ebook img

IEEE MTT-V055-I07 (2007-07) PDF

172 Pages·2007·16.93 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview IEEE MTT-V055-I07 (2007-07)

JULY2007 VOLUME55 NUMBER7 IETMAB (ISSN0018-9480) PAPERS LinearandNonlinearDeviceModeling SiGeHBT’sSmall-SignalPiModeling ...................................... T.-R.Yang,J.M.-L.Tsai,C.-L.Ho,andR.Hu 1417 Wideband Nonlinear Response of High-Temperature Superconducting Thin Films From Transmission-Line Measurements .....................................................................J. Mateu,J.C.Booth,andB.H.Moeckly 1425 SmartAntennas,PhasedArrays,andRadars Ultra-WidebandMultifunctionalCommunications/RadarSystem .............G.N. Saddik,R.S.Singh,andE.R.Brown 1431 AQuadratureRadarTopologyWithTxLeakageCancellerfor24-GHzRadarApplications ................................ .............................................................................................. C.-Y.Kim,J.-G.Kim,andS.Hong 1438 ActiveCircuits,SemiconductorDevices,andIntegratedCircuits DesignofUltra-Low-VoltageRFFrontendsWithComplementaryCurrent-ReusedArchitectures.......................... ........................................................................................................ H.-H.HsiehandL.-H.Lu 1445 ElectricalBackplaneEqualizationUsingProgrammableAnalogZerosandFoldedActiveInductors ...................... ......................................................................................... J.Chen,F.Saibi,J.Lin,andK.Azadet 1459 MonolithicIntegrationofaFoldedDipoleAntennaWitha24-GHzReceiverinSiGeHBTTechnology................... ..............................E.Öjefors,E.Sönmez,S.Chartier,P.Lindberg,C.Schick,A.Rydberg,andH.Schumacher 1467 A4-bitCMOSPhaseShifterUsingDistributedActiveSwitches.................................. D.-W.KangandS.Hong 1476 FieldAnalysisandGuidesWaves ANewBrillouinDispersionDiagramfor1-DPeriodicPrintedStructures .................................................... ................................................................... P.Baccarelli,S.Paulotto,D.R.Jackson,andA.A.Oliner 1484 ANonlinearFinite-ElementLeaky-WaveguideSolver ...................................P.C.AllilomesandG.A.Kyriacou 1496 EffectsofLossesontheCurrentSpectrumofaPrinted-CircuitLine............... J. Bernal,F.Mesa,andD.R.Jackson 1511 (ContentsContinuedonBackCover) (ContentsContinuedfromFrontCover) CADAlgorithmsandNumericalTechniques MicrowaveCircuitDesignbyMeansofDirectDecompositionintheFinite-ElementMethod .............................. ..................................................................................................... V.delaRubiaandJ.Zapata 1520 FiltersandMultiplexers Bandwidth-CompensationMethodforMiniaturizedParallelCoupled-LineFilters ........................................... ............................................................................................S.-S.Myoung,Y.Lee,andJ.-G.Yook 1531 MiniaturizedDual-ModeRingBandpassFiltersWithPatternedGroundPlane .......R.-J.Mao,X.-H.Tang,andF.Xiao 1539 Packaging,Interconnects,MCMs,Hybrids,andPassiveCircuitElements DesignandHighPerformanceofaMicromachined -BandRectangularCoaxialCable.................................... ....................................................................... M.J.Lancaster,J.Zhou,M.Ke,Y.Wang,andK.Jiang 1548 InstrumentationandMeasurementTechniques ASwept-FrequencyMeasurementofComplexPermittivityandComplexPermeabilityofaColumnarSpecimenInserted inaRectangularWaveguide ...................................................................................... A.Nishikata 1554 PhaseandAmplitudeNoiseAnalysisinMicrowaveOscillatorsUsingNodalHarmonicBalance........................... ........................................................................................... S.Sancho,A.Suárez,andF.Ramirez 1568 InformationforAuthors ............................................................................................................ 1584 IEEEMICROWAVETHEORYANDTECHNIQUESSOCIETY TheMicrowaveTheoryandTechniquesSocietyisanorganization,withintheframeworkoftheIEEE,ofmemberswithprincipalprofessionalinterestsinthefieldofmicrowavetheory andtechniques.AllmembersoftheIEEEareeligibleformembershipintheSocietyuponpaymentoftheannualSocietymembershipfeeof$14.00,plusanannualsubscriptionfee of$20.00peryearforelectronicmediaonlyor$40.00peryearforelectronicandprintmedia.Forinformationonjoining,writetotheIEEEattheaddressbelow.Membercopiesof Transactions/Journalsareforpersonaluseonly. ADMINISTRATIVECOMMITTEE J.S.KENNEY, President J.MODELSKI, PresidentElect K.G.GARD, Secretary N.KOLIAS, Treasurer L.BOGLIONI D.HARVEY L.KATEHI T.LEE A.MORTAZAWI B.PERLMAN W.SHIROMA K.VARIAN K.WU S.M.EL-GHAZALY J.HAUSNER B.KIM J.LIN V.J.NAIR A.ROSEN R.SNYDER R.WEIGEL R.YORK M.HARRIS K.ITOH N.KOLIAS HonoraryLifeMembers DistinguishedLecturers PastPresidents T.ITOH T.S.SAAD K.TOMIYASU G.BOECK B.KIM J.C.RAUTIO M.SHUR K.VARIAN(2006) A.A.OLINER P.STAECKER L.YOUNG W.HOEFER J.LASKAR D.ROOT P.SIEGEL K.C.GUPTA(2005) T.ITOH V.LUBECKE D.RYTTING A.SUAREZ R.J.TREW (2004) MTT-SChapterChairs Albuquerque:S.BIGELOW Foothill: C.ANTONIAK NorthJersey:K.DIXIT SouthAfrica:P.W.VANDERWALT Atlanta: D.LEATHERWOOD France:P.EUDELINE NorthQueensland: A.TSAKISSIRIS SouthAustralia:H.HANSEN Austria: R.WEIGEL Germany: W.HEINRICH NorthernNevada: B.S.RAWAT SouthBrazil: L.C.KRETLY Baltimore: A.D.BROWN Greece:I.XANTHAKIS Norway:S.E.WHEATLEY SoutheasternMichigan: L.M.ANNEBERG Beijing: Z.FENG HongKong: W.Y.TAM OrangeCounty:H.J.DELOSSANTOS SouthernAlberta: S.BOUMAIZA Beijing,Nanjing: W.X.ZHANG Houston:J.T.WILLIAMS Oregon: T.RUTTAN Spain: L.FEHARO Belarus: A.GUSINSKY Houston,CollegeStation: C.MADSEN Orlando:P.WAHID Springfield: P.R.SIQUEIRA Benelux: D.V.-JANVIER Hungary: T.BERCELI Ottawa: Q.YE Sweden: A.RYDBERG Brasilia: A.KLAUTAU,JR. Huntsville:H.G.SCHANTZ Philadelphia:J.NACHAMKIN Switzerland: J.HESSELBARTH Buenaventura: C.SEABURY India/Calcutta:P.K.SAHA Phoenix:C.WEITZEL Syracuse: E.ARVAS Buffalo: E.M.BALSER IndiaCouncil: K.S.CHARI Poland:M.P.MROZOWSKI Taipei: C.-S.LU Bulgaria: K.ASPARUHOVA Israel:S.AUSTER Portugal: C.A.CARDOSOFERNANDES Thailand: M.KRAIRIKSH CedarRapids/CentralIowa: D.JOHNSON JapanCouncil:Y.TAKAYAMA Princeton/CentralJersey:W.CURTICE/A.KATZ Toronto: G.V.ELEFTHERIADES CentralNewEngland: K.ALAVI Kitchener-Waterloo:R.R.MANSOUR Queensland:A.ROBINSON Tucson: N.BURGESS/S.MORALES Central&SouthItaly: S.MACI Lithuania:V.URBANAVICIUS RiodeJaneiro: J.R.BERGMANN Turkey: O.A.CIVI CentralNo.Carolina:T.IVANOV LongIsland/NewYork:J.COLOTTI Rochester:S.M.CICCARELLLI/J.VENKATARAMAN TwinCities: M.J.GAWRONSKI Chicago: Z.LUBIN LosAngeles,Coastal:A.SHARMA Romania:I.SIMA UK/RI: A.REZAZADEH Cleveland: G.PONCHAK LosAngeles,Metro: J.WEILER Russia,Nizhny-Novgorod: Y.BELOV Ukraine,CentralKiev: Y.POPLAVKO Columbus:F.TEIXEIRA Malaysia:Z.AWANG Russia,SaintPetersburg:M.SITNIKOVA Ukraine,East: A.A.KIRILENKO Connecticut:C.BLAIR/R.ZEITLER Melbourne:J.KRALOVEC Russia,Moscow:V.KALOSHIN Ukraine,Rep.ofGeorgia:R.ZARIDZE Croatia: Z.SIPUS Milwaukee:S.G.JOSHI Russia,Saratov-Penza: N.RYSKIN Ukraine,Vinnitsya:V.DUBOVOY Czech/Slovakia: P.HAZDRA MohawkValley: P.RATAZZI SaintLouis:D.MACKE Ukraine,West: I.ISAYEV Dallas: R.EYE MonterreyMexico: R.M.RODRIGUEZ-DAGNINO SanDiego: J.TWOMEY Venezuela: M.PETRIZZELLI Dayton: A.TERZOUOLI, JR. Montreal:K.WU SantaClaraValley/SanFrancisco: J.J.SOWERS Victoria:A.MITCHELL Denver: M.JANEZIC NewHampshire: T.PERKINS Seattle:K.POULSON VirginiaMountain: D.MILLER EasternNo.Carolina: D.PALMER NewJerseyCoast: D.REYNOLDS SeoulCouncil: H.-Y.LEE WashingtonDC/NorthernVirginia:J.QIU Egypt: I.A.SALEM NewSouthWales: G.TOWN Siberia,Novosibirsk: V.SHUBALOV Winnipeg: V.OKHMATOVSKI Finland: T.KARTTAAVI NewZealand: J.MAZIERSKA Siberia,Tomsk: O.STUKACH Yugoslavia: B.MILOVANOVIC FloridaWestCoast: K.O’CONNOR NorthItaly: G.GHIONE Singapore: O.B.LEONG Editors-In-Chief DYLAN WILLIAMS AssociateEditors NIST Boulder,CO80305USA DANIELDEZUTTER YOSHIO NIKAWA ZOYA POPOVIC RICHARD SNYDER Phone:+13034973138 Universiteit Gent Kokushikan Univ. Univ.ofColorado,Boulder RSMicrowaveCompany Fax:+13034973970 Belgium Japan USA USA email:[email protected] email:[email protected] email:[email protected] email:[email protected] email:[email protected] AMIRMORTAZAWI KENJI ITOH JOSÉ PEDRO SANJAY RAMAN RUEY-BEEI WU Univ. of Michigan MitsubishiElectronics Univ. of Aveiro VirginiaPolytech.Inst.andStateUniv. NationalTaiwanUniv. AnnArbor,MI48109-2122USA Japan Portugal USA Taiwan, R.O.C. Phone:+17349362597 email:[email protected] email:jcp.mtted.av.it.pt email:[email protected] email:[email protected] Fax:+17346472106 JENSHAN LIN ALEXANDERYAKOVLEV email:[email protected] Univ. of Florida Univ. of Mississippi USA USA email:[email protected] email:[email protected] M.GOLIO, Editor-in-Chief,IEEEMicrowaveMagazine G.E.PONCHAK, Editor-in-Chief,IEEEMicrowaveandWirelessComponentLetters T.LEE, WebMaster IEEE Officers LEAHH.JAMIESON, PresidentandCEO JOHNBAILLIEUL, VicePresident,PublicationServicesandProducts LEWISTERMAN, President-Elect PEDRORAY, VicePresident,RegionalActivities CELIAL.DESMOND, Secretary DONALDN.HEIRMAN, President,IEEEStandardsAssociation DAVIDGREEN, Treasurer PETERSTAECKER, VicePresident,TechnicalActivities MICHAELR.LIGHTNER, PastPresident JOHNMEREDITH, President,IEEE-USA MOSHEKAM, VicePresident,EducationalActivities STUARTA.LONG, Director,DivisionIV—ElectromagneticsandRadiation IEEE Executive Staff JEFFRYW.RAYNES, CAE,ExecutiveDirector&ChiefOperatingOfficer DONALDCURTIS, HumanResources MATTHEWLOEB, CorporateStrategy&Communications ANTHONYDURNIAK, PublicationsActivities RICHARDD.SCHWARTZ, BusinessAdministration JUDITHGORMAN, StandardsActivities CHRISBRANTLEY, IEEE-USA CECELIAJANKOWSKI, RegionalActivities MARYWARD-CALLAN, TechnicalActivities BARBARACOBURNSTOLER, EducationalActivities SALLYA.WASELIK, InformationTechnology IEEE Periodicals Transactions/JournalsDepartment StaffDirector:FRANZAPPULLA EditorialDirector: DAWNMELLEY ProductionDirector: PETERM.TUOHY ManagingEditor:MONAMITTRA SeniorEditor:CHRISTINAM.REZES IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES(ISSN0018-9480)ispublishedmonthlybytheInstituteofElectricalandElectronicsEngineers,Inc.Responsibilityforthe contentsrestsupontheauthorsandnotupontheIEEE,theSociety/Council,oritsmembers.IEEECorporateOffice:3ParkAvenue,17thFloor,NewYork,NY10016-5997.IEEEOperations Center:445HoesLane,P.O.Box1331,Piscataway,NJ08855-1331.NJTelephone:+17329810060.Price/PublicationInformation:Individualcopies:IEEEMembers$20.00(firstcopy only),nonmember$85.00percopy.(Note:Postageandhandlingchargenotincluded.)Memberandnonmembersubscriptionpricesavailableuponrequest.Availableinmicroficheandmicrofilm. CopyrightandReprintPermissions:Abstractingispermittedwithcredittothesource.Librariesarepermittedtophotocopyforprivateuseofpatrons,providedtheper-copyfeeindicatedinthe codeatthebottomofthefirstpageispaidthroughtheCopyrightClearanceCenter,222RosewoodDrive,Danvers,MA01923.Forallothercopying,reprint,orrepublicationpermission,write toCopyrightsandPermissionsDepartment,IEEEPublicationsAdministration,445HoesLane,P.O.Box1331,Piscataway,NJ08855-1331.Copyright©2007byTheInstituteofElectrical andElectronicsEngineers,Inc.Allrightsreserved.PeriodicalsPostagePaidatNewYork,NYandatadditionalmailingoffices.Postmaster:SendaddresschangestoIEEETRANSACTIONSON MICROWAVETHEORYANDTECHNIQUES,IEEE,445HoesLane,P.O.Box1331,Piscataway,NJ08855-1331.GSTRegistrationNo.125634188. DigitalObjectIdentifier10.1109/TMTT.2007.903659 IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,VOL.55,NO.7,JULY2007 1417 SiGe HBT’s Small-Signal Pi Modeling Tian-RenYang, JuliusMing-LinTsai, Chih-LongHo, and RobertHu Abstract—This paper presents the derivation procedure used indeterminingtheparametersinSiGeHBT’ssmall-signalmodel wherethePicircuitconfigurationisemployed.Forboththetran- sistor’s external base–collector capacitor and its base spreading resistor, new close-form expressions have been derived. Com- parisons with existing approaches vindicate the feasibility and effectiveness of our formulations. With the impact of the lossy substrate effectively modeled and the frequency dependency of the transconductance properly addressed, this proposed extrac- tion approach demonstrates accurate results up to 30 GHz with differentbiasconditions. IndexTerms—Basespreadingresistor,HBT,Pimodel,SiGe. Fig. 1. HBT’s small-signal Pi model where the substrate network consists of C , C , and R . Transconductance G is set to I. INTRODUCTION G e =(1+j!(cid:28) ). FOR THE small-signalmodeling ofan HBT,eitherTee or Pi circuit configuration can be used [1]–[5]. Though the Tee circuit reflects the device-physics aspect of this transistor, the Pi circuit in general provides better insight into designing circuits [6], [7] and, thus, will be explored in this paper. As shown in Fig. 1, the SiGe HBT’s Pi model consists of the intrinsic transistor, which is enclosed by the dotted box, the basespreadingresistor ,thelossysubstratenetwork , ,and [8]–[10],theexternalparasiticcapacitor , the base, emitter, and collector resistors , , and , and theinputandoutputpadcapacitors and .Twotime Fig.2. SiGeHBTundertest.(a)Photograph.(b)Schematicofthetransistor constants and areaddedontothetransconductance to wheretheemitterisconnectedtoground,thebaseistheinput,andthecollector accountforitsmagnitudeandphasefrequencydependency[5], istheoutput. [11]–[15]. Output impedance of this voltage-induced current sourceisassumedinfinite.Asiswellknown,onechallengein layout consists of four fingers, with each 5.1- m long. Two- SiGeHBT’ssmall-signalPimodelingcomesfromthepresence portshort,open,load,andthru(SOLT)calibrationisperformed of ,whoselocationbetween andtheintrinsictransistor using 100- m Cascade probes on the ceramic substrate pro- makes the reliable derivation of both and , so far, videdbythesamevendor.WiththeAgilentnetworkanalyzer’s largelybywayofadditionalteststructuresornumerically[3], outputpowerset to 10dBm,losses duetothe additionalca- [16]–[19].Inthispaper,properclose-formexpressionsforthese blesandbias-Ts’willpullthepowerleveldownby0.2dB/GHz. two parameters have been worked out and will be compared DC bias for this transistor comes from HP4142B modular dc withexistingapproaches[20]–[22]. source/monitor. The30-GHzupperfrequency ismainlydeter- Fig.2showstheHBTundertest,whichisfabricatedusinga mined by the available frequency range of the coaxial cables commercial 0.35- m SiGe–BiCMOSprocessandhasbulkre- usedinthemeasurement. sistivityof8 cmforthesubstrate.Thebasepolyresistance is200 square,whilethesilicidedbasepolyforinter-connec- II. HBTSMALL-SIGNALPIMODELING tionhasamuchlowerresistanceofafew square.Theemitter A. Determinationof , , , ,and ManuscriptreceivedOctober28,2006;revisedJanuary28,2007.Theworkof Fig. 3 shows the flowchart in determining the transistor’s R.HuwassupportedbytheNationalScienceCouncil,R.O.C.,underContract small-signalparameters. Tofindoutthe parasiticsofthe input NSC95-2221-E-009-315. T.-R.YangwaswiththeDepartmentofElectronicsEngineering,National and output pads, an open-pad test structure is designed where ChiaoTungUniversity,Hsin-Chu,Taiwan300,R.O.C.,andalsowithVIATech- the transistor itself has been removed. Frequency-independent nologies,Taipei,Taiwan100,R.O.C.HeisnowservingintheR.O.C.Army. capacitance can, therefore, be obtained as fF, J.M.-L.TsaiandC.-L.HoarewithVIATechnologies,Taipei,Taiwan100, R.O.C. fF.The measuredcross-coupling capacitance be- R.HuiswiththeDepartmentofElectronicsEngineering,NationalChiao tweeninputandoutputisthreeorderslessandcanbeneglected. TungUniversity,Hsin-Chu,Taiwan300,R.O.C.(e-mail:shuihushuihu@yahoo. Usinganappropriatedeembeddingprocedure,thesecapacitors com). DigitalObjectIdentifier10.1109/TMTT.2007.900214 can be removed from the transistor’s model. Since , , 0018-9480/$25.00©2007IEEE 1418 IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,VOL.55,NO.7,JULY2007 Fig. 5. Reverse-biased HBT for the determination of substrate network. (a)Schematic.(b)MeasuredandsimulatedsubstrateadmittanceY versus frequency.Thesolidcurvesarethemeasuredresults;thedashedcurvesarethe Fig. 3. Flowchart for the determination of the transistor’s small-signal simulatedoneswithC =21:4fF,C =57:5fF,andR =128(cid:10). parameters. thereverse-biasedintrinsictransistorresemblestwoseparateca- pacitors,asshowninFig.5(a).Asfaras and arecon- cerned, port 1 on the left of the schematic can be connected to ground and the signal is injected into port 2 on the right. If ismuchsmallerthantheimpedanceoftheseries cir- cuit, then most of the current passing through from port 2 will flow down the branch rather than the branch. By treating this as open circuit, we then have ,where (1) Fig.4. SaturatedHBTforthedeterminationofR ,R ,andR .(a)Schematic. (b)Byextrapolatingthemeasuredresistancetothosecorrespondingtoinfinite basecurrent,wehaveR =7:5(cid:10),R =4:1(cid:10),andR =4:3(cid:10).Thesolid Since the complex-number can provide only two curvesaremeasuredat2GHz;thedashedonesareat5GHz. constraints at each frequency point, analytical solutions (of genuinely frequency independent) for the three parameters constructing the substrate network cannot be obtained; rather, and are beneath the first-layer metal, they are beyond the numericalalgorithmsneedtobeused.As reach of a short-circuit test structure, but can be determined by forcing the transistor into saturation [23]. By setting the current flowing out of the collector to be half of the base (2) current,weslowlyincreasethebasecurrentandvoltage,from 1 and 18.8 mV, respectively, to 11 and 95 mV, respectively. Since this saturated intrinsic transistor can now be modeled and as two conducting diodes, as shown in Fig. 4(a), a Tee circuit configuration,especiallyatlowfrequency,emerges.Byextrap- olatingthemeasuredresistancetothatcorrespondingtoinfinite base current, we have the frequency-independent , , and (3) equal to 7.5, 4.1, and 4.3 , respectively, as illustrated in Least squares fit over the whole frequency range then gives Fig. 4(b). Here, the solid curves are those corresponding to fF, fF,and ,respec- 2 GHz, and the dashed curves are for 5 GHz. The impacts of tively.Fig.5(b)showstheadmittanceofthesubstratenetwork. both and on the transistor’s Pi model are ready to be Here,thesolidcurvesarethemeasuredresults;theoverlapping removed now; , however, will be temporarily retained for dashedcurvesaretheirsimulatedcounterparts.Ofcourse,other thedeterminationinSectionII-Bofthesubstratenetwork. similarformulationscanalsobeemployedforthederivationof , ,and [9],[10].Ifonlyseries[24],orparallel, circuitis usedtomodelthe substratenetwork, close-form B. DeterminationofSubstrateNetwork analytical expressions can indeed be written, but the resulting Thoughmathematicallythesubstratenetworkcanbedecided parameters will be highly frequency dependent and, thus, are when the transistor is in saturation, the small in-parallel notuseful. renders the derived substrate parameter values highly suscep- C. Determinationof tibletomeasurementuncertainties.Reliableresultscanbeob- tained by reverse-biasingthe transistor. With V, With both the substrate network and readily removed A, V,and A, from the schematic of the reverse-biased transistor, analytical YANGetal.:SiGeHBT’SSMALL-SIGNALPiMODELING 1419 Fig.6. Reverse-biasedHBTwherethesubstratenetworkandR inthepre- viousschematichavebeendeembeddedforthepurposeofdeterminingC . Fig.7. Parametervaluesofthereverse-biasedtransistorwithdifferentbase (a)Schematic.(b)MeasuredC versusfrequency. voltages.(a)R versusV wherethecirclemarkersarethederivedresults. (b)C ,C ,andC versusV . solutions for the remaining circuit components, as shown in Fig.6(a),canbeobtainedonce and areknownwhere (4) Bydefining as (5) Fig.8. MeasuredandsimulatedS-parametersofthereverse-biasedHBT.The we have solidcurvesarethemeasuredresults;theoverlappingdashedcurvesaretheir simulatedcounterparts. Inthe conventional approachusing IC-CAP,detailed layout information, dc capacitance measurement, and numerical fine (6) tuninghavetobeemployedforthedeterminationof (and ). Besides, it postulates that has to be independent of frequency. Recently, an analytical formulation for of a If the admittance matrixof the , ,and sub-circuitis normal-biasedtransistorhasbeenproposed[20].However,the designatedas ,then extensive use of least squares fits makes it to a large degree resemble a numerical approach. In our case, at each fre- (7) quencypointcanbedirectlycalculatedandcompared.Indeed, asdemonstratedinSectionII-Don ,sometimesmorethan and, thus, oneanalyticalsolutionscanbewrittenforacertainparameter; however,notallofthemrenderthesameresultovertheintended frequencyrange. (8) Figs. 8 and 9 show the -parameters of the reverse-biased transistor. Here, the solid curves are the measured results; the Themeasuredresultsare fF, , overlappingdashedcurvesaretheirsimulatedcounterparts.Bias fF,andasshowninFig.6(b), fF.Thethreeother conditionandthecomponentvaluesusedinthesimulationare expressionsderivedusing(7)alsogivethesamevalue.If tabulatedinTableI. we change the base voltage while keeping the collector node grounded,differentreverse-biasedparametervaluescanbeob- tained,asillustratedinFig.7,whereboth and arein- D. DeterminationofNormal-Biased dependentofthebasevoltageinthisreverse-biasedcondition. Now,theimpactof onthetransistor’sPimodelcanbere- Now, with the bias of the transistor being set at V, moved,i.e.,deembedded. mA(currentdensity1.13mA m ), V,and 1420 IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,VOL.55,NO.7,JULY2007 Fig.11. S and1=Y curvesusedinderivingR .(a)S usedfortheex- trapolationof(16)from0.1to30GHz.(b)1=Y usedfortheextrapolationof (17)from0.5to30GHz.Bothcurvesmoveclockwiseasfrequencyincreases. Fig.9. Measured(solid)andsimulated(dashed)S-parametersofthereverse- biasedHBTontheSmithchart. On the other hand, if the transconductance can be treated as a real number, we can also express in terms of and TABLEI REVERSE-BIASEDTRANSISTOR [21],i.e., (12) with (13) and (14) Fig.10. R andthenormal-biasedintrinsictransistor.(a)Schematic.(b)Mea- suredR wherecurve1isderivedusing(11),curve2isusing(12),andcurve 3isusingthealgorithmsuggestedin[20]. Here, the current flowing through needs to be assumed much larger than that on the branch. Fig. 10(b) displays A,thenormal-biased ,asshowninFig.10(a), thederived wherecurve1comesfromourproposed(11), canbedeterminedwhenboth and areknown.As theupperboundcurve2isfrom(12),andthesomehowlower boundcurve3isusingthealgorithmsuggestedin[20].Thedis- crepancybetweenthesethreecurvesinstigatesafurthernumer- icalsurveyasfollows. AssuggestedintheIC-CAPuser’smanual,byassumingthe transconductancetobearealnumber and (9) i.e., (10) (15) then the input impedance (with 50- output loading) can be therefore, expressedas (16) Extrapolation of the corresponding contour on the Smith (11) charttoinfinitefrequencyresultsina of25 ,asillustrate inFig.11(a).Alternatively,byassuming tobemuchlarger YANGetal.:SiGeHBT’SSMALL-SIGNALPiMODELING 1421 than the impedance of at high enough frequency, the in- tended canbeobtainedbyextrapolatingthe curveto the -axis[22],as (17) In Fig. 11(b), this is around 25 . Both numerical ap- proaches,therefore,confirmouranalyticalmethod. Regarding the derivation of , though the numerical ap- proachesrendercorrectresults,theyareincapableofrevealing thefrequencydependence(orindependence)of and,thus, Fig. 12. Measured and simulated transconductance. (a) Magnitude of cannotbeviewedaswidebandmodelinginthisrespect.Strictly tYhe (cid:0)traYnsco;ntdhuectoavnecrelapwphinergedtahsehesdolcidurvceurivseitissstihmeulmateedasucroeudntererpsualrtt,wi.ieth., speaking, a valid exists only at infinite frequency. On G =123:8mS,(cid:28) =1:5ps,and(cid:28) =1:2ps.(b)Phaseofthetranscon- the other hand, since the frequency variable is not used in the ductancewherethesolidcurveisthemeasuredresult;theoverlappingdashed three discussed analytical (and, thus, wideband) methods, curve1isitssimulatedcounterpart;dashedcurve2isthesimulatedphasewith only(cid:28) ,butno(cid:28) ;dashedcurve3iswith(cid:28) only. at every frequency point can be independently obtained and compared.Amongthethree,(12)hasanear-constant over the widest bandwidth; however, the 6- offset relative to all nonzero inthetransconductance,theconventional expres- theotherdiscussedapproacheslimitsitsapplication.Whilethe sionneedstoberevised.As one suggested in [20] gives valid results for frequency from 15 to 30 GHz, our proposed (11) can have satisfying for frequency from down below 10 to 30 GHz and, thus, is the most preferred. Furthermore,sincethis isdirectlyderivedattheintended biaspoint,ratherthanadoptedfromvaluesusingotherbiascon- ditions,thecurrentcrowdingeffect[25]–[28],evenifexists,will notaffectthevalidityofourproposedformulation,andsincethe (19) simulated -parametersagreewiththeirmeasuredcounterparts, asdemonstratedinSectionII-E,itisjustfineusingasingle , where the leakage currents flowing through and are ratherthanamorecomplicatedsub-circuit[29],inmodelingthis assumednegligibleathighfrequencyintheapproximation,we partofthetransistor. then have (20) E. DeterminationofNormal-BiasedIntrinsicParameters With deembedded, parameters of the normal-bi- ased intrinsic transistor can, therefore, be determined as and fF, , and fF. With the transconductancedefinedas[5],[11]–[13] (21) Fig.13showsthe curvesinlogarithmicandlinearscales.In (18) Fig.13(a),solidcurve1correspondstothetotaltransistor,solid curve2iswiththeintrinsictransistoronly,thedashedstraight where istheangularfrequency,wethenhave mS, linesaretheirhigh-frequencylinearapproximationsinthislog- ps,and ps.InFig.12(a),thesolidcurveis arithmicscale.Fig.13(b)hasthesameresults,butexpressedin themagnitudeofthemeasured andtheoverlappingdashed linearscale.Thus, is42GHzwhenthetotaltransistorisem- curveisitssimulatedcounterpart.Apparently, isneededfor ployed,asbyextrapolatingthelogarithmiccurvetothe -axis, explainingthismagnitudefrequencydependency.InFig.12(b), andwehave equalto56GHzfortheintrinsicresistor,which thesolidcurveisthephaseofthemeasured ,theoverlapping agreeswiththe54.1GHzcalculatedusing(20);itis58.4GHz dashedcurve1isitssimulatedcounterpartwithboth and using(21),alsoavalidapproximation.Likewise,bydefiningthe employed.Ifweretainthetimeconstant whileomitting , gain as[30] or retain , but omitting , shown as dashed curves 2 and 3, respectively,phasediscrepancycanbeobserved. Knowingtheintrinsictransistor’sparametersnowenablesthe (22) calculation ofthe cutoff frequency ,which is the frequency wherethemagnitudeofthecurrentgain isequalto1.With 1422 IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,VOL.55,NO.7,JULY2007 Fig.13. Magnitudeofh versusfrequency.(a)Inlogarithmicscalewhere thesolidcurve1iswiththetotaltransistor;solidcurve2iswiththeintrinsic transistoronly.Thetwodashedcurvesaretheirhigh-frequencylinearapproxi- Fig.16. Measured(solidline)andsimulated(dottedline)S-parametersofthe mationforderivingf .(b)Inlinearscale. normal-biasedHBTontheSmithchart. TABLEII NORMAL-BIASEDTRANSISTOR Fig.14. MagnitudeofgainUversusfrequency.(a)Inlogarithmicscalewhere thetwooverlappingsolidcurvesarethemeasuredandsimulatedresultswith thetotaltransistor;thedashedcurveisthehigh-frequencylinearapproximation forderivingf .(b)Inlinearscale. Fig.17. MeasuredandsimulatedS-parametersoftheHBTbiasedatV =2V, I =6:6mA,V =0:95V,andI =65:7(cid:22)A.Thesolidcurvesarethemea- suredresults;theoverlappingdashedcurvesaretheirsimulatedcounterparts. Theerror(cid:15) is0.38%. asshowninFigs.15and16.Here,thesolidcurvesarethemea- suredresults;theoverlappingdashedcurvesaretheirsimulated counterparts.Ifwedefinetheerror as Fig.15. MeasuredandsimulatedS-parametersofthenormal-biasedHBT.The solidcurvesarethemeasuredresults;theoverlappingdashedcurvesarethe simulatedones.Theerror(cid:15) definedin(23)is0.13%. (23) where is the stability factor, the maximum oscillation fre- quency ,whichisthefrequencyatwhich isequalto1, where the summation is over the frequency points canbeeasilyobtained.Boththemeasured -parametersandthe from0.1to30GHz.Thecalculatederror is0.13%.Thebias model-based -parameters give the same GHz,as conditionandparametervaluesusedinthesimulationaretabu- showninFig.14. latedinTableII. AccuracyoftheHBT’ssmall-signalPimodelingcanbever- Applyingthesamecollectorandbasevoltages,anothertran- ifiedbycomparing themeasured andsimulated -parameters, sistor of the same size on the same wafer is measured, with YANGetal.:SiGeHBT’SSMALL-SIGNALPiMODELING 1423 TABLEIII TRANSISTORBIASEDATDIFFERENTBASEVOLTAGES andthen0.73mA,withthecorrespondingcurrentdensitybeing 1.08,0.46,and0.12mA m ,respectively.Thesimulatedre- sultsinthesecasesagreewiththeirrespectivemeasuredcoun- terparts,asshowninFigs.18and19.Ontheotherhand,if is changedfrom0.95to1.0V, willincreasefrom6.6to11.8mA Fig.18. MeasuredandsimulatedS-parametersoftheHBTbiasedatV =2V, (currentdensity1.93mA m )withslightlyimprovedgainre- I =2:8mA,V =0:90V,andI =19:4(cid:22)A.Thesolidcurvesarethemea- sponse at low frequency; the simulated results still follow the suredresults;theoverlappingdashedcurvesaretheirsimulatedcounterparts. measured ones, as shown in Fig. 20. Both and under Theerror(cid:15) is0.27%. thesedifferentbasevoltagesaretabulatedinTableIII. III. CONCLUSION In this paper, new procedures for deriving the SiGe HBT’s small-signalPimodelinghavebeendeveloped.Fortheexternal base–collector capacitor and the base spreading resistor ,reliableanalyticalsolutionshavebeenproposedandcom- pared with other methods. The lossy substrate effect has also beenappropriatelymodeled.Agreementsbetweenthemeasured andsimulatedresultsineachderivationstepthusvindicatesthe accuracyandefficiencyofournewmodelingapproach.Inaddi- tiontotheintendednormal-biasedcondition,thisproposedap- proachshowssatisfyingresultsfordifferentbiasingconditions. Therefore, circuits designed using the HBT’s small-signal Pi modelcanbeaccuratelyanalyzed.Inthefuture,weplantoex- Fig.19. MeasuredandsimulatedS-parametersoftheHBTbiasedatV =2V, tendthismodelingworktoaddresseachparameter’snonlinear I =0:73mA,V =0:85V,andI =4:6(cid:22)A.Thesolidcurvesarethemea- effect,thusfacilitatingthedesignofmixers. suredresults;theoverlappingdashedcurvesaretheirsimulatedcounterparts. Theerror(cid:15) is0.86%. ACKNOWLEDGMENT Theauthorswouldliketothanktheanonymousreviewersof thisTRANSACTIONSforsuggestionsandencouragement. REFERENCES [1] U.Basaran,N.Wieser,G.Feiler,andM.Berroth,“Small-signaland high-frequencynoisemodelingofSiGeHBTs,”IEEETrans.Microw. TheoryTech.,vol.53,no.3,pp.919–928,Mar.2005. [2] B.LiandS.Prasad,“Basicexpressionsandapproximationsinsmall- signalparameterextractionforHBT’s,”IEEETrans.Microw.Theory Tech.,vol.47,no.5,pp.534–539,May1999. [3] B.Li,S.Prasad,L.W.Yang,andS.C.Wang,“Asemianalyticalpa- rameter-extractionprocedureforHBTequivalentcircuit,”IEEETrans. Microw.TheoryTech.,vol.46,no.10,pp.1427–1435,Oct.1998. [4] D.A.TeeterandW.R.Curtice,“ComparisonofhybridPiandTeeHBT circuittopologiesandtheirrelationshiptolargesignalmodeling,”in IEEEMTT-SInt.Microw.Symp.Dig.,Denver,CO,Jun.1997,vol.2, pp.375–378. Fig.20. MeasuredandsimulatedS-parametersoftheHBTbiasedatV =2V, [5] A.Schuppen,U.Erben,A.Gruhle,H.Kibbel,H.Schumacher,and I =11:8mA,V =1:0V,andI =124(cid:22)A.Thesolidcurvesarethemea- U.Konig,“EnhancedSiGeheterojunctionbipolartransistorswith160 GHz-f ,” in Int. Electron Device Meeting Tech. Dig., 1995, pp. suredresults;theoverlappingdashedcurvesaretheirsimulatedcounterparts. 743–746. Theerror(cid:15) is0.55%. [6] R.Hu,“Wide-bandmatchedLNAdesignusingtransistor’sintrinsic gate–draincapacitor,”IEEETrans.Microw.TheoryTech.,vol.54,no. 3,pp.1277–1286,Mar.2006. [7] R.HuandT.H.Sang,“On-wafernoiseparametermeasurementusing consistentresultsshowninFig.17.If ischangedfrom0.95 widebandfrequency-variationmethod,”IEEETrans.Microw.Theory to0.9Vandthen0.85V, willdecreasefrom6.6to2.8mA Tech.,vol.53,no.7,pp.2398–2402,Jul.2005.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.