NOVEMBER2007 VOLUME55 NUMBER11 IETMAB (ISSN0018-9480) PAPERS LinearandNonlinearDeviceModeling Mildly Nonquasi-Static Two-Port Device Model Extraction by Integrating Linearized Large-Signal Vector Measurements .................................................................... A. Cidronali,C.Accillaro,andG.Manes 2277 BehavioralThermalModelingforMicrowavePowerAmplifierDesign ....................................................... ......................................... J.Mazeau,R.Sommet,D.Caban-Chastas,E.Gatard,R.Quéré,andY.Mancuso 2290 ActiveCircuits,SemiconductorDevices,andIntegratedCircuits 3-DIntegrationof10-GHzFilterandCMOSReceiverFront-End ............................................................. ............................... T.Choi,H.Sharifi,H.H.Sigmarsson,W.J.Chappell,S.Mohammadi,andL.P.B.Katehi 2298 DesignofCryogenicSiGeLow-NoiseAmplifiers .................................... S.Weinreb,J.C.Bardin,andH.Mani 2306 ANewCompactLoadNetworkforDohertyAmplifiersUsinganImperfectQuarter-WaveLine ........................... ............................... H.Park,J.Van,S.Jung,M.Kim,H.Cho,S.Kwon,J.Jeong,K.Lim,C.Park,andY.Yang 2313 Linearization of CMOS Broadband Power Amplifiers Through Combined Multigated Transistors and Capacitance Compensation................................................................. C.Lu, A.-V.H.Pham,M.Shaw,andC.Saint 2320 Millimeter-WaveandTerahertzTechnologies Demonstrationofa311-GHzFundamentalOscillatorUsingInPHBTTechnology .......................................... ....... V.Radisic,D.Sawdai,D.Scott,W.R.Deal,L.Dang,D.Li,J.Chen,A.Fung,L.Samoska,T.Gaier,andR.Lai 2329 FieldAnalysisandGuidedWaves Some Properties of Generalized Scattering Matrix Representations for Metallic Waveguides With Periodic Dielectric Loading................................................................................................. S.S¸ims¸ekandE.Topuz 2336 PowerTransferinaLargeParallelArrayofCoupledDielectricWaveguides .......................................J.S.Wei 2345 GeneralizedImpedanceBoundaryConditionforConductorModelinginSurfaceIntegralEquation ....................... .......................................................................................... Z.G.Qian,W.C.Chew,andR.Suaya 2354 Rigorous Mode-MatchingMethodofCircular toOff-CenterRectangularSide-CoupledWaveguideJunctionsforFilter Applications ................................................................................................ J.ZhengandM.Yu 2365 (ContentsContinuedonBackCover) (ContentsContinuedfromFrontCover) CADAlgorithmsandNumericalTechniques PassivityEnforcementWithRelativeErrorControl..........................................S.Grivet-TalociaandA.Ubolli 2374 AnEfficientTime-DomainSimulationMethodforMultirateRFNonlinearCircuits ....... J.F.OliveiraandJ.C.Pedro 2384 FiltersandMultiplexers DesignofBandpassEllipticFiltersEmployingInductiveWindowsandDielectricObjects .............. F.J.PérezSoler, M. Martínez Mendoza, F. D. Quesada Pereira, D. Cañete Rebenaque, A. Alvarez Melcon, and R. J. Cameron 2393 A25–75-MHzRFMEMSTunableFilter ..........................K.Entesari,K.Obeidat,A.R.Brown,andG.M.Rebeiz 2399 ADual-BandCoupled-LineBalunFilter............................................................ L.K.YeungandK.-L.Wu 2406 AMicrostripUltra-WidebandBandpassFilterWithCascadedBroadbandBandpassandBandstopFilters ................ ..................................................................................................... C.-W.TangandM.-G.Chen 2412 Packaging,Interconnects,MCMs,Hybrids,andPassiveCircuitElements AParallel-StripRingPowerDividerWithHighIsolationandArbitraryPower-DividingRatio ...... L.ChiuandQ.Xue 2419 Slow-WaveLineCouplerWithInterdigitalCapacitorLoading .... L.Li,F.Xu,K.Wu,S.Delprat,J.Ho,andM.Chaker 2427 ASymmetricalFour-PortMicrostripCouplerforCrossoverApplication............................. Y. ChenandS.-P.Yeo 2434 ModifiedWilkinsonPowerDividersforMillimeter-WaveIntegratedCircuits ................................................ ................................................. S.Horst,R.Bairavasubramanian,M.M.Tentzeris,andJ.Papapolymerou 2439 InstrumentationandMeasurementTechniques InverseSyntheticApertureSecondaryRadarConceptforPreciseWirelessPositioning ..................................... .................................................................................. M.Vossiek,A.Urban,S.Max,andP.Gulden 2447 Biological,Imaging,andMedicalApplications UsingaprioriDatatoImprovetheReconstructionofSmallObjectsinMicrowaveTomography .......................... ....................................................................................................... A.FhagerandM.Persson 2454 AReal-TimeExposureSystemforElectrophysiologicalRecordinginBrainSlices .......................................... ................A.Paffi,M.Pellegrino,R.Beccherelli,F.Apollonio,M.Liberti,D.Platano,G.Aicardi,andG.D’Inzeo 2463 InformationforAuthors ............................................................................................................ 2472 IEEEMICROWAVETHEORYANDTECHNIQUESSOCIETY TheMicrowaveTheoryandTechniquesSocietyisanorganization,withintheframeworkoftheIEEE,ofmemberswithprincipalprofessionalinterestsinthefieldofmicrowavetheory andtechniques.AllmembersoftheIEEEareeligibleformembershipintheSocietyuponpaymentoftheannualSocietymembershipfeeof$14.00,plusanannualsubscriptionfee of$20.00peryearforelectronicmediaonlyor$40.00peryearforelectronicandprintmedia.Forinformationonjoining,writetotheIEEEattheaddressbelow.Membercopiesof Transactions/Journalsareforpersonaluseonly. ADMINISTRATIVECOMMITTEE J.S.KENNEY, President J.MODELSKI, PresidentElect K.G.GARD, Secretary N.KOLIAS, Treasurer L.BOGLIONI D.HARVEY L.KATEHI T.LEE A.MORTAZAWI B.PERLMAN W.SHIROMA K.VARIAN K.WU S.M.EL-GHAZALY J.HAUSNER B.KIM J.LIN V.J.NAIR A.ROSEN R.SNYDER R.WEIGEL R.YORK M.HARRIS K.ITOH N.KOLIAS HonoraryLifeMembers DistinguishedLecturers PastPresidents T.ITOH T.S.SAAD K.TOMIYASU G.BOECK B.KIM J.C.RAUTIO M.SHUR K.VARIAN(2006) A.A.OLINER P.STAECKER L.YOUNG W.HOEFER J.LASKAR D.ROOT P.SIEGEL K.C.GUPTA(2005) T.ITOH V.LUBECKE D.RYTTING A.SUAREZ R.J.TREW (2004) MTT-SChapterChairs Albuquerque:S.BIGELOW Foothill: C.ANTONIAK NorthJersey:K.DIXIT SouthAfrica:P.W.VANDERWALT Atlanta: D.LEATHERWOOD France:P.EUDELINE NorthQueensland: A.TSAKISSIRIS SouthAustralia:H.HANSEN Austria: R.WEIGEL Germany: W.HEINRICH NorthernNevada: B.S.RAWAT SouthBrazil: L.C.KRETLY Baltimore: A.D.BROWN Greece:I.XANTHAKIS Norway:S.E.WHEATLEY SoutheasternMichigan: L.M.ANNEBERG Beijing: Z.FENG HongKong: W.Y.TAM OrangeCounty:H.J.DELOSSANTOS SouthernAlberta: S.BOUMAIZA Beijing,Nanjing: W.X.ZHANG Houston:J.T.WILLIAMS Oregon: T.RUTTAN Spain: L.FEHARO Belarus: A.GUSINSKY Houston,CollegeStation: C.MADSEN Orlando:P.WAHID Springfield: P.R.SIQUEIRA Benelux: D.V.-JANVIER Hungary: T.BERCELI Ottawa: Q.YE Sweden: A.RYDBERG Brasilia: A.KLAUTAU,JR. Huntsville:H.G.SCHANTZ Philadelphia:J.NACHAMKIN Switzerland: J.HESSELBARTH Buenaventura: C.SEABURY India/Calcutta:P.K.SAHA Phoenix:C.WEITZEL Syracuse: E.ARVAS Buffalo: E.M.BALSER IndiaCouncil: K.S.CHARI Poland:M.P.MROZOWSKI Taipei: C.-S.LU Bulgaria: K.ASPARUHOVA Israel:S.AUSTER Portugal: C.A.CARDOSOFERNANDES Thailand: M.KRAIRIKSH CedarRapids/CentralIowa: D.JOHNSON JapanCouncil:Y.TAKAYAMA Princeton/CentralJersey:W.CURTICE/A.KATZ Toronto: G.V.ELEFTHERIADES CentralNewEngland: K.ALAVI Kitchener-Waterloo:R.R.MANSOUR Queensland:A.ROBINSON Tucson: N.BURGESS/S.MORALES Central&SouthItaly: S.MACI Lithuania:V.URBANAVICIUS RiodeJaneiro: J.R.BERGMANN Turkey: O.A.CIVI CentralNo.Carolina:T.IVANOV LongIsland/NewYork:J.COLOTTI Rochester:S.M.CICCARELLLI/J.VENKATARAMAN TwinCities: M.J.GAWRONSKI Chicago: Z.LUBIN LosAngeles,Coastal:A.SHARMA Romania:I.SIMA UK/RI: A.REZAZADEH Cleveland: G.PONCHAK LosAngeles,Metro: J.WEILER Russia,Nizhny-Novgorod: Y.BELOV Ukraine,CentralKiev: Y.POPLAVKO Columbus:F.TEIXEIRA Malaysia:Z.AWANG Russia,SaintPetersburg:M.SITNIKOVA Ukraine,East: A.A.KIRILENKO Connecticut:C.BLAIR/R.ZEITLER Melbourne:J.KRALOVEC Russia,Moscow:V.KALOSHIN Ukraine,Rep.ofGeorgia:R.ZARIDZE Croatia: Z.SIPUS Milwaukee:S.G.JOSHI Russia,Saratov-Penza: N.RYSKIN Ukraine,Vinnitsya:V.DUBOVOY Czech/Slovakia: P.HAZDRA MohawkValley: P.RATAZZI SaintLouis:D.MACKE Ukraine,West: I.ISAYEV Dallas: R.EYE MonterreyMexico: R.M.RODRIGUEZ-DAGNINO SanDiego: J.TWOMEY Venezuela: M.PETRIZZELLI Dayton: A.TERZOUOLI, JR. Montreal:K.WU SantaClaraValley/SanFrancisco: J.J.SOWERS Victoria:A.MITCHELL Denver: M.JANEZIC NewHampshire: T.PERKINS Seattle:K.POULSON VirginiaMountain: D.MILLER EasternNo.Carolina: D.PALMER NewJerseyCoast: D.REYNOLDS SeoulCouncil: H.-Y.LEE WashingtonDC/NorthernVirginia:J.QIU Egypt: I.A.SALEM NewSouthWales: G.TOWN Siberia,Novosibirsk: V.SHUBALOV Winnipeg: V.OKHMATOVSKI Finland: T.KARTTAAVI NewZealand: J.MAZIERSKA Siberia,Tomsk: O.STUKACH Yugoslavia: B.MILOVANOVIC FloridaWestCoast: K.O’CONNOR NorthItaly: G.GHIONE Singapore: O.B.LEONG Editors-In-Chief DYLAN WILLIAMS AssociateEditors NIST Boulder,CO80305USA DANIELDEZUTTER YOSHIO NIKAWA ZOYA POPOVIC RICHARD SNYDER Phone:+13034973138 Universiteit Gent Kokushikan Univ. Univ.ofColorado,Boulder RSMicrowaveCompany Fax:+13034973970 Belgium Japan USA USA email:[email protected] email:[email protected] email:[email protected] email:[email protected] email:[email protected] AMIRMORTAZAWI KENJI ITOH JOSÉ PEDRO SANJAY RAMAN RUEY-BEEI WU Univ. of Michigan MitsubishiElectronics Univ. of Aveiro VirginiaPolytech.Inst.andStateUniv. NationalTaiwanUniv. AnnArbor,MI48109-2122USA Japan Portugal USA Taiwan, R.O.C. Phone:+17349362597 email:[email protected] email:jcp.mtted.av.it.pt email:[email protected] email:[email protected] Fax:+17346472106 JENSHAN LIN ALEXANDERYAKOVLEV email:[email protected] Univ. of Florida Univ. of Mississippi USA USA email:[email protected] email:[email protected] M.GOLIO, Editor-in-Chief,IEEEMicrowaveMagazine G.E.PONCHAK, Editor-in-Chief,IEEEMicrowaveandWirelessComponentLetters T.LEE, WebMaster IEEE Officers LEAHH.JAMIESON, PresidentandCEO JOHNBAILLIEUL, VicePresident,PublicationServicesandProducts LEWISTERMAN, President-Elect PEDRORAY, VicePresident,RegionalActivities CELIAL.DESMOND, Secretary DONALDN.HEIRMAN, President,IEEEStandardsAssociation DAVIDGREEN, Treasurer PETERSTAECKER, VicePresident,TechnicalActivities MICHAELR.LIGHTNER, PastPresident JOHNMEREDITH, President,IEEE-USA MOSHEKAM, VicePresident,EducationalActivities STUARTA.LONG, Director,DivisionIV—ElectromagneticsandRadiation IEEE Executive Staff JEFFRYW.RAYNES, CAE,ExecutiveDirector&ChiefOperatingOfficer BETSYDAVIS, SPHR,HumanResources MATTHEWLOEB, CorporateStrategy&Communications ANTHONYDURNIAK, PublicationsActivities RICHARDD.SCHWARTZ, BusinessAdministration JUDITHGORMAN, StandardsActivities CHRISBRANTLEY, IEEE-USA CECELIAJANKOWSKI, RegionalActivities MARYWARD-CALLAN, TechnicalActivities SALLYA.WASELIK, InformationTechnology IEEE Periodicals Transactions/JournalsDepartment StaffDirector:FRANZAPPULLA EditorialDirector: DAWNMELLEY ProductionDirector: PETERM.TUOHY ManagingEditor:MONAMITTRA SeniorEditor:CHRISTINAM.REZES IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES(ISSN0018-9480)ispublishedmonthlybytheInstituteofElectricalandElectronicsEngineers,Inc.Responsibilityforthe contentsrestsupontheauthorsandnotupontheIEEE,theSociety/Council,oritsmembers.IEEECorporateOffice:3ParkAvenue,17thFloor,NewYork,NY10016-5997.IEEEOperations Center:445HoesLane,P.O.Box1331,Piscataway,NJ08855-1331.NJTelephone:+17329810060.Price/PublicationInformation:Individualcopies:IEEEMembers$20.00(firstcopy only),nonmember$85.00percopy.(Note:Postageandhandlingchargenotincluded.)Memberandnonmembersubscriptionpricesavailableuponrequest.Availableinmicroficheandmicrofilm. CopyrightandReprintPermissions:Abstractingispermittedwithcredittothesource.Librariesarepermittedtophotocopyforprivateuseofpatrons,providedtheper-copyfeeindicatedinthe codeatthebottomofthefirstpageispaidthroughtheCopyrightClearanceCenter,222RosewoodDrive,Danvers,MA01923.Forallothercopying,reprint,orrepublicationpermission,write toCopyrightsandPermissionsDepartment,IEEEPublicationsAdministration,445HoesLane,P.O.Box1331,Piscataway,NJ08855-1331.Copyright©2007byTheInstituteofElectrical andElectronicsEngineers,Inc.Allrightsreserved.PeriodicalsPostagePaidatNewYork,NYandatadditionalmailingoffices.Postmaster:SendaddresschangestoIEEETRANSACTIONS ONMICROWAVETHEORYANDTECHNIQUES,IEEE,445HoesLane,P.O.Box1331,Piscataway,NJ08855-1331.GSTRegistrationNo.125634188.CPCSalesAgreement#40013087.Return undeliverableCanadaaddressesto:PitneyBowesIMEX,P.O.Box4332,StantonRd.,Toronto,ONM5W3J4,Canada. DigitalObjectIdentifier10.1109/TMTT.2007.911654 IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,VOL.55,NO.11,NOVEMBER2007 2277 Mildly Nonquasi-Static Two-Port Device Model Extraction by Integrating Linearized Large-Signal Vector Measurements AlessandroCidronali,Member,IEEE, CarmeloAccillaro,and GianfrancoManes,SeniorMember,IEEE Abstract—Thispaperintroducesanewprocedure,basedonlin- large-signalvectormeasurementsattractsanumberofresearch earized large-signal vector measurements, for extracting a non- groups, which are proposing significant approaches, and it is linearbehavioralmodelfortwo-portactivemicrowavedevices.The still challenging for a number of other reasons. Amongst the techniqueisappliedtoamodelstructurethatassumesashort-term most important are: 1) the complete understanding of new memory condition and is formulated as a parallel connection of model formulations; 2) the new challenges arising from inno- alimitednumberoffrequency-weightedstaticnonlinearities.The vative metrology concepts; and 3) the problems related to the proposed method consists of integrating the time-varying linear characterization of the device driven into a nonlinear state by a newexperimentdesigns. large signal. The experiment design and measurement setup are Thispaperisintendedtogiveacontributiontothesetopicsby basedonalarge-signalnetworkanalyzerandarediscussedinde- introducinganewextractionprocedureforamildlynonquasi- tail.Inthesecondportionofthispaper,insightisprovidedonthe static nonlinear model based on large-signal vector measure- mostmeaningfulmodelparameters,alongwithanextensiveinde- ments. The technique proposed herein generalizes approaches pendentexperimentalvalidation,whichconsidersaGaAspHEMT basedontheintegrationofsmall-signalparametersinorderto asacasestudyandincludestwo-tonelarge-signaldata,awideband extractanonlinearmodel[11],[12].Thisisdonebyintroducing codedivisionmultipleaccesssignal,bias-dependent -parameters, amethodbasedonlinearizedlarge-signalparameterintegration. anddcdata. Incomparisonwithsimilarapproaches,theuseoflinearized Index Terms—Behavioral modeling, computer-aided design large-signalvectormeasurementsallowstheremovalofsignif- (CAD) models, large-signal vector measurements, measure- icant limitations that derive from an identification procedure ment-basedmodels,nonlineardynamicmicrowavesystems. based only on small-signal data and makes it possible to im- provethemodelpredictionoflarge-signalstates. I. INTRODUCTION The linearization of a large-signal device state was adopted in[13]toacceleratetheconvergenceoftheVolterraserieseven BEHAVIORAL modeling of microwave devices is experi- for strongly nonlinear systems driven by large signals under encinganincreaseofinterestbecauseofitscharacteristics the hypothesis of short-term memory, while in [14], a similar ofeffectiveness,technologyindependence,andeasyimplemen- formulation is exploited in the complex-envelope domain for tationinconventionalcomputer-aideddesign(CAD)tools[1], bandpass nonlinear systems. In [13], the model identification [2].Abehavioralmodelisgenerallydescribedintermsofstate procedurereliesonpulsedI/Vandsmall-signalmeasurements. functions, which are vector multiple-input functions of state Extractionmethodsbasedonlinearizedvectormeasurementsin variables. Their formulations are obtained by simplifying hy- thecarrierdomainwereadoptedin[7]tocreateafrequency-do- pothesesaboutcomplexdevicephysicsandtheyarecommonly main behavioral model. The essential point in [7] was that, at extractedbyprocessingvectorsmall-signal,scalarlarge-signal, the system input, the only large signal was the fundamental, and dc measurements [3]. In order to provide a meaningful whereastheharmonicsareconsideredrelativelysmall.Insuch interpolativecapability,behavioralmodelsshouldbeextracted a condition, only the fundamentals at the incident input and involving a broad range of possible device states, and usually scattered output waves are large, while their harmonics are theirpredictivecapabilityisamatterofconcern.Overthelast small, hence subjected to a superposition principle. With that decade, the development of new measurement techniques for basicassumption,themodeliscurrentlylimitedtoasingle-tone the vector analysis of devices under the nonlinear regime [4], input, althoughit iscapableofconsidering modulatedcarriers [5] has fostered new methods for identifying and validating andtakingtheoutputmismatchintoaccountonlylinearly.The such a class of models [6]–[10]. These methods demonstrated approach presented herein is not subjected to the above-men- improvementsinaccuratelypredictingthedevices’large-signal tioned restrictions. In particular, the integration of linearized dynamic nonlinear states. Behavioral modeling based on large-signal parameters makes the adopted model capable of predicting large-signal mismatches and responses to digitally modulatedexcitation.Ontheotherhand,themethodintroduced ManuscriptreceivedAugust10,2006;revisedJuly13,2007.Thisworkwas in [7] appears to be applicable to a wide range of devices and supportedbytheInformationSocietyTechnologiesProgramoftheEuropean circuit classes. Linearized large-signal vector measurements UnionunderContractIST-1-507893-NOE. The authors are with the Department of Electronics and Telecom- were also used in [10] for the identification of large-signal munications, University of Florence, Florence I-50139, Italy (e-mail: scatteringfunctionsformodelingweaklynonlineardevicesand alessandro.cidronali@unifi.it;carmelo.accillaro@unifi.it;gfm@unifi.it). signalsources.Incontrastto[10],themethodproposedherein Colorversionsofoneormoreofthefiguresinthispaperareavailableonline is capable of predicting higher order nonlinear behaviors that athttp://ieeexplore.ieee.org. areclearlynotpredictablebyusinglinearizedmodels. DigitalObjectIdentifier10.1109/TMTT.2007.907379 0018-9480/$25.00©2007IEEE 2278 IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,VOL.55,NO.11,NOVEMBER2007 This paper is organized as follows. In Section II, the model where ,whiletheterm dependson formulation is shown in terms of frequency-weighted parallel the thtimederivative.Thisnonlinearmodelisfrequentlycon- nonlinear functions. The extraction procedure by a linearized structed from multibias small-signal parameters taken over a large-signal characterization, along with the excitation design, wide range of frequencies and measured on a narrow voltage arediscussedinSectionIII.SectionIVdescribestheindepen- grid,coveringthecompleteaccessiblebiasrangeoratleastthe dent experimental validation by using two-tone large-signal range of interest. In [11], by comparing the measured small- measurements, digitally modulated signals, bias-dependent signalbias-dependent -parameterswith(3),itisshownhowto -parameters,anddccharacteristics.Finally,intheAppendix, approximate by best fitting the bias-dependent pseudoconduc- amathematicaltreatmentdemonstratestheconsistencybetween tances whose highest order (i.e., the th nonlinear func- the model formulation adopted in this paper and a previous tion)isdeterminedbythefrequencydispersionofthedevice’s modelingapproach[13],[14]. performance.Thenonlinearfunctionsarethencalculatedbyin- tegrating the bias-dependent into the 2-D voltage do- main. The above-described approach restricts the range of the II. MODEL EXTRACTION BASICS: INTEGRATING modelapplicabilitytoquasi-staticnonlinearsystems,although THECONVERSIONMATRIX the higher order of the derivatives takes the frequency disper- sion behavior into account. To achieve nonlinear models with Wecanassumethatthecurrentattheterminalofadynamical nonquasi-static capability, the extraction techniques are those nonlinearsystemcouldbewrittenintheform introducedin[12]and[13]. Incontrasttotheabove-describedtechniques,theextraction methodintroducedinthispaperconsidersthenonlinearmodel (1) formulated as in (1), but in (2), the partial differential deriva- tivesaretakenatalarge-signalstate,1ratherthaninthequies- cent point . This new formulation makes it possible to con- where is the instantaneous input excitation. Equation (1) sider, during the approximation of the model parameters, the represents a general description of the behavioral model for actual nonlinear behavior of the device-under-test (DUT), re- dynamic nonlinear systems, and the number of terms adopted sultingfromtheparticularexcitinglarge-signalwaveforms.The intheformulationisdictated bythe memoryofthesystem. A integration of the linearized large-signal parameters over the formal mathematical treatment [15], given in the Appendix, domain of interest makes the model in (1) capable of taking showsitsderivationfromawidelyacceptedmodelingapproach into account the nonquasi-static phenomena at microwave op- [13]. The nonlinear functions are time invariant and eration since a short, but finite, memory time is assumed (cf. theirtimedependenceisby ,whilethehigherorderderiva- theAppendix).Thisleadstoa“mildly”nonquasi-staticmodel, tives allow accurate frequency-dependence representation of whichcangiveaccuratepredictionofthedevicebehaviorwhen the system response. In a conventional approach, as in [11], excitedbymicrowavemodulatedsignals. the identification procedure of can be obtained by Next, the extraction procedure is described in detail. It is integratingthebias-dependentsmall-signalresponse,which,in centered on the capability of measuring the conversion matrix thetimedomain,canbewrittenas [16]oftheDUT,whichactuallyrepresentstheDUTlinearized large-signalcharacterization. ConsideringtheDUTdrivenbythelarge-signal, atthe frequency ,thelinearizedcurrentresponsetoasmall-signal excitation, atthefrequency ,is (2) where is the dc-bias point. Equation (2) is achieved by ex- panding the current about the bias point with the Taylor se- riesandretainingonlythefirstterm,whichisactuallytheone responsible for the linearization. Under the basic assumption thatthenonlinearfunctionsarecontinuous,thetimederivative and the voltage derivative can be exchanged. Subtracting the (4) large-signal current then leads to the small-signal incremental currentin(2),inwhichthenumberoftermscorrespondstothe number of terms in (1). Rewriting (2) into the frequency do- main leads to a small-signal excitation response at the where isthedevicetime-domainsmall-signalcurrent.In(4), frequency thepartialderivativesare timevariantanddepend onthe non- linear dynamics of the device and the large-signal waveform. Followingthereasoningin[16],wecanmovetothefrequency 1Although,inprinciple,thelarge-signalstatecanbeagenericone,duringthe modelextraction,weconsidertheonedeterminedbytheexcitationwithalarge (3) signalappliedsimultaneouslyatthetwoDUTports. CIDRONALIetal.:MILDLYNONQUASI-STATICTWO-PORTDEVICEMODELEXTRACTION 2279 domain,expandingthesmall-signaltime-dependantcurrentand voltageasa“pseudo-Fourier”series (5) (6) Fig.1. Schematicrepresentationofthemodelbyvoltage-controlledcurrent where with ,where is sourcesandfrequency-domaindefinedweightfunctionssuchascanbefound thehighestharmonicconsideredofthelargesignal,and is in[17]. aconvenientoffsetfrequencysothat isincludedamongthe ’s.Inthedefinitionof ,thenegativefrequenciescorrespond tothelowersideband,asexpressedin[16].Theexpansionofthe single-valued expression representing the voltage-dependent thtermin(4)isaproperFourierseriesandisgivenby admittance . This is easily obtained by plotting the map that expresses, instant by instant, the values of versusthecorrespondingvaluesof ,i.e., (7) (11) where are real coefficients with . Equating memberto memberfor eachfrequency in(4) results which returns a scalar single-valued function. Finally, the cal- inamatrixformas culation of the nonlinear functions is obtained by the integration (8) (12) where and are column vectors containing small-signal The DUT nonlinear model defined based on is repre- mixingproductsbetween and atthefrequencies .In sentedinFig.1.Theimplementationofsuchamodelisstraight- (8), represents the conversion matrix associated with the forwardinmostofthecommercialCADtools,e.g.,byusingthe nonlinear function driven by the large-signal and, symbolicallydefineddeviceavailableviaAgilentTechnologies’ finally, isadiagonalmatrixwhosecoefficientsaretheangular AdvancedDesignSystem(ADS)[17].Eachnonlinearfunction frequenciesfrom to .Itisinterestingtoobservethe isweightedbyaproperfactor, inFig.1,whichcorresponds resemblance between the scalar equation in (3) and its vector tothetimederivativein(1)expressedinthefrequencydomain. generalizationrepresentedin(8).Havingassumedthat arerealtime-invariantscalarfunctions, hastheform III. MODELEXTRACTION Here, a procedure is introduced for characterizing the lin- ... ... ... (9) earized large-signal DUT model and for extending the above- described treatment in order to extract the nonlinear dynamic modelforatwo-portdevice. where is defined in (7). Similar to the above discussed A. ExcitationDesign small-signal case, bycomparing the measured conversionma- trixwith(8),itispossibletoderivethematrices bycurve Thefirststepinidentifyingthenonlinearfunctionsrelieson fitting.Equation(8)canbeconvenientlyrewrittenbyseparating the extraction of the DUT conversion matrix. The method is realandimaginarycontributionsofthecurrent based on the technique proposed in [18] and [19] and a large- signalnetworkanalyzer(LSNA)-basedmeasurementsetup[5]. Thelatterisslightlymodifiedinordertoaccommodatethesi- multaneous excitation by a large signal of both DUT ports 1 (10) and 2, as demonstrated in Fig. 2. The large signals are gener- ated by a single synthesizer, SYNTH 1 in Fig. 2, to guarantee Assuming further that is the independent variable of thesameamplitude,frequency,andphaserelationbetweenthe the model extraction procedure, and setting its phase to 0, large-signalexcitationatboththeDUTportsduringtheentire the real and imaginary contributions written in (10) are as- experiment. A phase stretcher, not shown in Fig. 2, can be in- sociated, respectively, to the real and imaginary parts of the serted in one of the two branches to make a particular phase equivalent time-variant pseudoadmittance seen from the DUT differencebetweenthelarge-signalexcitationatthetwoports. terminals.Theaboveconsiderationallowsthedefinitionofthe The described setup makes it possible to define experiments, 2280 IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,VOL.55,NO.11,NOVEMBER2007 Thus, to identify the linearized response, excitation with ran- domized phase and successive regression analysis are consid- ered,thusincreasingthenumberofmeasurementsrequired. B. ExtractionoftheModelforTwo-PortDevices Once extracted, the two-port conversion matrix for the real componentsrelatesvoltagesandcurrentsintheform (14) where the small-signal current and voltage vectors contain the measured phasors. For example, in the case of and , the notations are and , respectively. A similar relation holds for the imaginary components. If we start considering a generic minor of (14), by following (9) and (10), we can imposetheidentitybetweenthemeasuredconversionmatrices andtheiranalyticalapproximation . . . (15) . . . . . . Fig.2. Measurementsetupforthesimultaneousexcitationofports1and2with thelargesignalandonesmallsignal. where is the maximum degree of frequency expansion in (10)requiredforabestfitapproximationofthelinearizedlarge- signalfrequencybehavior.In(15),theunknownterms can whichconsistofmeasuringthecurrentandvoltagephasorsof be calculated by imposing the identity, diagonal by diagonal; themixingproducts,inanaprioridefinedfrequencygrid.These e.g.,forthemaindiagonal,wehave aretheresultsfromasimultaneouslarge-andsmall-signalexci- tations,thelatterappliedbySYNTH2inFig.2,ateachmixing frequencydefinedby andateachoftheDUTports. The calibration procedure described in [4] and [5] was ap- pliedtoobtainabsolutecalibrateddata[4]attheDUTsections . . . . . . . . definedinFig.2.Thecorrectioncoefficientsremainthesamein .. . . . . . thetwostatesofthenonreflectiveswitchshowninFig.2. Oncetherequiredmeasureddataareacquired,allthevoltage readingsaredeembeddedfromthesystemimpedance (nor- mally 50 ) to obtain the independent variables and for themodelextraction.Thisisdonebyusingtherelation . . . (13) (16) where and arethecorrectedspectralcomponentsofthemea- suredvoltagesandcurrentsatboththedeviceports.Tothisend, we focus our attention only on mixing products. Considering being the column vector in the left part of (16), comprised of this simple pre-processing, and after having separated the real dataextractedfrommeasurementsasaforesaid;adirectevalua- and imaginary parts of the current , we are ready to apply tionoftheunknowncoefficients isachievedbyusingthe the method defined in [19] to the and bestfittingsolution datasetstoextractthemeasuredconversionmatrices and , respectively. It is worth noting that the excitation de- (17) signdescribedhereinisverysimilartothatadoptedin[7]with somesubstantialdifferences.In[7],theapproachreliesonthe where is the maindiagonal of the measured and small-signalperturbationofthelarge-signalstateatexactlythe denotes the transpose. The accuracy and stability of the samefrequenciesasthoseofthefundamentalanditsharmonics. solution is directly related to the numerical condition of CIDRONALIetal.:MILDLYNONQUASI-STATICTWO-PORTDEVICEMODELEXTRACTION 2281 the matrix . There are two sources for the large con- dition number, the highest harmonic considered, i.e., , and thedegreeofthefrequencyexpansionin(15),i.e., .These- lection of is suggested by the degree of the nonlinearities involvedintheproblemandbythelevelofthelarge-signalex- citation. As in a harmonic balance problem, a low number of harmonics might lead to solution inaccuracy, while large might lead to high condition number. The dependency of the condition number upon the frequency expansion is similar; as increases, the condition number increases as well. For ex- ample,considering ,with ,theconditionnumber is ,whilewith ,itis .Theabovecalculation canberepeatedforallthediagonalsof and untilall oftheunknownmatrixentriesareidentified;thisprocessleads Fig.3. Graphicalsuperpositionofthepoweroftheincidentvoltagewavescal- culatedfora50-(cid:10)characteristicimpedance,appliedtoport1throughthenine tothecompleteidentificationofthematrixin(14). experimentsforthecaseNH =4. Thenextstepsofthemodelextractionprocedureconsiderthe evaluationofthetime-varyingpseudoconductancesby(7)and where and are the initial conditions. Finally, we can theevaluationofthevoltage-dependentadmittances,whichare writethecurrentatport2as nowcalculatedfromparametrizedmapping (18) (22) Thesameformulationholdsforthecurrentatport1. Thisconcludesthedeterminationofthenonlinearstaticfunc- Theabove2-Dequationsareapproximatedbyconsideringthis tionsforatwo-portdevice. setofseriesexpansions IV. INDEPENDENTEXPERIMENTALVALIDATION The independent experimental validation of the previously described method, and the comparison between measured and modeleddcdata, -parameters,large-signal,multitoneexcita- tion,anddigitallymodulatedsignalarediscussedhere. A. MeasurementParameterData (19) The selected device for the model extraction is a 0.2- m GaAs pHEMT with GHz with 180 m of total gate where andthepair areparametersofthebasisfunc- periphery; withreference to the measurement setup defined in tions,while arerealcoefficientsresultingfromthebest Fig.2,ports1and2correspondtothegateanddrainterminals, fitting procedure in the domain. The selection of the respectively.The set of parameters for the modelextractionis basisfunctionsin(19)issuggestedbytheparticularshapeofthe thefollowing: GHzand MHz,threehar- ,which,underfurtherrestrictionsonthecoefficients monicsareconsideredandthemaximumfrequencyinvolvedin theexperimentis19.8GHz.Theselectionof wasdictated , leads to equal mixed partial first-order derivatives. In bytheminimumspacingofthecalibratedfrequencygridofthe thiscondition,theintegrationof ,e.g.,forport2, LSNA. The bias points are V, while spans from 1 to 5 V in steps of 1 V. The large-signal tone is 8.9dBmtoensuremaximumcoverageoftheregionofinterest frompinchofftosaturation.Thesmallsignalis setconstantat 20dBmovertheentirefrequencyrange. (20) The graphical superposition of the measured power of the becomes path independent. Since is an arbitrary path in the incident voltage wave spectra at port 1 is given in Fig. 3 for domain,theintegralsin(20)canbesolvedbyadopting all nine experiments required in the current case of , thefollowingtwoorthogonalpaths,asin[12]: i.e., ,whilethecorresponding scatteredpowerofthevoltagewavespectraaregiveninFig.4. Thesequantitiesarecalculatedhere,aswellashenceforth,from the incident voltage wave and the scattered voltage wave , which are related to the signal port current and voltage in a 50- characteristicimpedancesystem,bytherelationships (21) and ,respectively.Aspread in the test signal amplitude is observed due to the loss in the 2282 IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,VOL.55,NO.11,NOVEMBER2007 Fig.4. Graphicalsuperpositionofthepowerofthescatteredvoltagewaves calculatedfora50-(cid:10)characteristicimpedance,fromtheDUTport2asresponse tothesignalshowninFig.3. Fig.6. 3-DplotforY forVgate=(cid:0)0:45VandVdrain=3V. TABLEI MEASUREMENT UNCERTAINTY CALCULATED ON MAGNITUDEOFa1(INFIG.3)ANDb2(INFIG.4) Fig.7. 3-DplotforY forVgate=(cid:0)0:45VandVdrain=3V. determines the model range of validity. B. ModelInsightView Fig.5. Graphicalsuperpositionofthemeasureddcdevicecharacteristic(con- tinuouscurves),Vgatespanningfrom+0.5to(cid:0)0.8V,andthemeasureddy- The bias-dependent conversion matrix was extracted by namicloadlines,thelatterforaconstantVgate = (cid:0)0:45V andVdrain considering the measured data and the procedure described spanningfrom1to5Vwithinputpowerof8.9dBm. in Section IV-A. In Figs. 6 and 7, the 3-D plot of the values are given for the real and imaginary parts, respectively, of the minor of the conversion matrix in (14) of the bias point measurementsetup,whilerepeatingmeasurementsofthelarge V and V. In the above figures, signalanditsharmonicsexhibitedthemeasurementuncertainty the main diagonals refer to the ratio between and with due to random effects and to the application of the test signal spanning from 4 to 4 with all the with . reportedinTableI.InTableI,themeanvalueandstandardun- Fig. 6 shows that the conversion matrix has the form of a certaintyarereportedaccordingtotherecommendationsin[20]. band matrix with diagonals slowly varying in value. A more In Fig. 5, the dynamic load lines described by the instanta- interesting aspect is that the coefficients with neous bias point are described as the result of a large-signal to and are negative. This is directly associated application to both device ports and a small signal at the with the third-order nonlinearity, which is responsible for the lowest frequency at port 1 (namely, experiment #1 in Fig. 3). compression and, consequently, has a negative multiplying In this same figure, the measured dc characteristic is also coefficient.Thediagonalsvanishmovingfromthemaintothe reported. The dynamic load-line coverage in the phase space outer diagonals, demonstrating that, for this particular case, CIDRONALIetal.:MILDLYNONQUASI-STATICTWO-PORTDEVICEMODELEXTRACTION 2283 Fig.8. Nonlinearfunctionsg (v ;v ).Squares:k=0.Circles:k=2.Tri- Fig.10. Simulated(crosses)andmeasured(squares)incidentsweepinginput (cid:0) angles:k=4.Diamonds:k=6.Crosses:k=8.g (v ;v )aremultiplied wave from 22 to 5 dBm for a two-tone signal at frequencies of 4.2 and by(2(cid:25)f ) andv = 3V. 5.4GHz. Fig.11. Simulated(crosses)andmeasured(squares)scatteredoutputwavefor (cid:0) thetwo-tonesignalinFig.9,biaspointVgate= 0:45VandVdrain=3V. Fig.9. Nonlinearfunctionsg (v ;v ).Squares:k=1.Circles:k=3.Tri- angles:k=5.Diamonds:k=7.Crosses:k=9.g (v ;v )aremultiplied by(2(cid:25)f ) andv = 3V. Fornegativeinputvoltages,thedevice’scurrentcomponentsus- tainedbythedynamiccurrentsbecomesrelevant.Thefunctions areweaklynonlinear,mostlypositive,andvanishbyincreasing three harmonics are enough to represent the entire nonlinear theirorder,i.e.,thevalueof .Thissamefigureshowsthatthe behavior. selection of five static nonlinearities represents a good choice Fig.7depictsamorerelevantmaindiagonalvariation.This for the device in the frequency range under consideration [we typicalbehaviorisassociatedwiththeoutputparallelnonlinear canassessthatthesameistrueforeachoftheminorsin(14)]. capacitance;thenegativesignisnotsurprisingsincetheupper Thenonlinearfunctionsrelatedtotheimaginarypartsshownin corner links the current and voltage complex conjugate, thus Fig. 9 are all multiplied by a factor with . All justifyingtheminussign. the functions collapse in V as expected because they The insight into the model ends with the discussion of the donotprovidecontributionatdc.Themaincontributionisthe nonlinearfunctionsextractedbytheprocedureofintegratingthe onerelatedto ,purecapacitivebehavior.Thedevicere- conversionmatrices.Inthecurrentcase,anumberofstaticnon- spondswithmorecomplexbehavior,whichisapproximatedby linearities equaltotenwereselected,whichmeansthatin(1), thehigherorderfunctions. and in (15), . Figs. 8 and 9 show the nonlinear C. Two-ToneValidation functionsrequiredtomodelthecurrentatport2.Moreprecisely, they show only the contributions arising from and The large-signal validation starts by considering a two-tone minorsoftheconversionmatrixin(14);thiscorrespondstothe signalappliedtoport1only, GHzand GHz firstmemberintheright-handsideof(21)fortherealandimag- in the bias point V and V, and the inary parts, respectively. In the previously mentioned figures, nominalinputpowerwassweptfrom 22to5dBm.Thesim- foranhomogeneousrepresentation,thenonlinearfunctionsare ulatedandmeasuredincidentinputwavesareshowninFig.10; multipliedbytheradialfrequencyadoptedduringthecharacter- thedifferencebetweenlevelsofthetwotonesisdeterminedby ization,i.e.,4.8GHz,tothepowerof . thesetuplosses.Asresponsetothisinputsignal,thedeviceex- InFig.8,thefunctioncorrespondingto isthedccontri- hibitedthescatteredoutputwaveillustratedinFig.11.Thehar- butionandrepresentsthestatictransconductance;asexpected, monicgeneration,intermodulation,andaccuracyofthemodel itistheonlycontributiontothecurrentatport2for V. inpredictionofsuchcontributionsisobservableinthisfigure.