SEPTEMBER2005 VOLUME53 NUMBER 9 IETMAB (ISSN0018-9480) MINI-SPECIALISSUEONASIA–PACIFICMICROWAVECONFERENCE GuestEditorial................................................. ................................. M.B.Steer 2649 MINI-SPECIALISSUEPAPERS PerformanceofInter-ChipRF-InterconnectUsingCPW,CapacitiveCoupler,andUWBTransceiver.....................M.SunandY.P.Zhang 2650 TaperedDual-PlaneCompactElectromagneticBandgapMicrostripFilterStructures.. ...........................S.Y.HuangandY.H.Lee 2656 AnalysisoftheSARDistributionsinThree-LayeredBio-MediainDirectContactWithaWater-LoadedModifiedBox-HornApplicator......... ........ .............................................. .......................R.C.GuptaandS.P.Singh 2665 ESDProtectionDesignfor1-to10-GHzDistributedAmplifierinCMOSTechnology. ................... M.-D.Ker,Y.-W.Hsiao,andB.-J.Kuo 2672 Sub-ThresholdAnalysisandDrainCurrentModelingofPolysiliconThin-FilmTransistorUsingGreen’sFunctionApproach................ ........ .............................................. ..A.Sehgal,T.Mangla,S.Chopra,M.Gupta,andR.S.Gupta 2682 AMiniaturizedMultilayerQuasi-EllipticBandpassFilterWithAperture-CoupledMicrostripResonators. ............................ ........ ............................................. C.-F.Chen,T.-Y.Huang,C.-H.Tseng,R.-B.Wu,andT.-W.Chen 2688 Resonance-SuppressedMagneticFieldProbeforEMField-MappingSystem ...... ....................J.-M.Kim,W.-T.Kim,andJ.-G.Yook 2693 AHybridDrift-Diffusion–TLMAnalysisofTraveling-WavePhotodetectors....... ..........................D.PasalicandR.Vahldieck 2700 AnElectronicallyTunableMicrostripBandpassFilterUsingThin-FilmBarium–Strontium–Titanate(BST)Varactors. .................... ........ .............................J.Nath,D.Ghosh,J.-P.Maria,A.I.Kingon,W.Fathelbab,P.D.Franzon,andM.B.Steer 2707 MiniaturizedMicrowavePassiveFilterIncorporatingMultilayerSyntheticQuasi-TEMTransmissionLine............................ ........ .............................................. ......H.-S.Wu,H.-J.Yang,C.-J.Peng,andC.-K.C.Tzuang 2713 PowerReflectionCoefficientAnalysisforComplexImpedancesinRFIDTagDesign. ........................................ ........ ...................................... P.V.Nikitin,K.V.S.Rao,S.F.Lam,V.Pillai,R.Martinez,andH.Heinrich 2721 AnalysisonEffectivenessofWaveAbsorberstoImproveDSRCElectromagneticEnvironmentonExpressHighway..................... ........ .............................................. ........... R.K.Pokharel,M.Toyota,andO.Hashimoto 2726 CONTRIBUTEDPAPERS AGeneralizedSurface-VolumeIntegral-Equation(SVIE)ApproachforAnalysisofHybridPlanar/NRD-GuideIntegratedCircuits...... D.LiandK.Wu 2732 AnalysisofStabilizationCircuitsforPhase-NoiseReductioninMicrowaveOscillators........................... A.SuárezandF.Ramírez 2743 EfficientAnalyticalFormulationandSensitivityAnalysisofNeuro-SpaceMappingforNonlinearMicrowaveDeviceModeling.............. ........ .............................................. .. L.Zhang,J.Xu,M.C.E.Yagoub,R.Ding,andQ.-J.Zhang 2752 (ContentsContinuedonBackCover) (ContentsContinuedfromFrontCover) Ka-BandAnalogFront-EndforSoftware-DefinedDirectConversionReceiver.......S.O.Tatu,E.Moldovan,K.Wu,R.G.Bosisio,andT.A.Denidni 2768 ApplicationofBifurcationControltoPracticalCircuitDesign................ ........................... A.ColladoandA.Súarez 2777 K-andQ-BandsCMOSFrequencySourcesWithX-BandQuadratureVCO...... .............S.Ko,J.-G.Kim,T.Song,E.Yoon,andS.Hong 2789 TLM-BasedModelingandDesignExploitingSpaceMapping................... ...........J.W.Bandler,A.S.Mohamed,andM.H.Bakr 2801 ImprovedCoupled-MicrostripFilterDesignUsingEffectiveEven-ModeandOdd-ModeCharacteristicImpedances. ........H.-M.LeeandC.-M.Tsai 2812 AResonantSwitchforLNAProtectioninWatt-LevelCMOSTransceivers......... ..........W.B.Kuhn,M.M.Mojarradi,andA.Moussessian 2819 GuaranteedPassiveDirectLumped-ElementModelingofTransmissionLines...... ..........................S.-H.YouandE.F.Kuester 2826 A540–640-GHzHigh-EfficiencyFour-AnodeFrequencyTripler.............. ........................................ ........ ..............A.Maestrini,J.S.Ward,J.J.Gill,H.S.Javadi,E.Schlecht,C.Tripon-Canseliet,G.Chattopadhyay,andI.Mehdi 2835 Stopband-EnhancedandSize-MiniaturizedLow-PassFiltersUsingHigh-ImpedancePropertyofOffsetFinite-GroundMicrostripLine ......... ........ .............................................. ............................. S.SunandL.Zhu 2844 AParallelFFTAcceleratedTransientField-CircuitSimulator ................... .............A.E.Yılmaz,J.-M.Jin,andE.Michielssen 2851 CAD-OrientedAnalysisofCylindricalandSphericalDielectricResonatorsinCavitiesandMICEnvironmentsbyMeansofFiniteElements...... ........ .............................................. ...................................J.M.Gil 2866 ARobustModelingandDesignApproachforDynamicallyLoadedandDigitallyLinearizedDohertyAmplifiers ....................... ........ .........................................J.Sirois,S.Boumaiza,M.Helaoui,G.Brassard,andF.M.Ghannouchi 2875 AnEffectiveUsageofVectorNetworkAnalyzerforMicrowaveImaging......... .......................... C.-H.TsengandT.-H.Chu 2884 UnificationofDouble-DelayandSOCElectromagneticDeembedding........... ..................... J.C.RautioandV.I.Okhmatovski 2892 X-BandTwo-StageHigh-EfficiencySwitched-ModePowerAmplifiers............. . S.Pajic´,N.Wang,P.M.Watson,T.K.Quach,andZ.Popovic´ 2899 OpenResonatorTechniqueforMeasuringMultilayeredDielectricPlates......... ....................... A.N.DelenivandS.Gevorgian 2908 ImprovedY-FactorMethodforWide-BandOn-WaferNoise-ParameterMeasurements......L.F.Tiemeijer,R.J.Havens,R.deKort,andA.J.Scholten 2917 AShield-BasedThree-PortDe-EmbeddingMethodforMicrowaveOn-WaferCharacterizationofDeep-SubmicrometerSiliconMOSFETs....... ........ ......................M.-H.Cho,G.-W.Huang,L.-K.Wu,C.-S.Chiu,Y.-H.Wang,K.-M.Chen,H.-C.Tseng,andT.-L.Hsu 2926 ElectromagneticBandgapPower/GroundPlanesforWidebandSuppressionofGroundBounceNoiseandRadiatedEmissioninHigh-SpeedCircuits ........ ................................................. ..T.-L.Wu,Y.-H.Lin,T.-K.Wang,C.-C.Wang,andS.-T.Chen 2935 Fractal-ShapedMicrostripCoupled-LineBandpassFiltersforSuppressionofSecondHarmonic .................................. ........ ............... I.K.Kim,N.Kingsley,M.Morton,R.Bairavasubramanian,J.Papapolymerou,M.M.Tentzeris,andJ.-G.Yook 2943 Broad-Band180 PhaseShiftersUsingIntegratedSubmillimeter-WaveSchottkyDiodes....................................... ........ .............................................. ..Z.Liu,J.C.Midkiff,H.Xu,T.W.Crowe,andR.M.WeikleII 2949 PropertiesofLeft-HandedMetamaterials:Transmission,BackwardPhase,NegativeRefraction,andFocusing ......................... ........ .....................................T.M.Grzegorczyk,C.D.Moss,J.Lu,X.Chen,J.Pacheco,Jr.,andJ.A.Kong 2956 CompactSuper-WideBandpassSubstrateIntegratedWaveguide(SIW)Filters........ ......Z.-C.Hao,W.Hong,J.-X.Chen,X.-P.Chen,andK.Wu 2968 DesignCriteriafortheRFSectionofUHFandMicrowavePassiveRFIDTransponders. ....................... G.DeVitaandG.Iannaccone 2978 Coupling3-DMaxwell’sandBoltzmann’sEquationsforAnalyzingaTerahertzPhotoconductiveSwitch. ....... M.Sirbu,S.B.P.Lepaul,andF.Aniel 2991 ExperimentalStudyonaHologram-BasedCompactAntennaTestRangeat650GHz. ........................................ ........ ....................T.Koskinen,J.Ala-Laurinaho,J.Säily,A.Lönnqvist,J.Häkli,J.Mallat,J.Tuovinen,andA.V.Räisänen 2999 InvestigationofaMethodtoImproveVNACalibrationinPlanarDispersiveMediaThroughAddinganAsymmetricalReciprocalDevice...... J.B.Scott 3007 AnAccurateWaveguidePortBoundaryConditionfortheTime-DomainFinite-ElementMethod........................ Z.LouandJ.-M.Jin 3014 SystematicAnalysisoftheOffset-PLLOutputSpurSpectrum................ ............................C.-F.LeeandS.T.Peng 3024 AccurateandScalableRFInterconnectModelforSilicon-BasedRFICApplications.. ........C.B.Sia,B.H.Ong,K.S.Yeo,J.-G.Ma,andM.A.Do 3035 BJTClass-FPowerAmplifierNearTransitionFrequency................... .................................A.N.Rudiakova 3045 LETTERS Commentson“ThermalResistanceCalculationofAlGaN–GaNDevices” ........ ......................................W.-Y.Yin 3051 Authors’Reply. ................................................ ..............A.M.Darwish,A.Bayba,andH.A.Hung 3052 Correctionson“PrecisionOpen-EndedCoaxialProbesforInVivoandExVivoDielectricSpectroscopyofBiologicalTissuesatMicrowaveFrequencies” ........ .........................D.Popovic,L.McCartney,C.Beasley,M.Lazebnik,M.Okoniewski,S.C.Hagness,andJ.H.Booske 3053 InformationforAuthors......................................... .......................................... 3054 CALLSFORPAPERS Mini-SpecialIssueonMeasurementsforLarge-SignalCharacterizationandModelingofNonlinearAnalogDevices,Circuits,andSystems. ......... 3055 2006IEEEMTT-SInternationalMicrowaveSymposium ................... ........................................... 3056 IEEEMICROWAVETHEORYANDTECHNIQUESSOCIETY TheMicrowaveTheoryandTechniquesSocietyisanorganization,withintheframeworkoftheIEEE,ofmemberswithprincipalprofessionalinterestsinthefieldofmicrowavetheoryandtechniques.Allmembers oftheIEEEareeligibleformembershipintheSocietyandwillreceivethisTRANSACTIONSuponpaymentoftheannualSocietymembershipfeeof$14.00plusanannualsubscriptionfeeof$24.00.Forinformation onjoining,writetotheIEEEattheaddressbelow.MembercopiesofTransactions/Journalsareforpersonaluseonly. ADMINISTRATIVE COMMITTEE K.C.GUPTA,President K.VARIAN,VicePresident A.MORTAZAWI,Secretary M.HARRIS,Treasurer M. P. DE LISO D. HARVEY S.KAWASAKI T. LEE V. J. NAIR W. SHIROMA K.VARIAN S. M.EL-GHAZALY J. HAUSNER J.S.KENNEY D. LOVELACE B. PERLMAN R. SNYDER R.WEIGEL M.HARRIS L.KATEHI N.KOLIAS J.MODELSKI D.RUTLEDGE R.SORRENTINO S.WETENKAMP HonoraryLifeMembers DistinguishedLecturers PastPresidents T. ITOH A.A.OLINER K. TOMIYASU L. E. DAVIS T. ITOH D. RYTTING R.J.TREW(2004) T.S.SAAD L.YOUNG W. GWAREK B. KIM M. SHUR F.SCHINDLER(2003) W. HEINRICH J. LASKAR P. SIEGEL J.T.BARRIV(2002) W.HOEFER J.C.RAUTIO R.J.TREW MTT-S Chapter Chairs Albuquerque: G.WOOD Foothill: C.ANTONIAK Ottawa: J.E.ROY SouthBrazil: L.C.KRETLY Atlanta: J.PAPAPOLYMEROU France: O.PICON Philadelphia: J.B.McCORMACK SoutheasternMichigan: L.M.ANNEBERG ABBBBBBBBCCCaeeeeuueeeuuDFliilndnnelfstjjagf.tenattiii.arrrramnnSlrauiaalJurggaovUORslliox::,ae::L&NHra::NneLpNet:IaRYSuiMAwSVdDnFro.OA.s.-aj..BuE.iNRW/N:GnRCFtVn.hL.gIUE.eg.MLZ:.-InISGlIJGtHHWaPtICAaNrInEOOlLCAaN.ydSLV-NLlYAVKX:/EIGBSRIYoT.EoTwTZRRHsEaHt.Yo:ATnNI:BGERIO GGHHHHHIIIJKLLMnnsaooerooouuriddpateansrnuunnciialmeeaagagssgthAncls/ytta:eaCCIeoovnKCsrnsn:nniigoyaleloyoaa:,lleu:Sr:n:uceCnl-n.Iu:gneWd.ocAst:cT/iJZtXlWNailalC.U.lM:e.t:A:e.BTeSgWoAwNrT.H.euEl.WETAWonRKSEYPHRYHoAcCI.t..oNIaAi:..NEBLKlSrtRT:JKLLiGkA.U.oIIAII:RCSRCAnSIM-H.N:MAHTPRMEH.AASS.LARN.KMEIGH.EAMANNISCCOHZUOARRLSKI PPPPPQRRRRRhooorioouuuioWMollrncmsseaatessheucdnn..aiinneegeaaddCnSitssa,,x:,oiJtIlUlaJJeTa:Lan:tt:RrnNn/..i:MTCtdeINShCKIVi:eCIa.uriO.n..FoziEaPnVtWS.F:hn.ArAt/PInEaiMMaEPA.lyROJ:IReA:RJEL.T.teOYNOOZKRerZrDE.Bs.IAsOeLB.EIbBTNyWSNEuZ:ESLrSAROgOKIGN:DVIMIOANNONVA SSSSSSTTTTTTaowoppwwyuuhiruarrcrapieioiakisnittndenclhzneoagieu:eCyetn:nonfrsr::iildn::eteaiL::lCneAdO.Nsd.GJ:l:-D:.V.bE.S.AFeBE...VSr.MUVAJ.LtH..Ja.RCIUORE.C:AVHGVIJHLR.EVEEA.EAOKRSISGSFENSSETA.SEI/HSWSLCSEIOBNR.R.NAOGFMIRANETDOASHKERRSAILES CentralNo.Carolina: T.IVANOV Melbourne: R.BOTSFORD Russia,Moscow:V.KALOSHIN UK/RI: A.REZAZADEH Chicago: R.KOLLMAN Milwaukee: S.G.JOSHI Russia,Saratov-Penza: N.RYSKIN UkraineWest: M.I.ANDRIYCHUK Cleveland: G.PONCHAK MohawkValley: P.RATAZZI SaintLouis: D.MACKE Ukraine,CentralKiev:Y.POPLAVKO Columbus: J.-F.LEE Montreal: K.WU SanDiego: U.S.DHALIWAL Ukraine,East: A.KIRILENKO DCCDDEEEFiaagrzeaanosseynlyllttacpavtaetoUhnetsri:n/nar:dkS::::rNlaoIPoi.vKJAn.T.Aa.eW...CkB:.KBTiaISaANEOrA:ARoARSIRTLSlOZT.iOEnONTKPMLaAU.I:IACRLHDVIIA,L.IEJZPRNDA.KRLOAMER NNNNNNNNOOeeeooooorraewwwrrrrrgnttttwhhhhogJHSaeneeQIJoyratr:enuC:asmurletseoNyhpyeeTu:MsyenW.Cnhv:sRt.iaolayGraOdUale:nea.s:TLKsdt:GTA:::.HAVHTDN.SBI.GGOABIJ.PX.NR...SEIDNATETTR.TEO.RKSEWSALIANN.KWNOSPISASRTSSAIARSINASTNONSA SSSSSSSSaaeeiiiobbnMnnaoueegttuttFarrah.lliipeeaaSCCA:ro,,HnlorfJTaAaerutroiT.n:KancmNd.OcaVoRis:oUOlakv:AVRl:.olSaIJeBEsCl.yHil..HJbe/.GSOLyKi-raY:UEOOsnOkB.L:LENFOJVR.GErVaTC.EInNS.cHWisUcEVoIAL:LEORV,JR UUVVVWWeiikkaicrNnnrrgsteaaonhoiziinriirnnupniitaeeaheeg:,,egltMaRVor:n:nieoAnpVuDSn..Anii.CMrott.gasNf/yNiIiNTnnGOa.Coi:G:eaBrHoH:tEhIrDAAgLeVNN.irLEa.nIMCA:D.HENAIUILaBDLsRtOELe.RVErZnROAYRIDZE FloridaWestCoast: S.O’BRIEN Orlando: T.WU SouthAustralia: B.BATES Yugoslavia: A.MARINCIC AssociateEditors Editor-In-Chief MICHAEL STEER ANDREAS CANGELLARIS JOSÉ PEDRO KENJI ITOH STEVEN MARSH NorthCarolinaStateUniv. Univ.ofIllinois,UrbanaChampaign Univ. of Aveiro MitsubishiElectricCorp. Midas Consulting Raleigh,NC27695-7911USAUSA Portugal Japan U.K. Phone:+19195155191 email:[email protected] email:jcp.mtted.av.it.pt email:[email protected] email:[email protected] Fax:+19195131979 AMIR MORTAZAWI ZOYA POPOVIC RUEY-BEEI WU MANH ANH DO email:[email protected] Univ.ofMichiganatAnnArbor Univ.ofColoradoatBoulder NationalTaiwan Univ. NanyangTechnologicalUniv. USA USA Taiwan, R.O.C. Singapore email:[email protected] email:[email protected] email:[email protected] email:[email protected] YOSHIO NIKAWA DYLAN F. WILLIAMS ALESSANDROCIDRONALI VITTORIO RIZZOLI Kokushikan Univ. NIST Univ. of Florence Univ. of Bologna Japan USA Italy Italy email:[email protected] email:[email protected] email:[email protected] email:[email protected] M.GUPTA,Editor,IEEEMicrowaveMagazine R.VAHLDIECK,Editor,IEEEMicrowaveandWirelessComponentLettTe.rsLEE,WebMaster IEEE Offficers W. CLEON ANDERSON, President and CEO LEAHH.JAMIESON,VicePresident,PublicationServicesandProducts MICHAEL R. LIGHTNER, President-Elect MARCT.APTER,VicePresident,RegionalActivities MOHAMED EL-HAWARY, Secretary DONALDN.HEIRMAN,President,IEEEStandardsAssociation JOSEPH V. LILLIE, Treasurer JOHNR.VIG,VicePresident,TechnicalActivities ARTHUR W. WINSTON, Past President GERARDA.ALPHONSE,President,IEEE-USA MOSHEKAM,VicePresident,EducationalActivities STUART A. LONG, Director, Division IV—Electromagnetics and Radiation Executive Staff DONALD CURTIS, Human Resources MATTHEWLOEB,CorporateStrategy&Communications ANTHONY DURNIAK, Publications Activities RICHARDD. SCHWARTZ, BusinessAdministration JUDITH GORMAN, Standards Activities CHRIS BRANTLEY, IEEE-USA CECELIA JANKOWSKI, Regional Activities MARY WARD-CALLAN, Technical Activities BARBARACOBURNSTOLER,EducationalActivities SALLYA.WASELIK,InformationTechnology IEEE Periodicals Transactions/Journals Department Staff Director: FRAN ZAPPULLA Editorial Director: DAWN MELLEY Production Director: ROBERT SMREK ManagingEditor:MONAMITTRA SeniorEditor:CHRISTINAM.REZES IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES(ISSN0018-9480)ispublishedmonthlybytheInstituteofElectricalandElectronicsEngineers,Inc.Responsibilityforthecontentsrestsuponthe authorsandnotupontheIEEE,theSociety/Council,oritsmembers.IEEECorporateOffice:3ParkAvenue,17thFloor,NewYork,NY10016-5997.IEEEOperationsCenter:445HoesLane,P.O.Box1331, Piscataway,NJ08855-1331.NJTelephone:+17329810060.Price/PublicationInformation:Individualcopies:IEEEMembers$20.00(firstcopyonly),nonmember$69.00percopy.(Note:Postageandhandling chargenotincluded.)Memberandnonmembersubscriptionpricesavailableuponrequest.Availableinmicroficheandmicrofilm.CopyrightandReprintPermissions:Abstractingispermittedwithcredittothe source.Librariesarepermittedtophotocopyforprivateuseofpatrons,providedtheper-copyfeeindicatedinthecodeatthebottomofthefirstpageispaidthroughtheCopyrightClearanceCenter,222Rosewood Drive,Danvers,MA01923.Forallothercopying,reprint,orrepublicationpermission,writetoCopyrightsandPermissionsDepartment,IEEEPublicationsAdministration,445HoesLane,P.O.Box1331,Piscataway, NJ08855-1331.Copyright©2005byTheInstituteofElectricalandElectronicsEngineers,Inc.Allrightsreserved.PeriodicalsPostagePaidatNewYork,NYandatadditionalmailingoffices.Postmaster:Send addresschangestoIEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,IEEE,445HoesLane,P.O.Box1331,Piscataway,NJ08855-1331.GSTRegistrationNo.125634188.PrintedinU.S.A. DigitalObjectIdentifier10.1109/TMTT.2005.856959 IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,VOL.53,NO.9,SEPTEMBER2005 2649 Guest Editorial THE16thAsia–PacificMicrowaveConference(APMC’04) (cid:127) Mini-SpecialIssueonthe2006InternationalConference was held in New Delhi, India, 15–18 December 2004. on Microwave Radar and Wireless Communications As the largest international microwave conference in the (MiKon).Deadlineforsubmissionofmanuscripts:1June Asia–Pacificregion,APMChasbeenwidelysupportedbymi- 2006;scheduledpublicationdate:February2007. crowave and wireless academia and industry. The first APMC (cid:127) Special Issue on the 35th (2005) European Microwave was held in India in 1986 and subsequently held annually Conference. Deadline for submission of manuscripts: in various countries throughout Asia and Australasia. It has 1October2005;scheduledpublicationdate:June2006. become one of the most renowned international microwave Upcoming Special Issues whose submission dates have conferences along with the IEEE Microwave Theory and passedareasfollows. Techniques Society (IEEE MTT-S) International Microwave (cid:127) Special Issue on Ultra-Wideband. Scheduled publication Symposium (IMS), held in North America, and the European date:April2006. Microwave Conference, held in Europe. For all three confer- (cid:127) Special Issue on Microwave Photonics. Scheduled ences, Special Issues are published by this TRANSACTIONS, publicationdate:February2006. but this is the first for APMC. As with the other international (cid:127) Mini-Special Issue on Radio Frequency Integrated microwaveconferences,anindustryexhibitionisheldsimulta- Circuits.Scheduledpublicationdate:January2006. neouslywithAPMCand,thus,allthreehaveaconsistentflavor (cid:127) Special Issue on the 2005 IEEE MTT-S International ofcloselinkagebetweenindustrialdevelopmentsandscholarly Microwave Symposium. Scheduled publication date: presentation. November2005. Microwave engineering is experiencing substantial growth RecentSpecialIssueshavebeenhasfollows. and much of this growth is coming from Asia and fueled by (cid:127) Special Issue on Metamaterial Structures, Phenomena, demandsforwirelessconnectivity.Aroundhalfofthetotalsub- andApplications.Publicationdate:April2005. missionstothisTRANSACTIONScomefromAsia.Itisclearfrom (cid:127) SpecialIssueonMultifunctionalRFSystems.Publication these submissions that many countries in Asia are developing date:March2005. aviablemicrowaveindustryandestablishingastrongresearch (cid:127) Mini-SpecialIssueonthe2004IEEERFICSymposium. base with unique concepts and ideas. Some of these ideas are Publicationdate:February2005. brought together in this TRANSACTIONS’ Mini-Special Issue. (cid:127) Mini-SpecialIssueonthe2004InternationalConference Authors of papers included in the conference were invited to on Microwave Radar and Wireless Communications submitmanuscriptstothisTRANSACTIONS.Altogether79sub- (MiKon).Publicationdate:February2005. missionswerereceived,and12areincludedhere.Anadditional (cid:127) Special Issue on the 2004 IEEE MTT-S International paper was accepted, but was not ready in time for production. MicrowaveSymposium.Publicationdate(inthreeparts): Papers were reviewed with the same procedure as regular pa- November2004,December2004,January2005. pers.Inadeparturefrompastyears,anarchivalconferencedi- (cid:127) Mini-Special Issue on Terahertz Electronics. Publication gestwasnotproducedforAPMC’04,butinfutureyears,APMC date:October2004. shouldreturntoarchivalpublicationofconferencepapers. (cid:127) Special Issue on Model-Order Reduction Methods ThisTRANSACTIONSmaintainsawebsiteathttp://www.mtt. for Computer-Aided Design of RF/Microwave and org/publications/Transactions/transactions.htmwhereCallsfor Mixed-Signal ICs and Systems. Publication date: Papers for Special Issues and links to author tools are main- September2004. tained.CurrentCallsforPapersareasfollows. (cid:127) Mini-SpecialIssueonUltra-Wideband.Publicationdate: (cid:127) Mini-Special Issue on Measurements for Large-Signal September2004. CharacterizationandModelingofNonlinearAnalogDe- (cid:127) Special Issue on Medical Applications and Biological vices,Circuits,andSystems.Deadlineforsubmissionof Effects of RF/Microwaves. Publication date: August manuscripts: 15 December 2005. Scheduled publication 2004. date:September2006. MICHAELB.STEER,Editor-In-Chief NorthCarolinaStateUniversity DepartmentofElectricalandComputerEngineering DigitalObjectIdentifier10.1109/TMTT.2005.854222 Raleigh, NC 27606-7911 USA 0018-9480/$20.00©2005IEEE 2650 IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,VOL.53,NO.9,SEPTEMBER2005 Performance of Inter-Chip RF-Interconnect Using CPW, Capacitive Coupler, and UWB Transceiver M. Sun and Y. P. Zhang Abstract—Anovelinter-chipRF-interconnectsystemoperating andthecapacitivecoupledinterconnect(CCI).Itimprovesthe intherangeof22–29GHzisdescribedandanalyzedintermsof signal-to-noiseratioandlowersthesignalswingandoutputcon- systembiterrorrate(BER)performance.Aftercharacterizingthe sumption while it increases the transmission data rate [4]. For interconnectchannel,plottingthetransmittedandreceivedultra- thisRFIsystemstructure,ithasdemonstratedamaximumdata widebandpulses,andestimatingtheswitchingnoisepowerdensity byproposinganovelswitchingnoiseattackmodel,wefinallyget rate of 2.2 Gb/s in 0.18- m CMOS technology [4]. However, theresultsofthesystemperformance.Itisshownthattheperfor- in[3]–[5],thetransceiversofthesepreviousRFIsystemsareall mancedegradeswiththeinterconnectdistanceandtheswitching basedonatraditionalradiostructure.Ascomparedwithconven- noise attacker number. It is concluded that a high data rate at tional radios, the UWB radio is much simpler and there is no 3.33Gb/swithalowBER 10 5 overtheentirechipofsize 30 30 mm2 is achievable with the radiated power density less reference oscillator, frequency synthesizer, voltage-controlled than 41dBm/MHz(ortheaveragetransmittedpowerlessthan oscillator, mixer, or power amplifier, which directly translates 2.85dBm). tosmallercircuitry overheadand powerconsumption [7].The conceptofintegrationofanultra-wideband(UWB)transceiver IndexTerms—Biterrorrate(BER),capacitivecoupler,coplanar waveguide(CPW), inter-chip RF-interconnect (RFI),ultra-wide- intoachipforanintra-andinter-chipwirelessinterconnecthas band(UWB)radio. been proposed in a novel configuration of wireless chip area networks (WCANs) as its physical layer [8]. In [9], the UWB radioisfirstlyproposedasthetransceiverfortheinter-chipRFI I. INTRODUCTION systemusingCPWandcapacitivecouplers.Basedonthisidea, SEMICONDUCTORtechnologiescontinuouslyscaledown a novel RFI system structure is proposed to offer an alterna- featuresizetoimprovethespeedofoperation.Takingcom- tive solution for the chip-to-chip interconnect problem. It has plementary metal–oxide semiconductor (CMOS) technology theadvantageofthesmallattenuationoftheCPWandcapaci- asanexample,theminimumfeaturesizeofmetal–oxidesemi- tivecouplerchannel,aswellastheadvantageoftheUWBradio conductor (MOS) transistors has been reduced to 90 nm and forshort-rangecommunication.Inthispaper,theperformance the speed of operation has exceeded 100 GHz [1]. Such rapid ofthisRFIsystemwillbeanalyzedindetail.Theinterconnect scaling has two profound impacts. First, it enables a much channelwillbecharacterizedandthetransmittedandreceived higherdegreeofintegration.Second,itimpliesamuchgreater UWBpulseswillbeplottedand,afterthat,arealisticswitching challengeoftheinterconnectbecausethemetalwirewidthand noiseattackmodelwillbeproposedtoestimatethesystemSNR space are greatly reduced and fundamental material limits are and evaluate the system bit error rate (BER) performance in approaching[2].Revolutionaryinterconnectmethodsandtech- termsofthedifferentswitchingnoiseattacknumber. niques must be pursued to carry on the fast progress of future ultra large-scale integration (ULSI) technology. At this point, RF-interconnect (RFI) become possible with high-frequency II. SYSTEMSTRUCTUREANDPERFORMANCEANALYSIS silicontechnologiesandever-increasingintegrated-circuit(IC) Fig. 1 shows the proposed inter-chip RFI system located size[3]–[6]. inside a multichip module (MCM) package to fulfill the inter- AnovelRFIsystemconceptisfirstproposedin[3].Itsstruc- connectfunctionbetweendigitalI/OAandB[9].ItusesUWB ture is based on RF-transceiver and capacitive coupling over radios as transceivers, which comprises a pulse generator, a animpedance-matchedtransmissionline,whereRFsignalsare transmit/receive (T/R) switch, a low-noise amplifier (LNA), a up-linked to the shared broadcasting medium, coplanar wave- matchedfilter, and a thresholdcircuit. Inaddition, this system guide(CPW),ormicrostriptransmissionline(MTL)viatrans- features a unique channel, composed by capacitive couplers, mittingcapacitivecouplers,thendown-linkedviareceivingca- and an off-chip, but in-package passive MTL or CPW as a pacitive couplers to fulfill the interconnect function. This RFI sharedbroadcastingmedium.Thetransmittedpulseisdirectly system structure overcomes the limits of conventional digital fed to the transmitting capacitive couplers. The information interface systems using the direct-coupled interconnect (DCI) canbetransmittedusingpulsepositionmodulation(PPM).The receivedpulseispassedthroughthematchedfilter.Theoriginal ManuscriptreceivedDecember17,2004;revisedMarch17,2005. information is then recovered with an adjustable high-gain TheauthorsarewiththeIntegratedSystemsResearchLaboratory,School thresholdcircuit.Thesystemoperatesatthe22–29-GHzUWB ofElectricalandElectronicEngineering,NanyangTechnologicalUniversity, frequencyband.Theadvantageofthishigherbandasopposed Singapore639798(e-mail:[email protected];[email protected]). DigitalObjectIdentifier10.1109/TMTT.2005.854213 tothe3.1–10.6-GHzUWBbandwillbeshownbelow. 0018-9480/$20.00©2005IEEE SUNANDZHANG:PERFORMANCEOFINTER-CHIPRFIUSINGCPW,CAPACITIVECOUPLER,ANDUWBTRANSCEIVER 2651 amplitudeoftransferfunction ,asshowninFig.3(a)–(c).The parametersincludethedistancebetweenthetransmitterandre- ceiver , the coupler capacitance , and the re- sistance . Note that the value of coupler ca- pacitance and resistance is the same for the transmitter andreceiverbecauseofoursystem’sbidirectionalcommunica- tionnature.Asexpected,theamplitudeofthetransferfunction showsthehigh-passcharacteristic.Inaddition,Fig.3(a)shows that the amplitude of quickly decreases with distance. The longerdistancehasthelargerattenuation.Fig.3(b)showsthat the coupler capacitance has an important effect on the am- plitude of . The smaller capacitance has the larger channel attenuation. Based on this simulation, fF is chosen for our system. Furthermore, it is found that output resistance Fig.1. Inter-chipRFIsystemarchitecture. has a certain effect on the amplitude of . with a small value will cause the fluctuation of the amplitude of in high frequency,asshowninFig.3(c).Basedonthissimulation,we choose k .Thephaseofthetransferfunctionintermsof distanceisalsoexaminedinFig.3(d).Itshowsthelinearchar- acteristic, and the longer distance has the larger delay. Based on the above observation, we conclude that the CPW and ca- pacitive coupler channel can be regarded as a high-pass filter, whichhasalinearincreaseddelaywithinterconnectlength.This conclusionreconcileswellwiththemeasurementresultin[10]. Thishigh-passcharacteristicofthechannelcangreatlyreduce theswitchingnoisecouplingfromtheon-chipdigitalcircuitry into the channel at the transmitter end, as illustrated in Fig. 4 Fig.2. Channelmodel:C isthetransmitter’scouplingcapacitor,C isthe [10].ItalsoexplainswhythehigherUWB22–29-GHzbandis receiver’scouplingcapacitor,R isthetransmitter’soutputresistance,R is thereceiver’sinputresistance,V isthesourcesignalvoltage,disthedistance preferabletothelowerband.However,forarealisticcondition, betweenthetransmitterandreceiver,Z istheimpedancelookedintotheCPW, switching noise will randomly couple to the CPW channel at V isthechannel’sinputvoltage,andV isthechannel’soutputvoltage. anypoint.Themorerealisticswitchingnoisemodelwillbede- velopedandtheaccordingaveragenoisepowerspectraldensity A. CharacterizationoftheInterconnectChannel (PSD)willbepresentedinSectionII-C. The channel comprises capacitive couplers and a shared CPW.Thecharacteristicofthischannelisfirstanalyzedin[3] B. TransmittedandReceivedUWBPulses based on transmission-line theory with some approximation. Here,thechannel’sexacttransferfunctionisderivedasfollows The PPM scheme is used in UWB radio. The designed in (1) based on transmission-line theory using the channel UWBpulsewasplottedin[9].Ithas0.25-nstimedurationand modelshowninFig.2[9]: 7-GHzbandwidthlocatedfrom 22to29GHz.Theexpression of transmitted UWB pulses using the PPM scheme was also presented in [9]. PPM delay is optimized as 0.02 ns. Appro- priateframewidthischosentorealizetheinterconnectdatarate Gb/s. Thepeak amplitude of the transmitted pulse (1) isadjustedtochangethetransmittedenergyperbit ,e.g., when is 0.03 V, we obtain the value of 131.4811 dB where for22–29-GHzbandwidthandthetransmittedpowerdensityis lessthan 41dBm/MHz. Fig.5(a)showsthetransmitteddata,transmittedpulses,and received pulses with normalized amplitude at mm. It isfoundthatthedelayisserious.Thiscanbeexplainedbythe channel transfer function , which has linear increased delay with interconnect length. One method is developed in simula- tiontoestimatethedelayaccurately.TheresultisshowninFig. isthecomplexpropagationconstantoftheCPW.Its 6.Asexpected,thedelayincreaseswithdistance.Usingthises- real part in nepers per meterrepresents the attenuation con- timateddelaytocompensatethereceivedsignal,weobtainthe stantanditsimaginarypart inradianspermeterrepresentsthe result, as shown in Fig. 5(b), which confirms the accuracy of phaseconstant.Basedonthesimulatedfrequency-dependant delay estimation. Furthermore, the received signal suffers en- and valuesin[9],weexaminedtheparameters’effectonthe ergy loss, as shown in Fig. 6, computed using a time-domain 2652 IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,VOL.53,NO.9,SEPTEMBER2005 Fig.3. AmplitudeandphaseofHversusfrequency.(a)Effectofdistance:C =500fF,R=5k(cid:10).(b)Effectofcouplercapacitance:d=5mm,R=5k(cid:10). (c)Effectofresistance:d=5mm,C =500fF.(d)Effectofdistance:C =500fF,R=5k(cid:10). [11].Therefore,theswitchingnoiseattackofbothtypescanbe modeled based on the capacitive coupling mechanism. Fig. 7 shows the attack by a switching noise source on a victim CPWthroughcapacitivecouplingatthepoint .Themorereal- isticattackerwaveform asopposedtoapiecewise-linear oneisproposedin[11]basedontheMarkovchainandlow-pass filter(LPF)model,asshowninFig.8.Theswitchingnoiseac- tivity is modeled by the Markov chain producing , whose PSDisshownasfollowsin(2),where istheprobabilitythata Fig.4. SuppressionofswitchingnoiseatthetransmitterendintheRFI. particularattackerswitchesand istheshortestdelaybetween statetransition: waveformofthesignalafterthechannel.Asexpected,theen- ergylossGlossincreaseswithdistance. (2) C. SwitchingNoiseAttackModel The realistic attack noise waveform is obtained by making passthroughafirst-orderLPFhavingagain and Foroursystemthatintegratesboththeanalogradiofrontend atimeconstant .ItsPSDisthenderivedas and digital baseband processing circuits, the switching noise produced by the digital circuits may be significant and impact (3) the receiver performance. Two types of switching noise cou- pling can be considered. The first type is the noise generated by the transistors in digital circuits injecting currents into the For the switching noise attack model shown in Fig. 7, the commonsubstrate.Itseffectonthesystemcanbemodeledby transfer function between and can be exactly the capacitive coupling. The second is the noise capacitively derivedbasedontransmission-linetheoryaccordingtothethree coupled tothe CPW inthe samelayer or from adjacentlayers cases and . The received noise SUNANDZHANG:PERFORMANCEOFINTER-CHIPRFIUSINGCPW,CAPACITIVECOUPLER,ANDUWBTRANSCEIVER 2653 Fig.7. Switchingnoiseattackmodel. Fig.8. Markovchainmodelfortheswitchingactivityofattackers. (b) bysuperposingthe contributionofeachindividualattacker.In Fig. 5. Transmitted, received, and delay compensated received signal with normalizedamplitudeatd=20mm. MATLAB, we simulated the average PSD at for the case of the numberof attacker of5, 10,and 15, respectively,which is calculatedby (5) where isthetotaltestnumber, isthetestindex,and rep- resents the th switching noise attacker. In every test, a noise source’scouplinggain andcouplingposition isproduced randomlyaccordingtotheirdistribution. isthencal- culatedaccordingtoitsposition .Thesimulated at theattackernumberof5,10,and15,respectively,isshownin Fig.9.Asexpected,the increaseswiththenumberof attacker.Itisalsoworthnotingthatthe hasnodccom- ponentandisfairlyflatinthefrequencyrangeof22–29GHz. Fig.6. Receivedsignal’sdelayandenergylossversusdistance. Itsaveragevalueinthisfrequencyrange willbeusedtoes- timatetheaveragebitSNRatthereceiverendinSectionII-D. PSD at contributed by the single noise attacker is then Theexacttransferfunctionandrealisticswitchingnoiseattack obtained by model presented here makes it possible to realistically model theswitchingnoisePSDonthevictimline,whichwillprovide (4) importantinformationtoevaluateoursystem’sperformance. Itisassumedthatthepositionofeachattacker isarandom D. BERPerformance variable,whichisuniformlydistributedintherangeof0tothe CPW’s length . The gain is also assumed to be a random Foraninter-chipinterconnectwithinapackage,thesignalis variablehavingtheuniformdistributionintherangefrom0to1. only contaminated by thermal noise and switching noise. The Toconsidertherealisticcaseofmanyswitchingnoiseattackers expressionofthethermalnoisePSD hasbeenpresentedin tothevictimCPW,thetotalPSDofthenoiseat isdetermined [9] based on the receiver noise figure . It is shown that 2654 IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,VOL.53,NO.9,SEPTEMBER2005 The average bit SNR and BER versus distance for the different attacker number are shown in Fig. 10. The parame- ters used in simulation are dB, dB, and dBandthepeakamplitudeofthetransmittedpulse isadjusted to0.03V.As expected, decreaseswithdistance andtheattackernumber.TheBERincreaseswithdistanceand theattackernumber.Itisconcludedthatahighinterconnectdata rateat3.33Gb/swithalow overtheentirechip ofsize30 30mm isachievablewiththeradiatedpowerden- sitylessthan 41dBm/MHz(ortheaveragetransmittedpower lessthan 2.85dBm). III. CONCLUSION Fig.9. AverageswitchingnoisePSDversusfrequency. A novel inter-chip RFI system operating in the range of 22–29GHzhasbeendescribedandanalyzedintermsofsystem BER performance. This system features a channel comprised bythe CPW and capacitivecouplers. It also features an UWB radioasthetransceiver.Forthissystem,thetransmittedUWB pulse is designed and the transfer function of the interconnect channelisderived;afterthat,arealisticswitchingnoiseattack model is proposed to estimate the system SNR and evaluate the system BER performance in terms of the different attack number. As expected, the BER increases with distance and the attacker number. It is concluded that a high data rate at 3.33Gb/swithalow overtheentirechipofsize 30 30mm isachievablewiththeradiatedpowerdensityless than 41 dBm/MHz (or the average transmitted power less than 2.85dBm). Fig.10. AveragebitSNRandBERversusdistanceforadifferentattacker number. REFERENCES is6.6dBinthelowerbandand8.6dBintheupperbandfora [1] International Technology Roadmap for Semiconductors (ITRS), 2002 Update,SIA. CMOSUWBradiooperatingfrom3.1to10.6GHz[12],[13]. [2] R.H.HavemannandJ.A.Hutchby,“High-performanceinterconnects: Thus, here, can be reasonably assumed to be 15 dB. The Anintegrationoverview,”Proc.IEEE,vol.89,no.5,pp.586–601,May simulated average switching noise PSD was obtained in Sec- 2001. [3] M.F.Chang,V.P.Roychowdhury,L.Zhang,S.Hyunchol,andY.X. tionII-Cas .TheaveragebitSNRatthereceiverendisthen Qian,“RF/wirelessinterconnectforinter-andintra-chipcommunica- shownasfollows: tions,”Proc.IEEE,vol.89,no.4,pp.456–466,Apr.2001. [4] H.Shin,Z.Xu,andM.F.Chang,“RF-interconnectformulti-Gb/sdigital interfacebasedon10GHzRF-modulationin0.18(cid:22)mCMOS,”IEEE (6) MTT-SInt.MicrowaveSymp.Dig.,vol.1,pp.477–480,Jun.2002. [5] H.ShinandM.F.Chang,“1.1Gbit/sRF-interconnectbasedon10GHz RF-modulationin0.18(cid:22)mCMOS,”Electron.Lett.,vol.38,no.2,pp. where is the received average energy per bit calculated 71–72,Jan.2002. [6] Y.P.Zhang,“Bit-error-rateperformanceofintra-chipwirelessintercon- using the expression presented in [9] based on the gain of the nectsystems,”IEEECommun.Lett.,vol.8,no.1,pp.39–41,Jan.2004. receiver andtheimplementationmargin . [7] J.Foerster,E.Green,S.Somayazulu,andD.Leeper,“Ultra-wideband The BER of our system using PPM modulation is then ob- technologyforshort-ormedium-rangewirelesscommunications,”Intel Technol.J.Q2,pp.1–11,2001. tainedasa -function[9] [8] Y.P.Zhang,“Wirelesschipareanetwork:Anewparadigmforantennas, RF(MM)IC’s,andcommunications,”presentedattheAsia–PacificMi- crowaveConf.,2004. [9] M.SunandY.P.Zhang,“Inter-chipRF-interconnectusingCPW,ca- (7) pacitivecouplerandUWBtransceiver,”presentedattheAsia–Pacific MicrowaveConf.,2004. [10] H.Shin,Z.Xu,K.Miyashiro,andM.F.Chang,“Estimationofsignal-to- (8) noiseratioimprovementinRF-interconnect,”Electron.Lett.,vol.38,no. 25,pp.1666–1667,Dec.2002. [11] M. Saint-Laurent, Z. Ajmal, M. Swaminathan, and J. D.Meindl, “A where isthereceivedpulsecorrespondingtoourdesigned model for interlevel coupling noise in multilevel interconnect struc- tures,”inInterconnectTechnol.Conf.,vol.4–6,Jun.2001,pp.110–112. pulse without delay and the PPM delay is optimized as [12] IEEEStandard802.15-03/139r5,2003. 0.02nstoobtainthebestBERperformance. [13] IEEEStandard802.15-03/334r3,2003. SUNANDZHANG:PERFORMANCEOFINTER-CHIPRFIUSINGCPW,CAPACITIVECOUPLER,ANDUWBTRANSCEIVER 2655 M. Sun was born in Gansu, China, in 1980. She Y.P.ZhangreceivedtheB.E.degreefromTaiyuan received the B.S. degree in electrical and informa- Polytechnic Institute, Shanxi, China, in 1982, the tionengineeringfromtheHunanUniversity,Hunan, M.E. degree from and the Shanxi Mining Institute China,in2000,theM.S.degreeinelectronicengi- ofTaiyuanUniversityofTechnology,Shanxi,China, neering from the Beijing Institute of Technology, in 1987, and the Ph.D. degree from the Chinese Beijing, China, in 2003, and is currently working UniversityofHongKong,HongKong,in1995,all towardthePh.D.degreeinelectricalandelectronic inelectronicengineering. engineering at Nanyang Technological University, From1982to1984,hewaswiththeShanxiElec- Singapore. tronicIndustryBureau.From1990to1992,hewas Herresearchinterestsincludeintra-andinter-chip with the University of Liverpool, Liverpool, U.K. RFwirelesscommunicationsystemsimulationand From1996to1997,hewaswiththeCityUniversity implementationandintegratedantennadesignforwirelesscommunication. ofHongKong.From1987to1990,hewaswiththeShanxiMiningInstitute. From1997to1998,hewaswiththeUniversityofHongKong.In1996,he became a Full Professor with the Taiyuan University of Technology. He is currentlyanAssociateProfessorwiththeSchoolofElectricalandElectronic Engineering, Nanyang Technological University, Singapore. He currently guides a research group with the Integrated Systems Research Laboratory, School of Electrical and Electronic Engineering, Nanyang Technological University, to develop radio technologies for inter- and intra-chip wireless interconnection, communications, and networking. He has been involved in the areas of propagation of radio waves, characterization of radio channels, miniaturizationofantennas,andimplementationofwirelesscommunications systems.HeislistedinMarquis’Who’sWhoinScienceandEngineeringand Cambridge University Press’s IBC 2000 Outstanding Scientists of the 21st Century.HeservesontheEditorialBoardoftheInternationalJournalofRF andMicrowaveComputer-AidedEngineeringandwasaGuestEditorofthe journalforthe“SpecialIssueonRFandMicrowaveSubsystemModulesfor WirelessCommunications.” Prof.Zhangwastherecipientofthe1990Sino-BritishTechnicalCollabo- rationAwardforhiscontributiontotheadvancementofsubsurfaceradiosci- enceandtechnology.Hewasalsotherecipientofthe2000BestPaperAward presentedattheSecondInternationalSymposiumonCommunicationSystems, NetworksandDigitalSignalProcessing,Bournemouth,U.K.