ebook img

IEEE MTT-V055-I03 (2007-03) PDF

156 Pages·2007·19.858 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview IEEE MTT-V055-I03 (2007-03)

MARCH2007 VOLUME55 NUMBER3 IETMAB (ISSN0018-9480) PAPERS LinearandNonlinearDeviceModeling VolterraBehavioralModelforWidebandRFAmplifiers ........................................................................ .............................................................. C.Crespo-Cadenas,J.Reina-Tosina,andM.J.Madero-Ayora 449 ActiveCircuits,SemiconductorDevices,andICs DesignandAnalysisofTransmit/ReceiveSwitchinTriple-WellCMOSforMIMOWirelessSystems .................... ........................................................................................................... A.PohandY.P.Zhang 458 AHigh-PerformanceCMOSVoltage-ControlledOscillatorforUltra-Low-VoltageOperations ............................. ........................................................................................................ H.-H.HsiehandL.-H.Lu 467 A15/30-GHzDual-BandMultiphaseVoltage-ControlledOscillatorin0.18- mCMOS..................................... ........................................................................................... H.-H.Hsieh,Y.-C.Hsu,andL.-H.Lu 474 DesignofClassEAmplifierWithNonlinearandLinearShuntCapacitancesforAnyDutyCycle ......................... ................................................................................. A.Mediano,P.Molina-Gaudó,andC.Bernal 484 AnalysisandDesignofaDynamicPredistorterforWCDMAHandsetPowerAmplifiers ................................... .............................................. S.Yamanouchi,Y.Aoki,K.Kunihiro,T.Hirayama,T.Miyazaki,andH.Hida 493 Millimeter-WaveandTerahertzTechnologies TheDirectDetectionEffectintheHot-ElectronBolometerMixerSensitivityCalibration................................... .................................................. S.Cherednichenko,V.Drakinskiy,T.Berg,E.L.Kollberg,andI.Angelov 504 FieldAnalysisandGuidedWaves ModelingEffectsofRandomRoughInterfaceonPowerAbsorptionBetweenDielectricandConductiveMediumin3-D Problem ...................................................................................X.Gu,L. Tsang,andH.Braunisch 511 Modelingof3-DSurfaceRoughnessEffectsWithApplicationto -CoaxialLines ...... M.V.Lukic´ andD.S.Filipovic 518 (ContentsContinuedonBackCover) (ContentsContinuedfromFrontCover) CADAlgorithmsandNumericalTechniques EquivalentSPICECircuitsWithGuaranteedPassivityFromNonpassiveModels .........A.LameckiandM.Mrozowski 526 SingularTetrahedralFiniteElementsforVectorElectromagnetics .................................................J.P.Webb 533 Space-MappingOptimizationWithAdaptiveSurrogateModel................................. S.KozielandJ.W.Bandler 541 FiltersandMultiplexers CeramicLayer-By-LayerStereolithographyfortheManufacturingof3-DMillimeter-WaveFilters........................ ......................................................... N.Delhote,D.Baillargeat,S.Verdeyme,C.Delage,andC.Chaput 548 Packaging,Interconnects,MCMs,Hybrids,andPassiveCircuitElements HeatConductioninMicrowaveDevicesWithOrthotropicandTemperature-DependentThermalConductivity........... ............................................................................................................................. J.Ditri 555 Low-LossPatternedGroundShieldInterconnectTransmissionLinesinAdvancedICProcesses ........................... ................................................................. L.F.Tiemeijer,R.M.T.Pijper,R.J.Havens,andO.Hubert 561 CompactLeft-HandedTransmissionLineasaLinearPhase–VoltageModulatorandEfficientHarmonicGenerator ..... ................................................................ H.Kim,A.B.Kozyrev,A.Karbassi,andD.W.vanderWeide 571 Microwave Photonics AnLTCC-BasedWirelessTransceiverforRadio-Over-FiberApplications.................................................... ............................................................................L.Pergola,R.Gindera,D.Jäger,andR.Vahldieck 579 Biological,Imaging,andMedicalApplications Developmentofa2.45-GHzLocalExposureSystemforInVivoStudyonOcularEffects................................... .... K.Wake,H.Hongo,S.Watanabe,M.Taki,Y.Kamimura,Y.Yamanaka,T.Uno,M.Kojima,I.Hata,andK.Sasaki 588 LETTERS Commentson“TOAEstimationforIR-UWBSystemsWithDifferentTransceiverTypes”.................. S. Nadarajah 597 Authors’Reply ........................................................................ I. Guvenc,Z.Sahinoglu,andP.V.Orlik 598 InformationforAuthors 599 IEEEMICROWAVETHEORYANDTECHNIQUESSOCIETY TheMicrowaveTheoryandTechniquesSocietyisanorganization,withintheframeworkoftheIEEE,ofmemberswithprincipalprofessionalinterestsinthefieldofmicrowavetheory andtechniques.AllmembersoftheIEEEareeligibleformembershipintheSocietyuponpaymentoftheannualSocietymembershipfeeof$14.00,plusanannualsubscriptionfee of$20.00peryearforelectronicmediaonlyor$40.00peryearforelectronicandprintmedia.Forinformationonjoining,writetotheIEEEattheaddressbelow.Membercopiesof Transactions/Journalsareforpersonaluseonly. ADMINISTRATIVECOMMITTEE J.S.KENNEY, President J.MODELSKI, PresidentElect K.G.GARD, Secretary N.KOLIAS, Treasurer L.BOGLIONI D.HARVEY L.KATEHI T.LEE A.MORTAZAWI B.PERLMAN W.SHIROMA K.VARIAN K.WU S.M.EL-GHAZALY J.HAUSNER B.KIM J.LIN V.J.NAIR A.ROSEN R.SNYDER R.WEIGEL R.YORK M.HARRIS K.ITOH N.KOLIAS HonoraryLifeMembers DistinguishedLecturers PastPresidents T.ITOH T.S.SAAD K.TOMIYASU G.BOECK B.KIM J.C.RAUTIO M.SHUR K.VARIAN(2006) A.A.OLINER P.STAECKER L.YOUNG W.HOEFER J.LASKAR D.ROOT P.SIEGEL K.C.GUPTA(2005) T.ITOH V.LUBECKE D.RYTTING A.SUAREZ R.J.TREW (2004) MTT-SChapterChairs Albuquerque:S.BIGELOW Foothill: C.ANTONIAK NorthJersey:K.DIXIT SouthAfrica:P.W.VANDERWALT Atlanta: D.LEATHERWOOD France:P.EUDELINE NorthQueensland: A.TSAKISSIRIS SouthAustralia:H.HANSEN Austria: R.WEIGEL Germany: W.HEINRICH NorthernNevada: B.S.RAWAT SouthBrazil: L.C.KRETLY Baltimore: A.D.BROWN Greece:I.XANTHAKIS Norway:S.E.WHEATLEY SoutheasternMichigan: L.M.ANNEBERG Beijing: Z.FENG HongKong: W.Y.TAM OrangeCounty:H.J.DELOSSANTOS SouthernAlberta: S.BOUMAIZA Beijing,Nanjing: W.X.ZHANG Houston:J.T.WILLIAMS Oregon: T.RUTTAN Spain: L.FEHARO Belarus: A.GUSINSKY Houston,CollegeStation: C.MADSEN Orlando:P.WAHID Springfield: P.R.SIQUEIRA Benelux: D.V.-JANVIER Hungary: T.BERCELI Ottawa: Q.YE Sweden: A.RYDBERG Brasilia: A.KLAUTAU,JR. Huntsville:H.G.SCHANTZ Philadelphia:J.NACHAMKIN Switzerland: J.HESSELBARTH Buenaventura: C.SEABURY India/Calcutta:P.K.SAHA Phoenix:C.WEITZEL Syracuse: E.ARVAS Buffalo: E.M.BALSER IndiaCouncil: K.S.CHARI Poland:M.P.MROZOWSKI Taipei: C.-S.LU Bulgaria: K.ASPARUHOVA Israel:S.AUSTER Portugal: C.A.CARDOSOFERNANDES Thailand: M.KRAIRIKSH CedarRapids/CentralIowa: D.JOHNSON JapanCouncil:Y.TAKAYAMA Princeton/CentralJersey:W.CURTICE/A.KATZ Toronto: G.V.ELEFTHERIADES CentralNewEngland: K.ALAVI Kitchener-Waterloo:R.R.MANSOUR Queensland:A.ROBINSON Tucson: N.BURGESS/S.MORALES Central&SouthItaly: S.MACI Lithuania:V.URBANAVICIUS RiodeJaneiro: J.R.BERGMANN Turkey: O.A.CIVI CentralNo.Carolina:T.IVANOV LongIsland/NewYork:J.COLOTTI Rochester:S.M.CICCARELLLI/J.VENKATARAMAN TwinCities: M.J.GAWRONSKI Chicago: Z.LUBIN LosAngeles,Coastal:A.SHARMA Romania:I.SIMA UK/RI: A.REZAZADEH Cleveland: G.PONCHAK LosAngeles,Metro: J.WEILER Russia,Nizhny-Novgorod: Y.BELOV Ukraine,CentralKiev: Y.POPLAVKO Columbus:F.TEIXEIRA Malaysia:Z.AWANG Russia,SaintPetersburg:M.SITNIKOVA Ukraine,East: A.A.KIRILENKO Connecticut:C.BLAIR/R.ZEITLER Melbourne:J.KRALOVEC Russia,Moscow:V.KALOSHIN Ukraine,Rep.ofGeorgia:R.ZARIDZE Croatia: Z.SIPUS Milwaukee:S.G.JOSHI Russia,Saratov-Penza: N.RYSKIN Ukraine,Vinnitsya:V.DUBOVOY Czech/Slovakia: P.HAZDRA MohawkValley: P.RATAZZI SaintLouis:D.MACKE Ukraine,West: I.ISAYEV Dallas: R.EYE MonterreyMexico: R.M.RODRIGUEZ-DAGNINO SanDiego: J.TWOMEY Venezuela: M.PETRIZZELLI Dayton: A.TERZOUOLI, JR. Montreal:K.WU SantaClaraValley/SanFrancisco: J.J.SOWERS Victoria:A.MITCHELL Denver: M.JANEZIC NewHampshire: T.PERKINS Seattle:K.POULSON VirginiaMountain: D.MILLER EasternNo.Carolina: D.PALMER NewJerseyCoast: D.REYNOLDS SeoulCouncil: H.-Y.LEE WashingtonDC/NorthernVirginia:J.QIU Egypt: I.A.SALEM NewSouthWales: G.TOWN Siberia,Novosibirsk: V.SHUBALOV Winnipeg: V.OKHMATOVSKI Finland: T.KARTTAAVI NewZealand: J.MAZIERSKA Siberia,Tomsk: O.STUKACH Yugoslavia: B.MILOVANOVIC FloridaWestCoast: K.O’CONNOR NorthItaly: G.GHIONE Singapore: O.B.LEONG Editors-In-Chief DYLAN WILLIAMS AssociateEditors NIST Boulder,CO80305USA DANIELDEZUTTER YOSHIO NIKAWA ZOYA POPOVIC RICHARD SNYDER Phone:+13034973138 Universiteit Gent Kokushikan Univ. Univ.ofColorado,Boulder RSMicrowaveCompany Fax:+13034973970 Belgium Japan USA USA email:[email protected] email:[email protected] email:[email protected] email:[email protected] email:[email protected] AMIRMORTAZAWI KENJI ITOH JOSÉ PEDRO SANJAY RAMAN RUEY-BEEI WU Univ. of Michigan MitsubishiElectronics Univ. of Aveiro VirginiaPolytech.Inst.andStateUniv. NationalTaiwanUniv. AnnArbor,MI48109-2122USA Japan Portugal USA Taiwan, R.O.C. Phone:+17349362597 email:[email protected] email:jcp.mtted.av.it.pt email:[email protected] email:[email protected] Fax:+17346472106 JENSHAN LIN ALEXANDERYAKOVLEV email:[email protected] Univ. of Florida Univ. of Mississippi USA USA email:[email protected] email:[email protected] M.GOLIO, Editor-in-Chief,IEEEMicrowaveMagazine G.E.PONCHAK, Editor-in-Chief,IEEEMicrowaveandWirelessComponentLetters T.LEE, WebMaster IEEE Officers LEAHH.JAMIESON, PresidentandCEO JOHNBAILLIEUL, VicePresident,PublicationServicesandProducts LEWISTERMAN, President-Elect PEDRORAY, VicePresident,RegionalActivities CELIAL.DESMOND, Secretary DONALDN.HEIRMAN, President,IEEEStandardsAssociation DAVIDGREEN, Treasurer PETERSTAECKER, VicePresident,TechnicalActivities MICHAELR.LIGHTNER, PastPresident JOHNMEREDITH, President,IEEE-USA MOSHEKAM, VicePresident,EducationalActivities STUARTA.LONG, Director,DivisionIV—ElectromagneticsandRadiation IEEE Executive Staff JEFFRYW.RAYNES, CAE,ExecutiveDirector&ChiefOperatingOfficer DONALDCURTIS, HumanResources MATTHEWLOEB, CorporateStrategy&Communications ANTHONYDURNIAK, PublicationsActivities RICHARDD.SCHWARTZ, BusinessAdministration JUDITHGORMAN, StandardsActivities CHRISBRANTLEY, IEEE-USA CECELIAJANKOWSKI, RegionalActivities MARYWARD-CALLAN, TechnicalActivities BARBARACOBURNSTOLER, EducationalActivities SALLYA.WASELIK, InformationTechnology IEEE Periodicals Transactions/JournalsDepartment StaffDirector:FRANZAPPULLA EditorialDirector:DAWNMELLEY ProductionDirector:ROBERTSMREK ManagingEditor:MONAMITTRA SeniorEditor:CHRISTINAM.REZES IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES(ISSN0018-9480)ispublishedmonthlybytheInstituteofElectricalandElectronicsEngineers,Inc.Responsibilityforthe contentsrestsupontheauthorsandnotupontheIEEE,theSociety/Council,oritsmembers.IEEECorporateOffice:3ParkAvenue,17thFloor,NewYork,NY10016-5997.IEEEOperations Center:445HoesLane,P.O.Box1331,Piscataway,NJ08855-1331.NJTelephone:+17329810060.Price/PublicationInformation:Individualcopies:IEEEMembers$20.00(firstcopy only),nonmember$85.00percopy.(Note:Postageandhandlingchargenotincluded.)Memberandnonmembersubscriptionpricesavailableuponrequest.Availableinmicroficheandmicrofilm. CopyrightandReprintPermissions:Abstractingispermittedwithcredittothesource.Librariesarepermittedtophotocopyforprivateuseofpatrons,providedtheper-copyfeeindicatedinthe codeatthebottomofthefirstpageispaidthroughtheCopyrightClearanceCenter,222RosewoodDrive,Danvers,MA01923.Forallothercopying,reprint,orrepublicationpermission,write toCopyrightsandPermissionsDepartment,IEEEPublicationsAdministration,445HoesLane,P.O.Box1331,Piscataway,NJ08855-1331.Copyright©2007byTheInstituteofElectrical andElectronicsEngineers,Inc.Allrightsreserved.PeriodicalsPostagePaidatNewYork,NYandatadditionalmailingoffices.Postmaster:SendaddresschangestoIEEETRANSACTIONSON MICROWAVETHEORYANDTECHNIQUES,IEEE,445HoesLane,P.O.Box1331,Piscataway,NJ08855-1331.GSTRegistrationNo.125634188. DigitalObjectIdentifier10.1109/TMTT.2007.894108 IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,VOL.55,NO.3,MARCH2007 449 Volterra Behavioral Model for Wideband RF Amplifiers CarlosCrespo-Cadenas, Associate Member, IEEE, JavierReina-Tosina, Associate Member, IEEE, and María J.Madero-Ayora Abstract—This paper proposes a behavioral modeling ap- is its high computationalcomplexity [5]. Thegreat number of proachforthedescriptionofnonlinearitiesinwidebandwireless coefficientsrequiredforthedescriptionofsystemswithastrong communication circuits with memory. The model is formally nonlinearityandlongmemoryhassteeredtheworkofmanyre- derived exploiting the dependence on frequency of the amplifier searchers in order to reduce the number of model parameters. nonlinear transfer functions and reduce the number of param- eters in a general Volterra-based behavioral model. To validate Probably the most manageable solution to reduce the number the proposed approach, a commercial amplifier at 915 MHz, ofcoefficientsisthememorypolynomial(MP)modelproposed exhibiting nonlinear memory effects, has been widely charac- in [1], the structure of which presents a notable truncation in terized using different stimuli, including two tones, quadrature thenumberofparameters.Althoughthereductionobtainedwith phase-shift keying wideband code division multiple access, and thissimplifiedVolterramodelisimportant,thenumberofcoef- 16-quadrature amplitude modulation signals with rectangular androot-raisedcosineconformingpulses.Thetheoreticalresults ficientsremainshigh,particularlyinthecaseofamplifierswith have been compared with experimental data demonstrating that long memory. To achieve a further reduction, an extension of the model performance is comparable to the well-established theMPmodelwithasparsedelaytapstructurewasproposedin memory polynomial model. Calculated and measured baseband [2]. waveforms, signal constellation, spectral regrowth and adjacent Itisnotclearhowtheparameterreductionoftheseparticular channelpowerratioaretightlycoincidentinallcases,emphasizing therelevanceoftheproposedmodel. structuresaffectstheattainableaccuracyofthemodelowingto thepossibleimportanceofotherunderestimatedterms.Specif- Index Terms—Behavioral models, microwave amplifiers, non- ically, the need for considering those neglected terms was the linearmemoryeffects,Volterraseries. purpose of the novel structure reported in [3]. That new ap- proachisbasedonthepruningofredundantkernelsinthefull I. INTRODUCTION Volterra-seriesmodelsothatthecoefficientswithlesseffecton AS A fundamental block in wireless communications sys- the output signal are discarded following an a posteriori pro- tems,thepoweramplifier(PA)hasundergoneexhaustive cedure.Despitethesignificanceofthecitedmodels,itisdesir- studyofitscharacteristics,inparticularthoserelatedwithnon- abletodevelopanapproachwithanoptimizednumberofcoef- linear memory effects. Many efforts have been devoted to ob- ficients,sustainedontheoreticalprinciplesandwithnoneedof tainbehavioralmodelsformicrowavePAs,forwhichtheoutput apreviousempiricalselection.Thatwastheaimoftheauthors’ of this black-box method is predicted without knowledge of initialstudyofanamplifierwithoneFETbasedonitssimpli- the nonlinear device internal structure. The goals of these ap- fiedequivalentcircuit.Athird-ordermodelwasvalidatedwith proaches are, on the one hand, reduction of complexity main- experimentaldataandpartialresultswerepresentedin[6]. taininganaccuracycomparabletotheresultsobtainedwithcir- In this paper, the authors introduce the demonstration of a cuit-levelsimulationsand,ontheotherhand,asimplemethod fifth-order Volterra model for a general amplifier with band- toextractthemodelparameters.Anindicatoroftheimportance widthlargerthantheRFsignalband.Theapproachallowsthe oftheseapproachesisthevaluableworkpresentedoverthelast analysis of nonlinear memory effects from a model based on years, e.g., [1]–[3], and the recent publication of an extensive thetransferfunctionswithnorestrictionsinthenumberorkind revisionrelatedtothistopic[4]. ofnonlineardevicescomposingtheamplifier.InSectionII,the Exploitingthebandlimitedcharacterofwirelesssignals,PA studyofawidebandamplifierandthecompletionofitsbehav- descriptioncanbetranslatedintoanenveloperepresentationand ioral model based on a Volterra-series approach is described. frequentlyhasbeendeducedasVolterraseries,aprocedurethat The frequency independence of the amplifier response inside treats this problem in a strictly and an orderly way. However, the RF bandwidth is exploited to reduce the order model and onedifficultyofamplifiermodelingusingthisVolterraapproach torevealthedependenceofcoefficientsextractiononthesam- plingrate.SectionIIIdescribestheprocedureofparameterex- ManuscriptreceivedAugust8,2006;revisedOctober26,2006.Thiswork traction,whichhasbeensimplifiedbecauseoforderreduction wassupportedbytheSpanishNationalBoardofScientificandTechnological inthemodelstructure.Applicationofthemethodtoacommer- ResearchunderProjectTEC2004-06451-C05-03. cialamplifierandcomparisonwiththeMPmodel,andalsowith TheauthorsarewiththeDepartamentodeTeoríadelaSeñalyComunica- ciones,EscuelaSuperiordeIngenieros,UniversidaddeSevilla,41092Seville, experimentaldatausingdifferenttypesofinputsignals,ispre- Spain(e-mail:[email protected];[email protected];[email protected]). sentedtovalidatethedemonstratedtheoreticalresults.Finally, Colorversionsofoneormoreofthefiguresinthispaperareavailableonline ageneralizationofthemodeltoanyorderisproposedandsome athttp://ieeexplore.ieee.org. DigitalObjectIdentifier10.1109/TMTT.2006.890514 relevantstatementsarecommentedupon. 0018-9480/$25.00©2007IEEE 450 IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,VOL.55,NO.3,MARCH2007 for . In (2), is a vector with its first componentsequal to and the remaining componentsare equalto isacolumnvectorhaving basebandfrequencycomponents, isthetransposeof ,and isacolumnvectorwithits componentsequalto . The bandlimited condition of the input signal allows to ne- glecttheintegraloutsidetwo -dimensionalboxeswithlength andcenteredat .Consequently,itispossibletosubsti- tute withanequivalenttransferfunctionbandlimitedinto these -dimensional hypercubes , from which the ban- Fig.1. Generalschematicofanonlinearcircuit. dlimited equivalent Volterra kernels are obtained making use of a multidimensional inverse Fourier transform. This equiva- lenttransferfunctionandthediscrete-timecorrespondingkernel II. VOLTERRAMODELFORAWIDEBANDAMPLIFIER satisfytherelation A. Volterra-BasedBehavioralModelBackground (3) Letageneralamplifierberepresentedbythecircuitshownin Fig.1.Nonlinearitiesareconstitutedbytheirlinearcomponents, Substitution in (2) allows to separate the integrals and to ob- includedintheassociatedlinearcircuit,andnonlinearsources, tain the output component . Therefore, after sampling at whichareassumedtobedependentontwocontrolvoltages instants ,(1)isimmediatelyderived. and . Let the input be an RF current excitation and The Volterra model (1) is a very general result, but it has a betheoutputvoltagecorrespondingtothefundamentalfre- highdegreeofdifficultyduetothelargenumberofparameters quencyzone,centeredat .Makinguseofthefactthatawire- and numerical operations involved [5]. The complexity of the lesssignalcommonlyhasabandwidth negligiblewithrespect problemisrevealedinthefactthatthekernels forman to the carrier frequency , the discrete time-domain complex -dimensionalgriddefined bythe discretedelaysineach axis envelope Volterra model for this general nonlinear system can ofthemultidimensionalspace ;hence,itisdesirable beexpressedas toreducethenumberofthesedelays. One of the most extended methods proposed to achieve a more manageable number of parameters is the MP model de- scribed in [1]. For this model, the reduction in the number of coefficientsisobtainedbyselectingonlythedelayspositioned in the diagonal, i.e., the delays along the direction defined by .Moreover,ifasparsedelaytapstructure isadoptedandonlythemostsignificantdelaysareretainedfol- lowing an a posteriori procedure, a further important cutback (1) inthenumberofcoefficientscanbeprocured[2].However,the model precision can be diminished due to the possible impor- where and arecomplexenvelopesamplesoftheinput tanceofnondiagonalterms.Followingamorerelaxedpruning andoutputRFsignals,respectively, representsthedis- approach,whichalsoretainsthetermsnearthediagonal,amore crete Volterra kernels of order , and is an -dimensional recentmodelwasproposedwithaconsequentimprovementin vectorcomposedoftheinteger-valueddelays precision at the expense of a moderate increase in the number [3].AlthoughasamplingrateequaltotheinputsignalRFband- ofcoefficients[3]. widthissufficientformemorylessnonlinearsystemidentifica- Although the MP model has proven to be effective and the tion [7],itshould beincreased according tothe broadeningof reduction of coefficients is considerable, the lack of a theoret- theoutputbandwidth ifaliasinghastobeavoided.Asacon- ical justification originates the need of these empirical-based sequence,foranadequaterepresentationoftheoutput ,the methods. Additionally, important issues as the adequate sam- samplingtimehastobereducedcorrespondinglyto . plingrateorthedependenceofthediscretekernelsonthissam- Equation (1) is a discrete-time Volterra series derived from plingratein(1)shouldbeaddressedbyabehavioralmodel. therepresentationusingthemultidimensionalnonlineartransfer functions (NLTFs) [8]. In continuous-time form, the B. NLTFsforaWidebandAmplifier th-ordertermoftheoutputsignalcanbewrittenas A formal reduction in the number of coefficients in (1) can beobtainedundertheonlyassumptionofawidebandamplifier, i.e.,anamplifierwithapassbandlargerthantheRFsignalband- width.Thissuppositiondoesnotintroduceanyimportantlossof (2) generalitysincemanywirelessamplifierspresentingnonlinear memory effects have frequency responses essentially constant CRESPO-CADENASetal.:VOLTERRABEHAVIORALMODELFORWIDEBANDRFAMPLIFIERS 451 Fig.2. IllustrativeexampletoshowfrequencydependenceoftheNLTFs.(a)Elementarynonlinearnetwork.(b)Associatedlinearnetworkexcitedbyappropriate nonlinearcurrentsandspectrumofthegeneratedsecond-ordertransferfunctions.(c)Thesameassociatedlinearnetworkproducingthethird-ordertransferfunc- tionsandtheirrelatedspectrum. intheirrespectiveRFsignalbands,see,e.g.,[2].Underthisas- The wideband condition of the amplifier allows to approxi- sumption, completion of the particular frequency dependence matethelinearfunction asacoefficientindependentof ofthe transferfunctions foratypical circuitcanbeac- basebandfrequencies.Thesameistrueforthetransferfunction complished by a combination of the probing method and the relatingthelinearpartoftheoutputwiththeinput . nonlinearcurrentsmethod,awidespreadprocedure[10],[11]. The spectral components function can depend on the For the general circuitof Fig. 1, the vector formed with the sumofbasebandfrequencies ,asisthecaseofanon- NLTFsoforder relatingthevoltagesoftheindependentports linear capacitance, or is independent of baseband frequencies of the associated linear network can be obtained by using the forothernonlinearities.Inanycase,sincethecomponentsofthe followingequation: admittancematrixhavethissamedependence,thesecond-order NLTF dependson (with (4) and )inthedczone,andcanbeconsideredasa constantcoefficientinthesecond-harmoniczone(seeTableI). where is the admittance matrix of the associated linear Noticethatifothernonlinearitiesarepresent,theircontribution network and is a vector with the spectral components issuperposedatthesamefrequenciesand,therefore,thetypeof of the nonlinear currents exciting the independent ports. The dependenceremainsunchanged. bandlimited condition of the wireless signal allows to extend Bothinthefundamentalfrequencyandinthethird-harmonic thewidebandamplifierassumptiontoalltheharmoniczonesso zones, the admittance matrix is a function only of the carrier that the admittance matrix can be approximated by frequency because the baseband frequency dependence of the for at all relevant values of . third-ordertransferfunction isduetothespectralcompo- Foran th-orderapproximation,thebandofinterestinthefirst nentsof .Takingintoaccountthatthisdependencecomes harmoniczoneshouldbesupposedheretobe . from , in the fundamental frequency zone, it is possible For clarity, let consider only , the transfer functions to determine two types of terms: a baseband frequency-inde- relatingtheinputwiththevoltageattheportofonenonlinearity, pendent term and terms of the form . In typically a voltage-controlled current source, conductance, or thethird-harmoniczone,thistransferfunctiondoesnotpresent capacitance. To illustrate the procedure, an elementary circuit dependenceonbasebandfrequencies.Thetypeofdependence withanonlinearcurrentsourceisshowninFig.2andasketched describedaboveis in agreement with previouslypublished re- summaryofthemethodisattached.Intheexample,anonlinear sults[12]–[16]. currentsourcedependentonvoltage isconsideredasthemain Althoughtheextensionoftheanalysisfocusedtothededuc- nonlinearity. For each order, the associated linear network is tionofclosed-formexpressionsforhigherordertransferfunc- excitedbyappropriatenonlinearcurrentsinordertoobtainthe tionsisalmostbeyondtheboundsofpossibility,keepingtrack transferfunctionsrelatingvoltage withtheinput.Spectrashow oftheirfrequencydependenceisamorefeasibleexercise.Next, theprevalentcomponentsfororders2and3. thisstudyiswidenedtohigherorderNLTFs. 452 IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,VOL.55,NO.3,MARCH2007 TABLEI TABLEII TYPESOFBASEBANDFREQUENCYDEPENDENCEFORK~ ((cid:24)(cid:24)(cid:24)) TYPESOFBASEBANDFREQUENCYDEPENDENCEFORH~ ((cid:24)(cid:24)(cid:24)) These results can be exploited to reduce the number of pa- rametersinthebehavioralmodel(1)withouttheadditionofany otherrestriction. C. KernelsoftheReduced-OrderBehavioralModel 1) Third-Order Kernel: Based on the previous deductions, the third-order term of the output voltage is obtained by substituting in (2) the corresponding components and Thecauseoffrequencydependencein istwofold.On .Thefirsttypegeneratesthememorylessterm, the one hand, the admittance matrix can be approximated by andthesecondtypegivesrisetothegenericexpression in the dc zone, and by a frequency- independentfunctioninthesecondandfourthharmoniczones. Ontheotherhand,thecomponent presentsseveralterms withproductsofthetransferfunctions ,and . (5) Summarizing, in the dc zone, the fourth-order transfer function is composed by one term that can be expressed Althoughthisisadoubleintegral,thetransferfunctionisaone- by , a second type of terms dimensionalfunction,afactthatcanbeexplicitlydisplayedwith ,andathirdtype achangetothenewvariables and forwhich sothat oftermswiththeform .Ithasbeenconsideredthat and ,for and with and (see Table I). Note that is represented as the (6) productoftwoseparatedfunctions and ,andinthesame Relyingonthebandlimitedassumptionof ,theintegralin form, is denoted by the product of the functions and isnegligibleoutsideanybandwidth ,allowingthe . In these expressions, is a generic function with the definitionofanequivalenttransferfunction confinedto specific dependence on the sum of four baseband frequencies thisband.MakinguseoftheFouriertransformandforfrequen- and are generic functions dependent on the sum of ciesinside canbeexpressedintermsofitsdiscrete two baseband frequencies. The significance of this particular impulseresponse frequencydependenceisdiscussedbelow. In the second-harmonic zone, there are two type of terms, (7) i.e., and ,andinthefourth-harmoniczone, there is onlyone (frequencyindependent) term, i.e., .The explicit dependence has been omitted in the components that sothatthesamplingtime shouldbe,atleast,halfthe are only functions of the carrier frequency. These arguments symbolperiod.Substitutingin(6)andchangingnowtotheorig- are sufficient to deduce the frequency behavior of the relevant inalvariables,thetwointegralsbecomeseparableasfollows: outputtransferfunctions and . Thetransferfunction hasafrequencydependencesim- ilarto ,discussedabove.Inthecaseof ,considering thattheadmittancematrixdoesnotintroduceanyfrequencyde- pendence,itsbehaviorisdeterminedby or,equivalently, bythefunctions to .Recallingthatthezoneofin- terest is the fundamental frequency zone, the relevant transfer (8) functionscanberepresentedbythesixtypesoftermsshownin TableII.Observethatnowtherearefourdifferenttypesofterms withacompletedependenceonallthefrequenciesfrom to Finally, after adding the memoryless part and sampling at in- . stants ,thethird-ordertermoftheoutputcomplexenve- CRESPO-CADENASetal.:VOLTERRABEHAVIORALMODELFORWIDEBANDRFAMPLIFIERS 453 lopecanbeexpressedinadiscrete-timeform Substitutingin(12)andchangingtotheoriginalvariables,the fourintegralsarenowseparable and,samplingat instants , (9) theoutputindiscrete-timeformcanbewrittenas When the memoryless term is included in (9), we obtain the followingexpressionforthethird-ordercoefficients: (14) with for (10) (15) for Itisimmediatetonotethat ,relatedwiththethirdtype , 2) Fifth-OrderKernel: Accordingtothepreviousdiscussion, isaparticularcaseofthisresultinwhichthetransferfunction the fifth-order transfer function is composed of six different isdirectlyseparable. types of terms, which produce a particular set of kernels after substitution in (2). As in the third-order transfer function, one More revealing is the fourth type , which involves the ofthefiveintegralsinvolvedgivesriseagainto ,remaining sumofallfrequenciessothatitpresentsthehighestdegreeof inthiscaseaquadrupleintegral,forwhichthefirsttypeofterms symmetryandproducestermsgivenby canbecomputeddirectlytocontributeonlytomemorylessnon- (16) lineareffects.Thesecondtypeoftermsdependson so thatonlytwointegralscanbecomputeddirectlyandtheother twocanbehandledasinthethird-ordercaseproducingone-di- with mensionalkernelsofthetype (17) (11) Notice that, for this particular coefficients, the sampling rate shouldbeatleastfourtimesthesymbolrate. Fortheotherfourtypes,itispossibletowriteagenericfifth- In conclusion, let us observe that the demonstrated Volterra order transfer function with a frequency dependence given by behavioral model incorporates a substantial reduction in the ,where and aredefinedaround number of parameters, when compared to (1), with the only and ,respectively.Letconsiderthedifferentproperties assumption of a wideband amplifier. Surprisingly, the de- ofsymmetrythatthisfunctioncanpresent,beginningwiththe scribedrepresentationexhibitsanexclusively“outofdiagonal” moregeneralconditioncorrespondingtothefifthandsixthtypes structure, different to other well-known published behavioral ofterms.Atafirstglance,themultipleintegralin(2)isnegli- models[1],[2]. gibleoutsideafour-dimensionalcubeoflength .However, To corroborate these new results, an amplifier has been the particular symmetry of involves a bidimensional fre- tested and the model parameters have been extracted from quencydependencethatisexhibitedclearlyafterthechangeof experimentaldata,aswillbediscussedinSectionIII. variables and asfollows: III. MODELPARAMETERSEXTRACTIONANDVALIDATION The commercial amplifier MAX2430 manufactured by MAXIM Integrated Products Inc., Sunnyvale, CA, has been modeled with the current structure. It is a wideband amplifier at 915 MHz; however, in the experimental characterization with two tones separated by 2 MHz, the amplifier exhibited an asymmetry in the intermodulation distortion (IMD) prod- ucts, a clear indication of the existence of nonlinear memory (12) effects. The measurement setup used in this study is basically the same as that presented in [15]. However, the excitations Therefore, isnegligibleoutsideanysquareoflength taken into account are diverse in order to test the proposed and can be substituted by its equivalent function. model with a wide variety of signals. In particular, standard Itis possibletoexpressthis bandlimitedfunctionasarelation two-tone,aswellasdigitallymodulatedsignalslikequadrature betweenthecorrespondingdiscrete-timekernels phase-shiftkeying(QPSK)widebandcodedivisionmultipleac- cess (WCDMA), 16-quadratureamplitude modulation(QAM) withrectangularpulsesandroot-raisedcosinepulseshavebeen (13) used as input stimuli. These signals have been loaded in the internalmemoryofanSMIQ02Bsignalgeneratorwithbuilt-in 454 IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,VOL.55,NO.3,MARCH2007 (a) Fig.3. Normalizederrorasafunctionoftheinputlevel.ProposedVBWmodel (squaresandsolidline)andMPmodel(circlesanddotted–dashedline). (b) arbitrarywaveformfacilityandtheE4407Bspectrumanalyzer Fig. 4. Normalized complex envelope in-phase component for a 16-QAM withamodulationanalysisoptionhasbeenusedtoacquirethe signal.(a)Rectangular pulses.(b)Root-raised cosinepulses.Acquireddata: basebandsignalattheamplifier’soutput. dots.VBWmodel:solidline.MPmodel:dotted–dashedline. A. 16-QAMSignalWithRectangularPulses As was demonstrated in Section II, it is necessary to use a correspondstotheresultsforathird-orderVBWmodelwitha samplingrateofapproximatelyfourtimesthesymbolrateifpa- memoryof samples.Inbothcases,theerrorgrowsup rametersuptothefifthorderhavetobeextracted.Inthecaseof astheamplifierentersinamorenonlinearcondition,indicating root-raisedcosinemodulatingpulses,eachsampleisdependent in the first case the presence of nonlinear memory and, in the onpreviousandfuturesamples,includedthosemanysymbols secondcase,thatnotallthenonlinearmemorycoefficientshave away.Eveninthecaseofamemorylessamplifier,theoutputwill been extracted. On the contrary, the fifth-order VBW model displaymemoryanditis,therefore,reasonabletousefornon- depicted in solid line shows a very low error, constant in all linearcharacterizationmodulatingpulseswithoutintersymbol the range of input levels, which is an evident confirmation of interference, i.e., with length no longer than a symbol period. a correct parameters identification of the memory nonlinear Consequently, the use of an RF signal modulated with rectan- model. To corroborate the validity of the current results, the gular pulses as an input stimulus guarantees that memory ef- well-establishedMPmodeldescribedin[2]wasextractedwith fects,ifpresentintheoutput,havebeencausedbythenonlinear agenerousnumberofdelays,andtakenasareliablereference. memory of the device. The modulation format is also relevant The error for this model with seven delays is also represented becauseitiswellknownthatforphase-shiftkeying(PSK)sig- in Fig.3 (dashed–dotted line), demonstrating a similar perfor- nals,athird-ordermodelcancapturesomeofthehigherorder mance with respect to the VBW model. Furthermore, in the nonlinear characteristics and produce degeneration in the pa- range of higher levels, the most relevant to this context, the rameter-extractionprocess[9]. VBWmodeloutperformstheMPmodel. According to the above considerations, a 915-MHz car- The corresponding time-domain in-phase component for rier modulated with a random train of rectangular pulses at an input level of 11 dBm is shown normalized in Fig. 4(a). 2 Msymb/s and a 16-QAM format was selected as the first The acquisitions (dots), the prediction of the MP model soundingsignal.Thearbitrarywaveformgeneratorcanhandle (dashed–dotted line), and the prediction of the present VBW up to 40 Msamp/s so that the shape of the pulses was rather model (solid line) have been represented. The average NMSE rectangular.Sinceintherecoverypartthesetuphasasampling oftheVBWmodelis 30.5dB,representing1dBofimprove- rateof15Msamp/s,the acquiredoutputsignalsweresampled mentcomparedtotheMPmodel.Thevectorrepresentationof at 7.5 samples per symbol, amply suitable for signal repre- themodeledcomplexenvelopeisplottedwithdotsinFig.5and sentation and fifth-order parameters extraction. A fifth-order compared with the input envelope (squares) and the acquired Volterrabehavioralmodelforwidebandamplifiers(VBW)was output(crosses). extracted from the acquired output complex envelope samples B. Two-ToneSignal through the minimization of the average normalized mean squareerror(NMSE)betweenmeasuredandmodeledoutputs. Another set of experiments was performed using an input AfirstresultisshowninFig.3,wherethe normalizederroris signalformedbytwotonesofequalmagnitudeandphase,with plottedasafunctionoftheinputlevel.Theerrorisrepresented afrequencyseparationof2MHz,andmeasuringtheupperand as a dotted line for a memoryless model and the dashed line lowerthird-orderIMproducts.Whentheamplifierisworkingin CRESPO-CADENASetal.:VOLTERRABEHAVIORALMODELFORWIDEBANDRFAMPLIFIERS 455 Fig.7. Outputspectrumofa16-QAMsignalwith2Msymb/s.Root-raised Fig.5. Vectorrepresentationofthe16-QAMsignalwithrectangularpulses. conformingpulses.P =(cid:0)11dBm.Spectrumanalyzertrace(dots)andVBW Inputsignal:squares.Acquireddata:crosses.VBWmodel:dots. modelprediction(solidline). measured and calculated lower IM3 at 14 dBm is caused by setuplimitationatlowinputlevels.Onthecontrary,thesignifi- cantcoincidenceinsidethefaithfulrangeisalsorevealedwhen measuredandpredictedasymmetriesarecompared,asisshown inFig.6(b). C. 16-QAMSignalWithRoot-RaisedCosinePulses Anothertypeofsounding signalemployed inthe extraction (a) processhasbeenacarrierat915MHzmodulatedina16-QAM formatwitha2-Msymb/strainofsymbolsusingroot-raisedco- sinepulses.Theacquirednormalizedin-phasecomponentand thecorrespondingwaveformobtainedwiththeextractedmodel are represented in Fig. 4(b) (dots and solid line, respectively). Forcomparativepurposes,thewaveformobtainedwiththeMP model is also depicted in Fig. 4(b) (dashed–dotted line). As a further test, the extracted model was used to predict the spec- trum of the signal and the adjacent-channel power (ACP) in ordertobecomparedwithotheralternativemeasurementsusing (b) theconventionalspectrumanalyzerwithouttheacquisitionfa- cility. The results are plotted in Figs. 7 and 8 using marks for Fig.6. MeasuredandsimulatedresultsforIM3whentonespacingis2MHz. theexperimentaldataandsolidlinesforthemodeledoutput.It Acquireddata:triangles.VBWmodel:solidline. is worth noting that the model was first extracted from an ex- perimentalacquisitionofbasebandsamplesandservedtopre- thelinearmode,theIMproductsarenegligiblecomparedtothe dict the output signal spectrum. Although the marks represent nonsystematic errors of the measurement setup so that model ameasurementprocessindependentoftheacquisition,thepre- parametersextractedfromacquisitionsatlowsignallevelsare dictionisfavorablycomparedinFig.7.Thesecondfigurecor- irregular.Thisisnotspeciallyinconvenientbecausetheinterest roboratesthisoutcomeshowingagoodmatchbetweentheACP is in the range of high signal levels, where the nonlinear ef- measuredandcalculated.Thepredictionisalsoabletoestimate fects are more relevant and model parameters can be reliably adequatelytheACPasymmetrybetweenupperandlowerchan- extracted. For that reason, after rejection of meaningless data, nels. As a reference, the dashed–dotted line represents the re- the experimental points represented in Fig. 6 belong to levels sultsoftheMPmodel. near the 1-dB compression point. In Fig. 6(a), the measured D. QPSK-WCDMASignal outputofthefundamentaltonesandthethird-orderintermodu- lation(IM3)productsarerepresentedwithmarks.AlsoinFig.6, Finally, a carrier at 915 MHz modulated with a WCDMA theresultsoftheextractedmodelaredepictedviaasolidline, signal compliant with the Universal Mobile Telecommunica- reflectingaremarkablecorrespondencewiththeacquireddata. tionsSystem(UMTS)standardwasemployedasinputsignal.In According to the previous discussion, the difference between thiscase,theconditionoffourtimesthesymbolratetocorrectly

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.