JAMIESON, PastPresident RUSSELLJ.LEFEVRE, President,IEEE-USA EVANGELIAMICHELI-TZANAKOU, VicePresident,EducationalActivities EDWARDDELLATORRE, Director,DivisionIV—ElectromagneticsandRadiation IEEE Executive Staff JEFFRYW.RAYNES, CAE,ExecutiveDirector&ChiefOperatingOfficer BETSYDAVIS, SPHR,HumanResources MATTHEWLOEB, CorporateStrategy&Communications ANTHONYDURNIAK, PublicationsActivities RICHARDD.SCHWARTZ, BusinessAdministration JUDITHGORMAN, StandardsActivities CHRISBRANTLEY, IEEE-USA CECELIAJANKOWSKI, MembershipandGeographicActivities MARYWARD-CALLAN, TechnicalActivities DOUGLASGORHAM, EducationalActivities SALLYA.ERICKSEN, CIO-InformationTechnology IEEE Periodicals Transactions/JournalsDepartment StaffDirector:FRANZAPPULLA EditorialDirector: DAWNMELLEY ProductionDirector: PETERM.TUOHY ManagingEditor:MONAMITTRA SeniorEditor:CHRISTINAM.REZES IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES(ISSN0018-9480)ispublishedmonthlybytheInstituteofElectricalandElectronicsEngineers,Inc.Responsibilityforthe contentsrestsupontheauthorsandnotupontheIEEE,theSociety/Council,oritsmembers.IEEECorporateOffice:3ParkAvenue,17thFloor,NewYork,NY10016-5997.IEEEOperations Center:445HoesLane,Piscataway,NJ08854-4141.NJTelephone:+17329810060.Price/PublicationInformation:Individualcopies:IEEEMembers$20.00(firstcopyonly),nonmember $96.00percopy.(Note:Postageandhandlingchargenotincluded.)Memberandnonmembersubscriptionpricesavailableuponrequest.Availableinmicroficheandmicrofilm.Copyright andReprintPermissions:Abstractingispermittedwithcredittothesource.Librariesarepermittedtophotocopyforprivateuseofpatrons,providedtheper-copyfeeindicatedinthecode atthebottomofthefirstpageispaidthroughtheCopyrightClearanceCenter,222RosewoodDrive,Danvers,MA01923.Forallothercopying,reprint,orrepublicationpermission,write toCopyrightsandPermissionsDepartment,IEEEPublicationsAdministration,445HoesLane,Piscataway,NJ08854-4141.Copyright©2008byTheInstituteofElectricalandElectronics Engineers,Inc.Allrightsreserved.PeriodicalsPostagePaidatNewYork,NYandatadditionalmailingoffices.Postmaster:SendaddresschangestoIEEETRANSACTIONSONMICROWAVE THEORYANDTECHNIQUES,IEEE,445HoesLane,Piscataway,NJ08854-4141.GSTRegistrationNo.125634188.CPCSalesAgreement#40013087.ReturnundeliverableCanadaaddresses to:PitneyBowesIMEX,P.O.Box4332,StantonRd.,Toronto,ONM5W3J4,Canada. DigitalObjectIdentifier10.1109/TMTT.2007.915225 IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,VOL.56,NO.1,JANUARY2008 1 A 0–55-GHz Coplanar Waveguide to Coplanar Strip Transition Dimitrios E.Anagnostou, Member, IEEE, MattMorton, Student Member, IEEE, JohnPapapolymerou,SeniorMember,IEEE,and ChristosG. Christodoulou,Fellow,IEEE Abstract—Abroadbandcoplanarwaveguide(CPW)tocoplanar strip (CPS) transmission line transition directly integrated with anRFmicroelectromechanicalsystemsreconfigurablemultiband antennaispresentedinthispaper.Thistransitiondesignexhibits verygoodperformanceupto55GHz,andusesaminimumnumber ofdissimilartransmissionlinesectionsandwirebonds,achieving alow-lossandlow-costbalancingsolutiontofeedplanarantenna designs.Thetransitiondesignmethodologythatwasfollowedisde- scribedandmeasurementresultsarepresented. Index Terms—Antenna feed, coplanar strip (CPS), coplanar stripline,coplanarwaveguide(CPW),transition. I. INTRODUCTION ADVANCESINreconfigurableantennatechnologyandRF Fig.1. LayoutofatypicalCPWtoCPStransitionwiththreeair-bridgesor microelectromechanical systems (RF-MEMS) switches wirebondsfrom[3]. have recently established new frontiers in antenna design. In [1], Anagnostou et al. developed a multiband reconfig- urable self-similar antenna, demonstrating the performance be placed between the feeding cable and the antenna’s termi- enhancement that can be achieved with the use of self-similar nals. Baluns are often narrowband, and thus can feed planar (or pre-fractal) antenna designs. A significant issue in the narrowband dipoles. However, to feed wideband or multiband applicabilityandresearchofsuchconformaldipoleantennasis antennas, a transition (balun) capable of balancing the trans- their feeding method. Any balanced antenna can be fed using missionlineinamuchbroaderrangeoffrequenciesisneeded. abalancedtransmissionline.Thecurrentsflowingonthisline Suchbalunsworkbytaperingthecoaxialgroundslowlyintoa areequalandout-of-phasefromthegeneratortotheantenna’s single-tipconductor,formingatwo-wiretransmissionlineatits feedpoint.Ifthelineisunbalanced,reflectionsattheantenna’s termination[2]. terminals cause unequal currents to flow on the transmission For our application though, the reconfigurable antenna line (usually on the outer conductor of the coaxial cable), (shownin[1,Fig.13]),whichcoversvariousfrequenciesfrom whichradiateinanunpredictablemanner,resultingindistorted 8to25GHz,isfabricatedonaquarterofasiliconwafer with asymmetrical patterns and erroneous voltage standing-wave feeddimensions300 360 m.Anyinterventionorviaonthe ratio(VSWR)measurement. dielectric layers at such small scales would affect the antenna Tobalanceatransmissionline,abalun,adevicethatallows performancebyalargedegree.Asaresult,thetransitionneeds onlythedifferentialmodeofthecurrentstopassthrough,must to be both wideband and planar in order to feed the antenna from the same plane. All the above led to the development of the coplanar waveguide (CPW) to coplanar strip (CPS) ManuscriptreceivedJanuary19,2006;revisedJune10,2007.Thisworkwas transmissionlinetransitiondescribedbelow. supportedinpartbytheGeorgiaElectronicDesignCenter,bytheNationalSci- enceFoundationunderGrantECS0218732andGrantEPSCoR0554609,and bytheMissionResearchCorporationunderContractSC-0244-0008,UNM-1. II. DESIGNCONCEPTS D. E. Anagnostou is with the Electrical Engineering Department, South First,a20-GHzCPW–CPStransitionsimilartotheonein[3] DakotaSchoolofMinesandTechnology,RapidCity,SD57701USA(e-mail: was designed as shown in Fig. 1. The transition is comprised [email protected]). M.MortonandJ.PapapolymerouarewiththeSchoolofElectricalandCom- from a series of symmetric and asymmetric transmission line puterEngineering,GeorgiaInstituteofTechnology,Atlanta,GA30308USA sections. An “air-bridge” or wire bond is needed before each (e-mail:[email protected];[email protected]). asymmetric section discontinuity to suppress any non-CPW C.G.ChristodoulouiswiththeElectricalandComputerEngineeringDe- partment,UniversityofNewMexico,Albuquerque,NM87106USA(e-mail: modeandretainthebalanceonthetransmissionline.Theslot [email protected]). of the CPS ( ) needs to be tapered to match the width of Colorversionsofoneormoreofthefiguresinthispaperareavailableonline the one of the two slots of the symmetric CPW ( ), as athttp://ieeexplore.ieee.org. DigitalObjectIdentifier10.1109/TMTT.2007.911909 illustratedinsection2ofFig.1. 0018-9480/$25.00©2007IEEE 2 IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,VOL.56,NO.1,JANUARY2008 Fig. 2. Simulated S-parameters of the back-to-back initial transition with 600-(cid:22)m-long lines showed very good response up to 20 GHz. A gradual performancedeclineathigherfrequenciescanbenoticed. ThesimulatedfrequencyresponseisshowninFig.2,where agradualperformancedeclineathigherfrequenciescanbeno- Fig.3. CPSandCPWlinecharacteristicimpedanceasitvarieswiththeslot ticedasthereturnlossbecomessmallerthan10dB.Tosatisfy width(S orS )andthewidthofthemetalconductor(W forthe CPSline).A20-(cid:22)mslotwasusedintheCPSlineplot. thedesigngoalsandincreasethetransitionbandwidth,several alterationsweremade. A reduction in the number of discontinuities can lead to a throughout the transition. It can also be ex- reduction in the number of wire bonds. This reduction can be tended to other impedance values due to the fact that the CPS achieved by careful consideration of the characteristics of the line’scharacteristicimpedance( )isstronglydependent beginning and ending slots (CPS transmission line slot upon its slot’s width ( ), while the CPW’s characteristic andCPWslot ,respectively),asshowninFig.1.Forthis impedance depends both on the CPW slot’s width purpose,weneedtoplacearestrictioninthedesignthatforall ( )andthewidthofitssignalconductor( ),adding CPWandtheCPSsections,allslotsshouldbeofequalwidth. one degree of freedom to the design. Some relations between Byapplyingthisrestriction,theslotofsection1( )canbe thecharacteristicimpedance( )ofthedifferentlinesusedhere designedtobeequalto insections3–5.Onediscontinuity versusthewidthoftheirslot( ,assuming ) ofthetransmissionlineandonewirebond(section2)arethen areshowninFig.3(left -axis). redundantandeliminated.Sections1and2areunifiedandthe 1) Increasing the width of the CPW slot ( ), increases air-bridgesofsections2and3aretheonlyonesneeded. thecharacteristicimpedanceoftheCPWline,asillustrated This imposes the design of CPW and CPS transmission for three different CPW lines with m, line sections with the exact same slot width (and equal to m, and m, with ), while maintaining the same characteristic impedance m. throughoutthetransitiontominimizereflections,whichcanbe 2) Increasing the width of the center conductor of the CPW challenging. lines( )decreasestheircharacteristicimpedance. ItispossibletoadjusttheCPWlinebyvaryingthewidthsof 3) IncreasingthewidthoftheCPSslot( )increasesthe itssignalconductor( )andofitsslot( )suchthatits CPStransmissionline’scharacteristicimpedance. characteristicimpedanceremainsrelativelyconstantandequal 4) Atthesametime,afinite-metalCPStransmissionlinehas tothatoftheCPStransmissionlineinordertoeliminatetheneed higher thanthe(theoretically)infinite-metalCPStrans- for taper. When the CPW slot width ( ) is increased, the missionlinewiththesameslotwidth( ). line’scharacteristicimpedance( )increasesaswell.On ByvaryingthewidthofthemetalpartoftheCPSline( ) theotherhand,increasingthesignalconductor’swidth( ) while maintaining the width of its slot ( ) constant and causes todecrease.Itisastraightforwardconclusionto equaltothatoftheCPWline(i.e., ),onecanalter presumethatseveralcombinationsofslotandsignalconductor theCPStransmissionline’scharacteristicimpedancetomatch widths can lead to a CPW with a specific value of character- that of the CPW line with the same slot width ( ). Thus, isticimpedance.ThisvalueisequaltotheCPS’scharacteristic thelinesdimensionscanbeadjustedforuniformcharacteristic impedance,anddependsupontheapplication’sdesignspecifi- impedancethroughoutthetransition. cations,probepitch,andfabricationequipment’stoleranceand Fig.3showsthevarietyofCPWchoicesonecanuseinatran- capabilities.Here,a150- m-pitchCPWlinewasusedtomatch sitionforaspecificCPSlineslotwidth( ),which withthedimensionsfromotherpartsofthesystemandtheRF cannotbesignificantlyvaried.Forexample,thisisachievedby probes. drawingaverticallinefrom andnotingallCPWand This methodology was also used to match and balance the CPS lines that are crossed, as long as these lines in the graph reconfigurable antenna of [1] to , maintaining a havebeenextractedforthesameslotwidth ANAGNOSTOUetal.:0–55-GHzCPWTOCPS 3 TABLEI SUBSTRATECROSSSECTION m).InFig.3,allthreeshownCPWtransmissionlinescan have ,andanyofthethreeshownsignalcon- ductorwidths( )canbeusedwiththeirappropriateslot widths given by the left -axis. The CPS line curves are also drawnforvariousslotdimensions( )andanapproximate matchcanbeextractedinavisualmanner. In particular, for the design described in this study, not all lines intersected at the same points and, thus, a perfect match was not achieved. We have used a CPW Fig.4. FinalCPW–CPStransitionwithdimensionsandnamesofthedifferent linecharacteristicimpedancewith mslotwidth, transmissionlinesectionsasdefinedinFig.1.Thetotallengthoftheback-to- whichalsodefinedtheslotwidthoftheCPStransmissionline backconfigurationwas2(cid:1)4300=8600(cid:22)m. ( ).ACPStransmissionlinewiththisslotwidthandfinite metalwidthof mhascharacteristicimpedance Thistransitiondesignisimprovedwhencomparedtoexisting ,markedwith“ ”at(55 ,20 m)onFig.3. ones[3]–[5]inthesense thatitusesa reducednumberofdis- The quality of matching for different dimensions and im- continuities (and, thus, wire bonds), leading to better RF per- pedances can be “visually” extracted from the distance of the formancewithwiderbandwidth,faster fabricationtime,lower curves( versus ), between twodifferent transmission loss,andlowercost. linecurves.Thecloserthecurvesare,thebetterthematch.For specific impedance and slot width values, this is equivalent to III. BACK-TO-BACKTRANSITIONDESIGNANDSIMULATIONS howclosethetwo“ ”marksareinFig.3. UsingthemethodologydescribedinSectionII,thebroadband Toimprovematching,theCPStransmissionlinecouldbede- transitionwasdesignedanditsstructureisshowninFig.4.The signedwithalower ifwidermetal designprocedurebeginsatsection5(CPS),goingtowardssec- m wasused,asindicatedfromtheright -axisofFig.3, tion1(CPW).Aslotof minsection5isusedand where the plotted curve is for the CPS transmission line used maintainedconstant.Additionally,thedimensionsofthebottom herewith m.Fordifferent widths,different striparealsokeptconstantduringtheentiretransition.Insec- curvescanbeplottedtoenabledesignswithothercharacteristic tion 4, the upper strip of the CPS transmission line is linearly impedances. The CPW line could also achieve a narrowedtothecenterstripoftheCPWline,andataperedCPW withagapof28 m,butthiswouldresultinlargerCPS groundisaddednextbeginningfromthewidthofthetopCPS transmissionlinecharacteristicimpedance( ).Analytical strip until the CPW line becomes symmetric. Both CPW slots equationsasfunctionsofellipticintegrals[6]wereusedtoob- are maintained constant at m and the transition tain starting points for the CPS and CPW transmission lines. endsinasymmetricCPWdesign. Thelineswerethensimulatedwithamethodofmomentselec- TheCPSlineslot anditsconductors’width tromagneticsimulator.1Fig.3canalwaysbeusedasastarting werecalculatedfirstandawidth mwasusedto point, as it gives dimensions and values for the transition sec- bring closeto50 . Theguide wavelengthwas found tions, neglecting any mutual coupling with other system com- tobe mmat7.75GHz, mmat15GHz,and ponents.ThefinaldimensionsaredescribedinSectionIIIand mmat24.75GHz.Thecalculatedeffectivedielectric were chosen as a compromise between the desired impedance constantwas .Thefinaldesignlayoutisshownin matching,agoodoverallsystemperformance,whiletakinginto Fig.4,anddetailedinTableII,alongwiththetransitionofFig.1. accountthelimitsofthefabricationequipment. The keen reader may notice some differences between the Tominimizefabricationcomplexityandmaximizeco-process theoretical“optimum”valuesthatcanbeextractedfromFig.3 compatibilitywiththeintegrationoftheRF-MEMS,thetransition andthevaluesusedhere.Thesecanbeattributedtotheuseof isfabricatedonahigh-resistiveSiwafer,andmadewiththesame themethodofmomentssoftwareforthefinetuningofthetran- metallizationandpatterningstepsastheantenna.Underneaththe sition integrated with the antenna in order to achieve not only metal(Au)layer,therearethinlayersofSiO andSi N ,asim- widebandwidth,butalsoagoodsystemperformance.Also,the posedbythedesignoftheswitches.Thesequenceofdielectric method of moments software, while it takes into account any andmetallizationlayersisshowninTableI. discontinuity effects that analytical equations might disregard, 1IE3DisaregisteredtrademarkoftheZelandCorporation,Fremont,CA. itneglectedthefinitenessofthedielectricsubstrates,extending 4 IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,VOL.56,NO.1,JANUARY2008 TABLEII DIMENSIONSOFTHECPW–CPSTRANSITIONS(INMICROMETERS) “Init.”isthe0–20-GHztransition,asillustratedinFig.1,modifiedfor siliconsubstrate. themtoinfinity.Thisresultedinsignificant(butnotdetrimental) differences between simulation and measurements, at such di- mension(micrometer)scales. Thetransitionasintegratedwiththeantennawasattachedto a 3400- m-long CPW transmission line section to connect to theRFprobes.Thisway,theRFprobeheadwaskeptfarfrom theantennaanditseffectintheradiationpatternwasminimal. The simulated frequency response of the transition in a back-to-backconfigurationisshowninFig.5.Theperformance is very good from dc up to 40 GHz, covering the desired antennaresonantfrequencies,andexhibitingverylowinsertion Fig.5. Measuredandsimulatedback-to-backtransitionperformance.(a)Mag- loss. In the back-to-back configuration, return loss is greater nitudeofinsertionlossandreflectioncoefficient.(b)Groupdelayandinsertion than 12 dB, while insertion loss is less than 2.8 dB (value at phaseofS forthetransitionwithalltransmissionlinesattached. 23 GHz), which implies that some minimal radiation takes place,astheoveralllengthgetselectricallylarger.Additionally, the back-to-back transmission coefficient’s insertion phase is almost linear, resulting in minimal distortion of the RF signal from the input until the antenna terminals. Finally, simula- tions showed that expected values for the integrated (single) transition return loss and insertion loss were 15 and 1.3 dB, respectively.ThemeasuredresultsarediscussedinSectionIV. IV. BACK-TO-BACKTRANSITIONMEASUREMENTS Thetransition’sperformancecanbepartiallyevaluatedbythe measured results of the reconfigurable antenna system that it wasintegratedwith,asshownin[1,Figs.13–15].Amagnified photographoftheintegratedtransition(Fig.6)showsaslightly misplaced (right) manual wire bond. The measurement in [1,Fig.13]showingsomefluctuationsemphasizetheeffortpre- sented here and justify the need to reduce the number of wire Fig.6. Fabricatedtransitionintegratedwiththeantenna. bonds on transition designs. In a mass-production application, themoreaccurateMEMSair-bridgescansubstitutewirebonds withbetterperformance. stratelossesinthecircuit.Asanymeasurementwillincorporate Inordertoobtainacompletecharacterization,thetransition theselosses,acorrectevaluationofthetransition’sperformance wasalsofabricatedinaseparatesiliconwaferinaback-to-back canbemadebysubtractingthemfromthemeasured .Todo configuration,atthecleanroomfacilitiesoftheGeorgiaInstitute so, transitions with different CPW and CPS transmission line of Technology, Atlanta, using standard photolithography tech- lengthswerefabricatedandmeasured.Lossesinducedbyorre- niquesandequipment. lated to the thin metal layer of Au, surface roughness, and di- Thetransitionisdirectlyconnectedtodifferenttransmission electricthatwererelatedtothesetransmissionlinesectionswere linesections(CPWandCPS),whichmayaddohmicandsub- calculated. ANAGNOSTOUetal.:0–55-GHzCPWTOCPS 5 andlow-costmethodtofeedplanarantennadesignsfabricated onrigid substrates. Thetransition was directlyintegratedwith anRF-MEMSreconfigurablemultibandantennaandexhibited verygoodresultsaswell.Finally,byreplacingthewirebonds with accurately placed and less lossy MEMS air-bridges, and by minimizing the lengths of the CPW and CPS line sections, transitiondesignswithlargerbandwidthandverylowlosscan bedeveloped. REFERENCES [1] D.E. Anagnostou, G. Zheng, M. Chryssomallis, J. Papapolymerou, Fig.7. PhotographandmagnificationofthefabricatedCPW–CPStransition C.G.Christodoulou,J.Lyke,andG.Ponchak,“Design,fabrication withthetransmissionlinesectionsattached. and measurements of a self-similar re-configurable antenna with RF-MEMSswitches,”IEEETrans.AntennasPropag.(SpecialIssue), vol.54,no.2,pt.1,pp.422–432,Feb.2006. [2] J. W. Duncan and V. P. Minerva, “100:1 bandwidth balun trans- TheCPWlinelossperunitlengthwascalculatedfromaCPW former,”Proc.IRE,vol.48,no.2,pp.156–164,Feb.1960. lineusedinthecalibration.Theloss,indecibels/micrometer,for [3] S. G. Mao, C. T. Hwang, R. B. Wu, and C. H. Chen, “Analysis of everyfrequencywasfound,andfromthat,thelossoftheentire coplanarwaveguide-to-coplanarstriplinetransitions,”IEEETrans.Mi- crow.TheoryTech.,vol.48,no.1,pp.23–29,Jan.2000. CPW line section wasderived and subtracted from the overall [4] T.Chiu,“Abuilding-blockdesignschemeforplanartransmission-line transition’sperformance.Next,thelossoftheCPSlinesection transitions,”Proc.Inst.Elect.Eng.—Microw.,Antennas,Propag.,vol. wasfoundinasimilarway. 150,pt.6,pp.405–410,2003. [5] A.T.Kolsrud,M.-Y.Li,andK.Chang,“Dual-frequencyelectronically The calculated transition losses are also shown in Fig. 5(a) tunableCPW-fedCPSdipoleantenna,”Electron.Lett.,vol.34,no.7, within the measured range from 0 to 60 GHz. With the pp.609–611,Apr.1998. back-to-back configuration, a low-loss performance was ob- [6] B.C.Wadell,Transmission-LineDesignHandbook. Norwood,MA: ArtechHouse,1991,pp.83–84. tained from 2 GHz up to 55 GHz since the insertion loss is less than 1.9 dB. The bandwidth exceeded the expected simulated frequency range. Additionally, the insertion phase Dimitrios E. Anagnostou (S’98–M’05) was born and group delay of the propagated signal were measured and inAthens,Greece,inNovember1975.Hereceived theDiplomadegreeinelectricalandcomputerengi- calculated, respectively. Both are plotted in Fig. 5(b). The neering,fromtheDemocritusUniversityofThrace, insertion phase varies in a linear way with frequency, as ex- Thrace, Greece, in 2000, and the M.Sc. and Ph.D. pected, while the group delay is fairly constant with values degreesinelectricalengineeringfromtheUniversity of New Mexico, Albuquerque, in 2002 and 2005, between0.067–0.090ns,anaveragevalue ns,and respectively. small variance ns . A photograph of the From 2005 to 2006, he was a Post-Doctoral back-to-back fabricated transition is shown in Fig. 7, where FellowwiththeSchoolofElectricalandComputer Engineering, Georgia Institute of Technology, At- the transition itself is shown magnified to better illustrate the lanta.In2007,hejoinedthefacultyoftheElectricalEngineeringDepartment, structure’sdetails. SouthDakotaSchoolofMinesand Technology,RapidCity,asanAssistant Acomparisonbetweensimulatedandmeasuredresultsshows Professor.Hehasauthoredorcoauthoredover30peer-reviewedinternational journal and conference publications. He has filed two invention disclosures relatively good agreement in . The largest deviation was onreconfigurableandultra-wideband(UWB)antennas.Hiscurrentresearch found at 24 and 37 GHz with 7 , which is a small varia- involvesdirect-writeprintingforthedevelopmentandintegrationofRFcircuits tionwhenconsideringthecomplexityofthestructure,thedif- onflexiblesubstrates(liquidcrystalpolymer(LCP),Kapton),reconfigurable and low-cost flexible antennas and RF front-ends, novel antenna designs, ferentlayers,andthemodelingofthewirebonds.Theinsertion microwavepackaging,RF-MEMS,neuralnetworks,andimageprocessing. phase was linear and very similar both in the simulation and Dr.AnagnostouisamemberofEtaKappaNuandtheTechnicalChamber measurement.Somevariationin canbenoticed.Theelec- ofGreece.Hewastherecipientofthreeresearchandtravelgrantsfrom2003 to2005.HeservedasasessionchairattheIEEEAntennasandPropagation tromagneticfieldsaremostlyconcentratedinthespacebetween Society(IEEEAP-S)2006and2007InternationalSymposia.Heservesasa the metallicconductorsso anedgemeshingwasused. Results reviewerfortheIEEETRANSACTIONSONANTENNASANDPROPAGATIONand in this case are sensitive to the edge mesh’s size and density, theIEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES. aswellasthe wirebondsandtheconductingpropertiesofthe sputteredAu.Allconductorsweresimulatedasperfect,which isalsoanotherreasonfortheobserveddifference.Thesediffer- Matt Morton (S’02) received the B.S. degree in encesthoughwereexpectedandprovedtobenoncriticalforthe electrical and computer engineering from the Uni- versityofKansas,Lawrence,in2002,andtheM.S. successfuloutcomeofthisstudy. andPh.D.degreesinelectricalengineeringfromthe The major advantage of this design when compared to pre- Georgia Institute of Technology, Atlanta, in 2003 vious ones is its broader bandwidth, which is obtained using and2007,respectively. His research interests include SiGe X-band a reduced number of wire bonds. The design approach pre- phaseshiftersformonolithicradartransmit/receive sented may also be used for transmission lines with different (T/R)modules,low-costRFCMOSreceiverdesign, valuesofcharacteristicimpedance.Theonepresentedhereex- RF-MEMS phase shifters, broadband RF-MEMS switch packaging, low-temperature RF-MEMS hibits very good performance up to 55 GHz with a reduced packagingtechniquesonorganicliquidcrystalpolymer(LCP),metamaterial numberoftransmissionlinediscontinuitiesachievingalow-loss crosstalkisolators,andnanoparticlemagneticthinfilms. 6 IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,VOL.56,NO.1,JANUARY2008 John Papapolymerou (S’90–M’99–SM’04) re- Christos G. Christodoulou (S’80–M’81–SM’90– ceived the B.S.E.E. degree from the National F’02) received the B.Sc. degree in physics and TechnicalUniversityofAthens,Athens,Greece,in mathfromtheAmericanUniversityofCairo,Cairo, 1993,andtheM.S.E.E.andPh.D.degreesfromThe Egypt,in1979,andtheM.S.andPh.D.degreesin UniversityofMichiganatAnnArbor,in1994and electrical engineering from North Carolina State 1999,respectively. University,Raleigh,in1981and1985,respectively. From1999to2001,hewasanAssistantProfessor From 1985 to 1998, he was a faculty member with the Department of Electrical and Computer withtheUniversityofCentralFlorida,Orlando.In Engineering,UniversityofArizona,Tucson.During 1999, he joined the Electrical and Computer En- the summers of 2000 and 2003, he was a Visiting gineering Department, University of New Mexico, ProfessorwiththeUniversityofLimoges,Limoges, Albuquerque,wherehewasChairofthisdepartment France.From2001to2005,hewasanAssistantProfessorwiththeSchoolof from1999to2005.HeisanAssociateEditoroftheInternationalJournalof ElectricalandComputerEngineering,GeorgiaInstituteofTechnology,Atlanta, RFandMicrowaveComputer-AidedEngineering.HewasaGuestEditorfor whereheiscurrentlyanAssociateProfessor.Hehasauthoredorcoauthored theSpecialIssueon“ApplicationsofNeuralNetworksinElectromagnetics” over140publicationsinpeer-reviewedjournalsandconferences.Hisresearch oftheAppliedComputationalElectromagneticsSociety’sACESJournal.He interestsincludetheimplementationofmicromachiningtechniquesandMEMS hasauthoredorcoauthoredover250papersinjournalsandconferences.He devices in microwave, millimeter-wave and terahertz circuits and the devel- hasauthoredorcoauthored12bookchaptersandcoauthoredfourbooks.His opmentofbothpassiveandactiveplanarcircuitsonsemiconductor(Si/SiGe, researchinterestsaremodelingofelectromagneticsystems,reconfigurablesys- GaAs)andorganicsubstrates[liquid-crystalpolymer(LCP),low-temperature tems,machinelearningapplicationsinelectromagnetics,andsmartantennas. co-fired ceramic (LTCC)] for system-on-a-chip (SOC)/system-on-package Dr. Christodoulou is a member of Eta Kappa Nu, The Electromagnetics (SOP)RFfrontends. Academy(TEA),andCommissionBoftheUnitedStatesNationalCommittee Dr.Papapolymerouisthevice-chairforCommissionDoftheU.S.National oftheInternationalUnionofRadioScience(USNC/URSI).Heservedasthe Committee of URSI. He is an associate editor for IEEE MICROWAVE AND general chair of the IEEE Antennas and Propagation Society (AP-S)/URSI WIRELESSCOMPONENTLETTERSandtheIEEETRANSACTIONSONANTENNAS 1999Symposium,Orlando,FL,astheco-chairoftheIEEE2000Symposium AND PROPAGATION. During 2004, he was the chair of the IEEE Microwave on Antennas and Propagation for Wireless Communications, Waltham, MA, Theory and Techniques (MTT)/Antennas and Propagation (AP) Atlanta andtheco-technicalchairfortheIEEEAP-S/URSI2006Symposium,Albu- Chapter.Hewastherecipientofthe2004ArmyResearchOffice(ARO)Young querque,NM.HeiscurrentlyanassociateeditorfortheIEEETRANSACTIONS Investigator Award, the 2002 National Science Foundation (NSF) CAREER ON ANTENNAS AND PROPAGATION and the IEEE Antennas and Propagation Award,theBestPaperAwardpresentedatthe3rdIEEEInternationalConfer- Magazine.HewasappointedanIEEEAP-SDistinguishedLecturerfor2007 enceonMicrowaveandMillimeter-WaveTechnology(ICMMT2002),Beijing, to2009andwaselectedvice-chairfortheAlbuquerqueIEEEAntennasand China, and the 1997 Outstanding Graduate Student Instructional Assistant Propagation(AP)/MicrowaveTheoryandTechniques(MTT)Chapter. AwardpresentedbytheAmericanSocietyforEngineeringEducation(ASEE), TheUniversityofMichiganatAnnArborChapter.Hisstudentwasalsothe recipientoftheBestStudentPaperAwardpresentedatthe2004IEEETopical MeetingonSiliconMonolithicIntegratedCircuitsinRFSystems,Atlanta,GA. IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,VOL.56,NO.1,JANUARY2008 7 Compact Large-Signal Shot-Noise Model for HBTs MatthiasRudolph, Senior Member, IEEE, Falk Korndörfer, PeterHeymann, and Wolfgang Heinrich, Senior Member, IEEE Abstract—A new description of the shot noise in HBTs is pro- time delayshaveto be realized by timeconstants, i.e., by posedthataccountsforthecorrelationofthesources.Itcaneasily definingthegoverningchargesandcurrentsproperly.Hence,a be included in large-signal models, thus significantly improving time constant is not directly accessible and would be required the RF noise description. Common nonlinear bipolar transistor to be approximated using the charge formulas, as recently models thus far neglect the correlation, which deteriorates the model accuracy towards higher frequencies. It is shown that the proposed for the MEXTRAM model [9]. For this reason, the collector delay in InGaP/GaAs HBTs dominates the shot noise large-signal models available today, in general, neglect the correlation. Hence, the collector time-delay description of the correlationoftheshot-noisesources. large-signalmodeliscapableofprovidingsuitablenoisecorrela- Inthispaper,theapproachof[10],whichwasproposedand tion time constants. The model is verified against measurements verified in the linear domain, will be applied to and verified ofInGaP/GaAsHBTswiththreedifferentepitaxiallayerdesigns. for a large-signal HBT model. This approach takes advantage Index Terms—Equivalent circuit, heterojunction bipolar of proper placement of two noncorrelated shot-noise sources transistor(HBT),noise,semiconductordevicemodeling,semicon- in order to realize the correlation implicitly through the large- ductordevicenoise,shotnoise,whitenoise. signaldescription.Whileithasalreadybeenshownin[10]that the nonlinear model topology is well suited for this approach, I. INTRODUCTION it was still in question whether the nonlinear model provides therequiredparametervalues.Inshort:isitpossibletodescribe thenoisecorrelationimplicitlythroughthenonlineartimedelay THETHEORYofwhitenoisemodelingforbipolartransis- model?Ifyes,whichpartofthetimedelaymustbetakeninto tors is well established for several decades [1]–[4]. This account? theory has also successfully been adapted to state-of-the-art ItwillbeshownattheexampleofInGaP/GaAsHBTsthata GaAsheterojunctionbipolartransistors(HBTs)[5]–[7]. dedicatedHBTmodelindeedyieldsgoodnoisesimulationre- In the microwave region, there are basically two types of sults if the shot-noise sources are properly placed. It turns out noisetobeconsidered:thermalandshotnoise. that the model for the collector transit time is dominant. Fur- (cid:127) ThermalnoiseisgeneratedinthepassivepartoftheHBT, thermore,HBTswiththreedifferentbaseandcollectordesigns namely,bythecontactandlayerresistances.Itiscrucialto are investigated regarding the impact of HBT layer design on useacorrectequivalent-circuittopology,andtoknowthe the shot-noise correlation. Hence, this investigation also pro- deviceoperatingtemperature.Besidesthat,thispartofthe videsexperimentalevidencefortheprominent roleofthe col- modelisquitestraightforward. lectordelayinthecorrelationoftheshotnoiseinstate-of-the-art (cid:127) Shot noise is observed at the pn junctions. It can be de- HBTs. scribedbytwosourcesthatarecontrolledbybaseandcol- lectorcurrents.Thesetwosources,however,arecorrelated II. RFNOISEMODELING duetotheintrinsictransittime[8]. Here, the traditional small-signal noise models will be re- The main challenge is the correlation of the shot-noise viewed.Itwillbehighlightedthatthetwocommontopologies sources. It can be characterized by a time constant that is, in relyingonnoncorrelatedsourceseitherunderestimateoroveres- general, lower than the total intrinsic time delay determined timatethenoisecorrelationtime[11].Itwillthenbeaddressed in small-signal extraction. It is, hence, necessary to extract how nonlinear HBT models approximate time delay, and how it from noise parameter measurement and it cannot simply the shot-noise model can be tailored to fit into the nonlinear be predicted if the small-signal equivalent circuit is known. equivalent-circuittopology. Implementing the noise sources in a large-signal model is even more involved. The correlation time is not a constant A. Shot-NoiseModelsintheLinearDomain value, but depends on bias. Furthermore, large-signal models Two shot-noise model topologies for bipolar transistors are are formulated in the time domain. In general, bias-dependent shown in Fig. 1. For simplicity, only the very intrinsic part of the HBT model will be discussed, focusing on the shot-noise description.Thesmall-signalcurrentgain isdispersive,i.e., ManuscriptreceivedJuly10,2007;revisedSeptember13,2007. M.Rudolph,P.Heymann,andW.HeinricharewiththeFerdinand-Braun- (1) InstitutfürHöchstfrequenztechnik(FBH),D-12489Berlin,Germany(e-mail: [email protected];[email protected];[email protected]). F. Korndörfer is with Innovationsfor High Performance Microelectronics It is assumed in the following that represents the intrinsic (IHP),15236Frankfurt(Oder),Germany(e-mail:korndoerfer@ihp-microelec- base–collectortransittime,while describes tronics.com). DigitalObjectIdentifier10.1109/TMTT.2007.911944 theimpactofthebase–emitterjunction.Furthermore,itwillbe 0018-9480/$25.00©2007IEEE

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.