MAY 2005 VOLUME53 NUMBER 5 IETMAB (ISSN0018-9480) PAPERS Chebyshev Collocation and Newton-Type Optimization Methods for the Inverse Problem on Nonuniform Transmission Lines. ... .... ... ... ... ... ... ... ... ... ... ...... ... .... ... ... ... ... ... ... ... ... ... ..M.Norgren 1561 Four-PortMicrowaveNetworksWithIntrinsicBroad-BandSuppressionofCommon-ModeSignals .. ... ... ... .... .. ... ... .... ... ... ... ... ... ... ... ... ... ... ... .... ... ... ... ... . W.M.FathelbabandM.B.Steer 1569 Ultra-SensitiveDetectionofProteinThermalUnfoldingandRefoldingUsingNear-ZoneMicrowaves.... ... ... .... .. ... ... .... ... ... ... ... ... ... ... ... ... ... ... .... ... ... ... K.M.TaylorandD.W.vanderWeide 1576 Low-ReflectionSubgridding.. ... ... ... ... ... ... .... ..... .... ... ... ... ... ... ..L.KulasandM.Mrozowski 1587 Table-BasedNonlinearHEMTModelExtractedFromTime-DomainLarge-SignalMeasurements ... ... ... ... .... .. ... ... .... ... ... ... ... ... ... ... ... ... ... ... .... ... ... ... ... ... ... ...M.C.Currás-Francos 1593 AnAdvancedLow-FrequencyNoiseModelofGaInP–GaAsHBTforAccuratePredictionofPhaseNoiseinOscillators .. ... ... ..... ..... ... ... ... ..J.-C.Nallatamby,M.Prigent,M.Camiade,A.Sion,C.Gourdon,andJ.J.Obregon 1601 AppropriateFormulationoftheCharacteristicEquationforOpenNonreciprocalLayeredWaveguidesWithDifferentUpper andLowerHalf-Spaces. ... ... ... ... ... ..... .... ... ... .... ... . R.Rodríguez-Berral,F.Mesa,andF.Medina 1613 CompactMMICCPWandAsymmetricCPSBranch-LineCouplersandWilkinsonDividersUsingShuntandSeriesStub Loading. . .... ... ... ... ... ... ... ...... ... ... ... ... .... ... ... .K.Hettak,G.A.Morin,andM.G.Stubbs 1624 Synthesis and Design of In-Line -Order Filters With Real Transmission Zeros by Means of Extracted Poles ImplementedinLow-CostRectangular -PlaneWaveguide. .... ... ... ... ... ... ...... ... ... ... ... ... .... J.R.Montejo-Garai,J.A.Ruiz-Cruz,J.M.Rebollar,M.J.Padilla-Cruz,A.Oñoro-Navarro,andI.Hidalgo-Carpintero 1636 DigitalSubbandFilteringPredistorterArchitectureforWirelessTransmitters. ... ... ... ... ... ... ... ... ... .... .. ... ... .... ... ... ... ... ... ... ... ...O.Hammi,S.Boumaiza,M.Jaïdane-Saïdane,andF.M.Ghannouchi 1643 DesignGuidelinesforTerahertzMixersandDetectors . ... ... ....... ... ... .. P.Focardi,W.R.McGrath,andA.Neto 1653 CMOSRFAmplifierandMixerCircuitsUtilizingComplementaryCharacteristicsofParallelCombinedNMOSandPMOS Devices.. .... ... ... ... ... ... ... ... .... ..... ... ... .... ... ... ... ... ... .. I.Nam,B.Kim,andK.Lee 1662 ALow-Power -BandVoltage-ControlledOscillatorImplementedin200-GHzSiGeHBTTechnology . ... ... .... .. ... ... .... ..Y.-J.E.Chen,W.-M.L.Kuo,Z.Jin,J.Lee,Y.V.Tretiakov,J.D.Cressler,J.Laskar,andG.Freeman 1672 ModelingDistortioninMultichannelCommunicationSystems. .... .... ..... ... ... .K.M.GharaibehandM.B.Steer 1682 (ContentsContinuedonBackCover) (ContentsContinuedfromFrontCover) An AnalyticalTechnique for theSynthesisofCascaded -TupletsCross-CoupledResonators MicrowaveFiltersUsing MatrixRotations .. ... ... ... ... ... ... ... ...... ... ... .... ... ... ... ... .S.TamiazzoandG.Macchiarella 1693 EffectofMode-StirrerConfigurationsonDielectricHeatingPerformanceinMultimodeMicrowaveApplicators .. .... .. ... ... .... ... ... ... . P.Plaza-González,J.Monzó-Cabrera,J.M.Catalá-Civera,andD.Sánchez-Hernández 1699 Compact Planar and Vialess Composite Low-Pass Filters Using Folded Stepped-Impedance Resonator on Liquid-Crystal-PolymerSubstrate.. ... ...... ... . S.Pinel,R.Bairavasubramanian,J.Laskar,andJ.Papapolymerou 1707 PrecisionOpen-EndedCoaxialProbesforInVivoandExVivoDielectricSpectroscopyofBiologicalTissuesatMicrowave Frequencies...... .D.Popovic,L.McCartney,C.Beasley,M.Lazebnik,M.Okoniewski,S.C.Hagness,andJ.H.Booske 1713 Experimental Class-F Power Amplifier Design Using Computationally Efficient and Accurate Large-Signal pHEMT Model... .... ... ... ... ... ... ... ... .... ..... ... ... .... ... ... ... ... ... ... . M.WrenandT.J.Brazil 1723 RadiometricMillimeter-WaveDetectionviaOpticalUpconversionandCarrierSuppression .. ... ... ... ... ... .... .. ... ... .... ... ... ... ... ... ... ... ... ...C.A.Schuetz,J.Murakowski,G.J.Schneider,andD.W.Prather 1732 ExperimentalValidationofAnalysisSoftwareforTunableMicrostripFiltersonMagnetizedFerrites.. ... ... ... .... .. ... ... .... ... ... ... ... ... ... ... ... ... ... ... .... .. G.León,M.J.Freire,R.R.Boix,andF.Medina 1739 SystematicLinearityAnalysisofRFICsUsingaTwo-PortLumped-Nonlinear-SourceModel. ... ... ... ... ... .... .. ... ... .... ... ... ... ... ... ... ... ... ... ... ... ....Q.Liang,J.M.Andrews,J.D.Cressler,andG.Niu 1745 MeasurementoftheDielectricConstantsofMetallicNanoparticlesEmbeddedinaParaffinRodatMicrowaveFrequencies .. ... ... .... ... ... ... ... ... .... ..... ... ... ... ... .... ... ... ... ..Y.-S.Yeh,J.-T.Lue,andZ.-R.Zheng 1756 ComputationalApproachBasedonaParticleSwarmOptimizerforMicrowaveImagingofTwo-DimensionalDielectric Scatterers. .... ... ... ... ... ... ... ... ... ...... ... ... .... ... ... ... ... ... ... .M.DonelliandA.Massa 1761 DesignofDielectric-FilledCavityFiltersWithUltrawideStopbandCharacteristics .. ... .... ..... ... ... . C.Rauscher 1777 SimplifiedAnalysisTechniquefortheInitialDesignofLTCCFiltersWithAll-CapacitiveCoupling .. ... ... ... .... .. ... ... .... ... ... ... ... ... ... ... ... ... ... ... .... ... ... ... ... .. K.RambabuandJ.Bornemann 1787 -BandOrthomodeTransducerWithWaveguidePortsandBalancedCoaxialProbes.. ....G.EngargiolaandA.Navarrini 1792 Optimum Operation of Asymmetrical-Cells-Based Linear Doherty Power Amplifiers—Uneven Power Drive and Power Matching. .... ... ... ... ... ... ... ... ...... ... ... ... .... ... ... ... ... J.Kim,J.Cha,I.Kim,andB.Kim 1802 MiniaturizedParallelCoupled-LineBandpassFilterWithSpurious-ResponseSuppression... ... ... ... ... ... .... .. ... ... .... ... ... ... ... ... ... ... ... ... ... ... .... ... ... ... . P.Cheong,S.-W.Fok,andK.-W.Tam 1810 Periodically Nonuniform Coupled Microstrip-Line Filters With Harmonic Suppression Using Transmission Zero Reallocation .. ... ... ... ... ... ... ... ... ... ..... .... .... ... ... ... ... ... ... ... ... S.SunandL.Zhu 1817 ParallelCoupledMicrostripFiltersWithFloatingGround-PlaneConductorforSpurious-BandSuppression... ... .... .. ... ... .... ... ... ... ... ... ... ... ... ... ..M.delCastilloVelázquez-Ahumada,J.Martel,andF.Medina 1823 LETTERS Commentson“OnDeembeddingofPortDiscontinuitiesinFull-WaveCADModelsofMultiportCircuits”andRelated Comments.... ... ... ... ... ... ... ... ... ... ... ...... .... ... ... ... ... ... ... ... ... ... ...M.Farina 1829 Authors’Reply .. ... ... ... ... ... ...... ... ... ... ... ... . V.I.Okhmatovski,J.D.Morsey,andA.C.Cangellaris 1829 Comments on “Toward Functional Noninvasive Imaging of Excitable Tissues Inside the Human Body Using Focused MicrowaveRadiometry”... ... ... ... ... ... ... ... ... ....... ... ... ... ... ... ... ... ... ... . A.N.Reznik 1829 Authors’Reply .. ... ... ... ... ..... .... ... ... ... ... . I.S.Karanasiou,N.K.Uzunoglu,andC.C.Papageorgiou 1831 Correctionson“ModeDiscriminatorBasedonMode-SelectiveCoupling”... ... ... ... ..... .... ... ... ... .W.Wang 1833 InformationforAuthors.. ... ... ... ... ... ... ... ... ... .... ...... ... ... ... ... ... ... ... ... ... ... .... 1834 CALLSFORPAPERS 14thTopicalMeetingonElectricalPerformanceofElectronicPackaging.... ... ... ... ... ...... ... ... ... ... .... 1835 IEEEMICROWAVETHEORYANDTECHNIQUESSOCIETY TheMicrowaveTheoryandTechniquesSocietyisanorganization,withintheframeworkoftheIEEE,ofmemberswithprincipalprofessionalinterestsinthefieldofmicrowavetheoryandtechniques.Allmembers oftheIEEEareeligibleformembershipintheSocietyandwillreceivethisTRANSACTIONSuponpaymentoftheannualSocietymembershipfeeof$14.00plusanannualsubscriptionfeeof$24.00.Forinformation onjoining,writetotheIEEEattheaddressbelow.MembercopiesofTransactions/Journalsareforpersonaluseonly. ADMINISTRATIVE COMMITTEE K.C.GUPTA,President K.VARIAN,VicePresident A.MORTAZAWI,Secretary M.HARRIS,Treasurer M. P. DE LISO D. HARVEY S.KAWASAKI T. LEE V. J. NAIR W. SHIROMA K.VARIAN S. M.EL-GHAZALY J. HAUSNER J.S.KENNEY D. LOVELACE B. PERLMAN R. SNYDER R.WEIGEL M.HARRIS L.KATEHI N.KOLIAS J.MODELSKI D.RUTLEDGE R.SORRENTINO S.WETENKAMP HonoraryLifeMembers DistinguishedLecturers PastPresidents T. ITOH A.A.OLINER K. TOMIYASU L. E. DAVIS T. ITOH D. RYTTING R.J.TREW(2004) T.S.SAAD L.YOUNG W. GWAREK B. KIM M. SHUR F.SCHINDLER(2003) W. HEINRICH J. LASKAR P. SIEGEL J.T.BARRIV(2002) W.HOEFER J.C.RAUTIO R.J.TREW MTT-S Chapter Chairs Albuquerque: G.WOOD Foothill: C.ANTONIAK Ottawa: J.E.ROY SouthBrazil: L.C.KRETLY Atlanta: J.PAPAPOLYMEROU France: O.PICON Philadelphia: J.B.McCORMACK SoutheasternMichigan: L.M.ANNEBERG ABBBBBBBBCCCaeeeeuueeeuuDFliilndnnelfstjjagf.tenattiii.arrrramnnSlrauiaalJurggaovUORslliox::,ae::L&NHra::NneLpNet:IaRYSuiMAwSVdDnFro.OA.s.-aj..BuE.iNRW/N:GnRCFtVn.hL.gIUE.eg.MLZ:.-InISGlIJGtHHWaPtICAaNrInEOOlLCAaN.ydSLV-NLlYAVKX:/EIGBSRIYoT.EoTwTZRRHsEaHt.Yo:ATnNI:BGERIO GGHHHHHIIIJKLLMnnsaooerooouuriddpateansrnuunnciialmeeaagagssgthAncls/ytta:eaCCIeoovnKCsrnsn:nniigoyaleloyoaa:,lleu:Sr:n:uceCnl-n.Iu:gneWd.ocAst:cT/iJZtXlWNailalC.U.lM:e.t:A:e.BTeSgWoAwNrT.H.euEl.WETAWonRKSEYPHRYHoAcCI.t..oNIaAi:..NEBLKlSrtRT:JKLLiGkA.U.oIIAII:RCSRCAnSIM-H.N:MAHTPRMEH.AASS.LARN.KMEIGH.EAMANNISCCOHZUOARRLSKI PPPPPQRRRRRhooorioouuuioWMollrncmsseaatessheucdnn..aiinneegeaaddCnSitssa,,x:,oiJtIlUlaJJeTa:Lan:tt:RrnNn/..i:MTCtdeINShCKIVi:eCIa.uriO.n..FoziEaPnVtWS.F:hn.ArAt/PInEaiMMaEPA.lyROJ:IReA:RJEL.T.teOYNOOZKRerZrDE.Bs.IAsOeLB.EIbBTNyWSNEuZ:ESLrSAROgOKIGN:DVIMIOANNONVA SSSSSSTTTTTTaowoppwwyuuhiruarrcrapieioiakisnittndenclhzneoagieu:eCyetn:nonfrsr::iildn::eteaiL::lCneAdO.Nsd.GJ:l:-D:.V.bE.S.AFeBE...VSr.MUVAJ.LtH..Ja.RCIUORE.C:AVHGVIJHLR.EVEEA.EAOKRSISGSFENSSETA.SEI/HSWSLCSEIOBNR.R.NAOGFMIRANETDOASHKERRSAILES CentralNo.Carolina: T.IVANOV Melbourne: R.BOTSFORD Russia,Moscow:V.KALOSHIN UK/RI: A.REZAZADEH Chicago: R.KOLLMAN Milwaukee: S.G.JOSHI Russia,Saratov-Penza: N.RYSKIN UkraineWest: M.I.ANDRIYCHUK Cleveland: G.PONCHAK MohawkValley: P.RATAZZI SaintLouis: D.MACKE Ukraine,CentralKiev:Y.POPLAVKO Columbus: J.-F.LEE Montreal: K.WU SanDiego: U.S.DHALIWAL Ukraine,East: A.KIRILENKO DCCDDEEEFiaagrzeaanosseynlyllttacpavtaetoUhnetsri:n/nar:dkS::::rNlaoIPoi.vKJAn.T.Aa.eW...CkB:.KBTiaISaANEOrA:ARoARSIRTLSlOZT.iOEnONTKPMLaAU.I:IACRLHDVIIA,L.IEJZPRNDA.KRLOAMER NNNNNNNNOOeeeooooorraewwwrrrrrgnttttwhhhhogJHSaeneeQIJoyratr:enuC:asmurletseoNyhpyeeTu:MsyenW.Cnhv:sRt.iaolayGraOdUale:nea.s:TLKsdt:GTA:::.HAVHTDN.SBI.GGOABIJ.PX.NR...SEIDNATETTR.TEO.RKSEWSALIANN.KWNOSPISASRTSSAIARSINASTNONSA SSSSSSSSaaeeiiiobbnMnnaoueegttuttFarrah.lliipeeaaSCCA:ro,,HnlorfJTaAaerutroiT.n:KancmNd.OcaVoRis:oUOlakv:AVRl:.olSaIJeBEsCl.yHil..HJbe/.GSOLyKi-raY:UEOOsnOkB.L:LENFOJVR.GErVaTC.EInNS.cHWisUcEVoIAL:LEORV,JR UUVVVWWeiikkaicrNnnrrgsteaaonhoiziinriirnnupniitaeeaheeg:,,egltMaRVor:n:nieoAnpVuDSn..Anii.CMrott.gasNf/yNiIiNTnnGOa.Coi:G:eaBrHoH:tEhIrDAAgLeVNN.irLEa.nIMCA:D.HENAIUILaBDLsRtOELe.RVErZnROAYRIDZE FloridaWestCoast: S.O’BRIEN Orlando: T.WU SouthAustralia: B.BATES Yugoslavia: A.MARINCIC AssociateEditors Editor-In-Chief MICHAELSTEER WOLFGANG MENZEL BUMMAN KIM ZOYA POPOVIC KENJI ITOH STEVEN MARSH NorthCarolinaStateUniv.Univ. of Ulm PohangUniv.Sci.Technol. Univ.ofColoradoatBoulder MitsubishiElectricCorp. MidasConsulting Raleigh, NC Germany Korea USA Japan U.K. 27695-7911USA email: email: email: email: email: Phone:+19195155191 [email protected] [email protected] [email protected] [email protected] [email protected] Fax:+19195131979 ANDREASCANGELLARIS AMIR MORTAZAWI DYLANF.WILLIAMS RUEY-BEEI WU MANH ANH DO email: Univ.ofIllinois,UrbanaChampaign Univ.ofMichiganatAnnArbor NIST NationalTaiwanUniv. NanyangTechnologicalUniv. [email protected] USA USA USA Taiwan, R.O.C. Singapore email: email: email: email: email: [email protected] [email protected] [email protected] [email protected] [email protected] ANTTI RÄISÄNEN YOSHIO NIKAWA PETER RUSSER ALESSANDROCIDRONALI VITTORIORIZZOLI HelsinkiUniv.ofTechnol. Kokushikan Univ. TechnischeUniv.Muenchen Univ.ofFlorence Univ.ofBologna Finland Japan Germany Italy Italy email: email: email: email: email: [email protected] [email protected] [email protected] [email protected] [email protected] M.GUPTA,Editor,IEEEMicrowaveMagazine R.VAHLDIECK,Editor,IEEEMicrowaveandWirelessComponentLetters T.LEE,WebMaster IEEE Offficers W. CLEON ANDERSON, President and CEO LEAHH.JAMIESON,VicePresident,PublicationServicesandProducts MICHAEL R. LIGHTNER, President-Elect MARCT.APTER,VicePresident,RegionalActivities MOHAMED EL-HAWARY, Secretary DONALDN.HEIRMAN,President,IEEEStandardsAssociation JOSEPH V. LILLIE, Treasurer JOHNR.VIG,VicePresident,TechnicalActivities ARTHUR W. WINSTON, Past President GERARDA.ALPHONSE,President,IEEE-USA MOSHEKAM,VicePresident,EducationalActivities STUART A. LONG, Director, Division IV—Electromagnetics and Radiation Executive Staff DONALD CURTIS, Human Resources MATTHEWLOEB,CorporateStrategy&Communications ANTHONY DURNIAK, Publications Activities RICHARDD. SCHWARTZ, BusinessAdministration JUDITH GORMAN, Standards Activities CHRIS BRANTLEY, IEEE-USA CECELIA JANKOWSKI, Regional Activities MARY WARD-CALLAN, Technical Activities BARBARACOBURNSTOLER,EducationalActivities SALLYA.WASELIK,InformationTechnology IEEE Periodicals Transactions/Journals Department Staff Director: FRAN ZAPPULLA Editorial Director: DAWN MELLEY Production Director: ROBERT SMREK ManagingEditor:MONAMITTRA SeniorEditor:CHRISTINAM.REZES IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES(ISSN0018-9480)ispublishedmonthlybytheInstituteofElectricalandElectronicsEngineers,Inc.Responsibilityforthecontentsrestsuponthe authorsandnotupontheIEEE,theSociety/Council,oritsmembers.IEEECorporateOffice:3ParkAvenue,17thFloor,NewYork,NY10016-5997.IEEEOperationsCenter:445HoesLane,P.O.Box1331, Piscataway,NJ08855-1331.NJTelephone:+17329810060.Price/PublicationInformation:Individualcopies:IEEEMembers$20.00(firstcopyonly),nonmember$69.00percopy.(Note:Postageandhandling chargenotincluded.)Memberandnonmembersubscriptionpricesavailableuponrequest.Availableinmicroficheandmicrofilm.CopyrightandReprintPermissions:Abstractingispermittedwithcredittothe source.Librariesarepermittedtophotocopyforprivateuseofpatrons,providedtheper-copyfeeindicatedinthecodeatthebottomofthefirstpageispaidthroughtheCopyrightClearanceCenter,222Rosewood Drive,Danvers,MA01923.Forallothercopying,reprint,orrepublicationpermission,writetoCopyrightsandPermissionsDepartment,IEEEPublicationsAdministration,445HoesLane,P.O.Box1331,Piscataway, NJ08855-1331.Copyright©2005byTheInstituteofElectricalandElectronicsEngineers,Inc.Allrightsreserved.PeriodicalsPostagePaidatNewYork,NYandatadditionalmailingoffices.Postmaster:Send addresschangestoIEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,IEEE,445HoesLane,P.O.Box1331,Piscataway,NJ08855-1331.GSTRegistrationNo.125634188.PrintedinU.S.A. DigitalObjectIdentifier10.1109/TMTT.2005.849468 IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,VOL.53,NO.5,MAY2005 1561 Chebyshev Collocation and Newton-Type Optimization Methods for the Inverse Problem on Nonuniform Transmission Lines Martin Norgren, Member, IEEE Abstract—Afrequency-domaininverseproblemforthenonuni- the CG against the QN method has been confirmed for some form transmissionlineisconsidered.Theparametersof classesofinverseproblems,in[8]forreconstructingpiecewise thenonuniform lineareinterpolatedbyChebyshevpolynomials, constantprofilesandin[9]foropticaltomography. andtheTelegraphersequationsaresolvedbyacollocationmethod Inthispaper,weconsiderthepossibilityofQNmethodsasan usingthesamepolynomials.Theinterpolationcoefficientsforthe unknownparametersarereconstructedbymeansofNewton-type alternativewhenreconstructingthelineparametersfromwide- optimizationmethodsforwhichtheJacobianmatrixhasbeencal- banded measurement data in the frequency domain. The anal- culated explicitly. For the reconstruction of one or two parame- ysisisbasedontheChebyshevpolynomialsasaninterpolation ters,thealgorithmistestedonsyntheticdata,andthenecessityto basisforboththeunknownparametersandthevoltageandcur- useregularizationisdiscussed.Finally,thealgorithmistestedwith rent,inthetransmission-lineequations. measured reflection data to reconstruct shunt capacitances with piecewiseconstantprofiles. Chebyshevpolynomialstogetherwiththecollocation(pseu- dospectral)method[10],[11]havebeenappliedsuccessfullyin IndexTerms—Collocation,inverseproblem,optimization,trans- [12] for analyzing transient wave propagation on nonuniform missionline. multiconductortransmissionlines.Here,thistechniqueisused tosolvethe propagationproblem inthe frequencydomain. Of I. INTRODUCTION similarreasonsasin[12],wechosethecollocationmethod:itis THE INVERSE problem of parameter reconstruction on suitablefornonconstantcoefficientdifferentialequationsandis nonuniformtransmissionlinesisofimportanceinvarious expectedtohaverapidconvergenceforsmoothparameterpro- sensor applications. For example, a medium, e.g., like soil or files [10]. snow, can be diagnosed using the reflection/transmission data Forinverseproblemsthathavebeensolvedbymeansofthe from a submerged transmission line,which has beendesigned CGmethod[1],[4]–[6],thegradienthasbeencalculatedexplic- sothattheparametersaresensitivetothepropertiesofthesur- itlybyformingtheFréchetdifferentialoftheobjectivefunction roundingmedia(see,e.g.,[1]). wherethegradientisobtainedfromasacontinuousfunctionthat For nonuniform transmission lines, analytical inversion isdiscretizedwhenimplementednumerically.However,thatap- methods have been developed [2], [3], but the existence or proach does not provide any information about higher order tractability of an analytical method depends largely on the derivatives.Usingthecollocationmethod,thenecessarytrunca- particular parameter model used. Hence, many inverse prob- tion results already from the beginning ina finite-dimensional lemsfortransmissionlineshaveinsteadbeensolvedbymeans parameter space with a quite low dimension for smooth pa- of optimization methods both in time-domain [4], [5] and rameters.Theresultingalgebraicframeworkfacilitatesexplicit frequency-domain [6], [7] settings. Optimization methods calculations of derivatives, in principal, of any order. Hence, exhibit a large versatility for different parameter models and thedirectsolverbasedonChebyshevcollocationcaneasilybe are also easy to implement due to the availability of well-de- extended to higher order optimization methods like, e.g., full veloped numerical software packets. The most frequently Newtonmethods. used optimization method for reconstructing transmission-line This paper is organized as follows. The collocation method parametershasbeentheconjugategradient(CG)method(see, isdescribedinSectionIIandthecalculationoftheexplicitJa- e.g., [1], [4]–[6]). However, CG utilizes information from the cobianmatrixisdescribedinSectionIII.InSectionIV,recon- first-orderderivativesonlyandisthuslikelytobemoreslowly struction results are presented, from synthetic as well as mea- convergent than, e.g., quasi-Newton (QN) methods, which sureddata.SectionVcontainstheconclusions. utilizeapproximatesecond-orderderivatives.Theinferiorityof II. DIRECTPROBLEM We consider a nonuniform transmission line with the series ManuscriptreceivedMay28,2004;revisedOctober24,2004.Thisworkwas supportedbyTheFifthFrameworkProgrammeoftheEuropeanCommission inductance , shunt capacitance , series resistance underagrant. , and shunt conductance , where is the position The author is with the Division of Electromagnetic Theory, Kungliga alongtheline.Forconvenienceoftheanalysis,weassumethat TekniskaHögskolan,SE-10044Stockholm,Sweden. DigitalObjectIdentifier10.1109/TMTT.2005.847045 thenonuniformlineoccupiestheregion . 0018-9480/$20.00©2005IEEE 1562 IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,VOL.53,NO.5,MAY2005 TheTelegrapher’sequationsforthevoltage andthecur- The collocation points shall be located at the extrema of rent are viz. , (cf. [10]). Note that the point is omitted since it is where the (1) boundary condition (5) is enforced. For evaluation of , , andtheirderivativesatthecollocationpoints,weintroducean (2) matrix where an time dependence has been assumed and sup- pressed.Thenonuniformlineisexcitedat fromauni- ... ... ... (11) formlinewithacharacteristicimpedance ,andisterminated with a load impedance at . The voltages and cur- rentsatthefeedingandloadendsaredenoted Atthecollocationpoints,wethusobtain (3) (4) ... ... (12) The direct problem is posed as a one-ended boundary-value problem,wheretheboundaryvaluesat arechosenas (openend) and analogous expressions for the current . The method re- (short-circuitedend) quires the values of , , , and at the collocation points otherwise only.However,forthepurposeofsolvingtheinverseproblem, (5) it is convenient to interpolate the values using the same set of where istheloadimpedancethatterminatesthetransmis- Chebyshevpolynomialsasfortheexpansionofthevoltageand sion line. From the solution of (1), (2), and (5), the reflection current.Hence,wealsointroducethecorrespondingcoefficient coefficientatthefeedingendbecomes vectors , etc. for the parameters. With the abbreviations and ,theenforce- (6) ments of the Telegrapher’s equations at the collocation points become A. CollocationMethod (13) Thedirectproblemissolvedbyaspectralcollocationmethod, similar to the one used in [12]. In the region , the where denotes the element-wise product between matrices: voltageandcurrentareexpandedas , and is an row vector with unit elements. At the load end, (5) and (7) together with (7) theproperty imply (14) where is the th-order Chebyshev polynomial, and and are the expansion co- Theexpansioncoefficientvectors and arefinallydetermined efficients.The derivativesof and areexpandedsimilarly fromtheequation as follows: (15) (8) where Thecoefficientsin(8)and(7)arerelatedas[11] (16) (9) where and , . Inthenumericalimplementation,wetruncatetheexpansion (17) afterthe th-orderpolynomial.Theexpansioncoefficientsare collectedinto columnvectors , etc., whereby the linear relations in (9) can be written as the isan rowvectorwithunitelementsand isan followingmatrixmultiplications: columnvector withnullelements. (10) III. OPTIMIZATIONAPPROACHTOTHEINVERSEPROBLEM where the matrix represents the derivative (higher order Using Chebyshev interpolation for the parameters, the derivativesfollowanalogously: ). inverse problem is to determine a subset of the coefficients NORGREN:CHEBYSHEVCOLLOCATIONANDNEWTON-TYPEOPTIMIZATIONMETHODS 1563 from reflection data measured at dif- is solved. Introducing the row vector , it ferent frequencies. For brevity, we introduce the parameter nowfollowsfrom(21)–(23)that vector ,containingallinterpolationcoefficients (24) Note that the computational efficiency when solving (23) can be increased one order if the matrix has been LU factor- izedwhen(15)wassolved.Letthe vectorsobtainedfromthe Let denote the calculated reflection coefficient and let derivativesof withrespecttothecoefficients denotethemeasuredreflectioncoefficient,atthean- and ,respectively,buildupthecolumnsinthe gular frequency . If the reflection coefficient has been mea- matrices and ,respectively.Itthenfollowsfrom(16)and sured over a set of frequencies, we obtain the fol- (23)that and areobtainedfromtheequation lowingvectorwithnonlinearequations: . . (18) . (25) Thecorrespondingderivativematricesforthereactiveparame- tersareobtainedas The inverse problem is formulated as the minimization of the (26) scalarcostfunction Now it follows that the row–vector gradient of the reflection (19) coefficientbecomes[cf.(24)] Manyavailableoptimizationroutinesincorporatethefirst-order (27) derivatives and approximate second-order derivatives through the Jacobian matrix . The accuracy and, especially, the com- putationalefficiency,canthenbeimprovedconsiderablyifthe wherebywefinallyobtaintheJacobianmatrix Jacobian is calculated explicitly rather than by numerical per- turbations in the parameters. With the Jacobian available, the gradientofthecostfunctionbecomes . . (28) . (20) TobuildtheJacobianmatrix,weneedthegradientofthere- flectioncoefficientwithrespecttothevector .Let denotea singlecomponentof ,andletusconcentrateonthereflection A. Regularization coefficientfromoneparticularfrequency(hence,the -depen- Tosuppresserroneousrapidoscillationsinthereconstructed denceisleftoutforbrevity).From(6),itfollowsthat parameterprofiles,duetomodelerrorsandnoise-contaminated measurement data, we must add regularization terms to the (21) equation system (18). The conventional Tikhonov regulariza- tion,i.e.,suppressingthesquarednormofthespatialderivative From the property , we introduce the vector oftheparameter,isenforcedbyextendingthevector in(18) ,when(3)and(7)yield withthefollowingvectorofequations[cf.(10)]: (22) (29) From(15),weobtain wheretheextensionoftheJacobianis (23) (30) where and is the regularization parameter. Note that any desired th-orderregularizationcanbeappliedbyinsteadusing . 1564 IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,VOL.53,NO.5,MAY2005 IV. RECONSTRUCTIONRESULTS Fortheparticularmodelwithfournondispersivereal-valued parameters , , , and , it has been shown in [13] that at mosttwoparameterscanbereconstructedsimultaneously.Thus, wewillonlyconsiderreconstructionofoneortwoparameters. Mathematically,therearetwodifferentcasesofone-parameter reconstructions, or , or , and four different cases of Fig.1. Reconstructionofshuntcapacitance.Thetrueprofileisdepictedwitha two-parameter reconstructions ( , or , or , solidline.(a)Withoutnoise:(cid:11)=0dottedline,(cid:11)=0:01dashedline.(b)With ). noise:(cid:11)=0dottedline,(cid:11)=0:1dashedline. A. ReconstructionsFromSyntheticData In all reconstructions from synthetic data, we consider a scaled problem where the line occupies the region . The characteristic impedance of the feeding line andloadimpedanceare .Thefrequencyrange goes from 0.025 to 1.000 in steps of 0.025, i.e., 40 frequency pointsareused.Inthespectralapproximationandinterpolation Fig.2. Reconstructionofshuntconductance.(a)Withoutnoise:(cid:11)=0dotted oftheparameters,weuse ,i.e.,thehighestChebyshev line,(cid:11) = 0:005dashedline.(b)Withnoise:(cid:11) = 0dottedline,(cid:11) = 0:1 dashedline. polynomialusedis . Toavoidtheinversecrime,thesyntheticdatahasbeengen- This reconstruction error is a consequence of the numerical eratedbynumericalintegrationofthe Telegrapher’sequations differencebecauseadifferentdirectsolverhasbeenusedwhen (1)and(2)(cf.[6])insteadofusingthespectralmethod,which generating the data (if the inverse crime is committed, the re- isusedasadirectsolverintheoptimizationprocedure. constructionwouldbevirtuallyperfect).However,byimposing Asinitialguessesoftheparameters,wehaveusedtheirmean a small amount of regularization, the effect of this systematic values,whichmaybeestimatedfromlow-frequencyimpedance error can be effectively suppressed. The smallest deviation in measurementswhenthefarendofthecableiseithershort-cir- the reconstructed profile was obtained with , which cuited ( and ) or open-ended ( and ). If a good initial yieldsavirtuallyperfectreconstruction;seethedashedlinein guess is unavailable, one can run the algorithm several times Fig.1(a).Withnoisydata,weseeinFig.1(b)that,withoutreg- starting from different initial guesses and take the best fit as ularization,thereconstructionfailsevenmore.Tostabilizethe the reconstruction result. A more systematic approach, which, reconstruction,wethusneedmoreweightontheregularization in practice, has been proven to reduce the problem with local termthaninthenoise-freecase.Thebestreconstructionresult minima even if one starts from a poor initial guess, is to start fromnoisydatawasobtainedwith [seethedashedline with a limited setof data from the lowerend of the frequency inFig.1(b)]. band to obtain a rough reconstruction of the large-scale varia- Theresultswhenreconstructingtheshuntconductance are tions.Onethengraduallyincorporatesdatafromhigherfrequen- similartotheoneswhenreconstructing .Again,regularization ciestoobtainthesmall-scalevariations(see,e.g.,[8]). is needed to handle model errors and noise contaminated data When evaluating the reconstruction algorithm against noise (seeFig.2). contaminated data, random noise has been added to the cal- 2) Comparison Between Different Optimization culated reflection coefficient. The magnitude of the complex- Methods: All reconstruction results presented have been valuednoisedatahasbeengeneratedfromaGaussiandistribu- obtained using a trust-region (TR) optimization method, tion with a mean value zero and a standard deviation of 0.05. provided in the MATLAB numerical software [14]. In the Theargumentofthenoisedatahasbeengeneratedfromauni- reconstruction of , we compared with other methods: formdistributionintherangefrom0to . the Gauss–Newton (GN), the Levenberg–Marquardt (LM) 1) Reconstructionof or : Whenstudyingone-parameter method, the Broyden–Fletcher–Goldfarb–Shanno (BFGS) reconstruction,wechosethefollowingprofilesfortheparame- method, another TR method (denoted TRH) using the exact ters: Hessianmatrix,wheretheHessianwascalculatedexplicitly,as described in the Appendix. All these methods were available inthenumericalsoftware,andfordetails,wereferto[14]and [15].Furthermore,wecomparedthemwiththecommonlyused CGmethod,whichwasimplementedbytheauthor.Theresults ( denotes the th-order Bessel function). Allof the one-pa- ofthecomparisonarepresentedbelowinTableI. rameterreconstructionsarefromreflectiondatawhenexciting The fastest method is TR, while the CG is the slowest. For thetransmissionlineattheleft-handside . noise-freedata,GNisfast,butslowerfornoisydata,whichisin Theshuntcapacitance wasfirstreconstructedfromnoise- accordancewiththeGNbeingmoreefficientforproblemswith free data without using any regularization. As can been seen smallresiduals[15].TRHisratherslowduetothecalculation fromthedottedlineinFig.1(a),thereconstructionfailsdueto of the Hessian. The large number of cost-function evaluations superimposedrapidoscillationsinthereconstructedprofile. indicate that the CG has a slow rate of convergence, although NORGREN:CHEBYSHEVCOLLOCATIONANDNEWTON-TYPEOPTIMIZATIONMETHODS 1565 TABLE I COMPARISONBETWEENDIFFERENTOPTIMIZATIONMETHODS,WHEN RECONSTRUCTINGTHESHUNTCAPACITANCEC(x) Fig. 5. Reconstruction of series inductance and shunt capacitance from double-sideddata(losslesscase).Noise-freedatawith(cid:11)=0:006:dottedline. Noisydatawith(cid:11)=0:09:dashedline. Fig. 6. Reconstruction of series inductance and shunt capacitance from double-sideddata(lossycase).Noise-freedatawith(cid:11) = 0:004:dottedline. Noisydatawith(cid:11)=0:05:dashedline. Fig. 3. Reconstruction of shunt capacitance and shunt conductance from noise-free data. Left-hand-sided data with (cid:11) = 0:02: dotted line. Right-hand-sideddatawith(cid:11) = 0:004:dashedline.Double-sideddatawith (cid:11) =0:005:dashed–dottedline. Fig.7. Reconstructionofseriesresistanceandshuntconductance.Noise-free datawith(cid:11)=0:003:dottedline.Noisydatawith(cid:11)=0:04:dashedline. Fig.4. Reconstructionofshuntcapacitanceandshuntconductancefromnoisy data.Left-hand-sideddatawith(cid:11) = 0:05:dottedline.Right-hand-sideddata We first consider the lossless case, when . The with(cid:11)=0:03:dashedline.Double-sideddatawith(cid:11)=0:09:dashed–dotted reconstructionsfor and fromdouble-sideddataaredepicted line. inFig.5.Thereconstructionsexhibitcleardeviationsforboth noise-freeandnoisydata. thenumbercanbeslightlyreducedwithanimprovedline-search Next, we introduce losses by setting (still ). procedure. Comparedwiththepreviouscase,weseeinFig.6thatthede- 3) Simultaneous Reconstruction of and : Using the viationsaresmaller,especiallywhenusingnoise-freedata. same values of the parameters as when reconstructing one The above results conform with the uniqueness result re- parameter,wenextconsiderthesimultaneousreconstructionof portedin[13],inwhich,inthelosslesscase,onecannotobtain and . auniquesimultaneousreconstructionof and . Thepreviousstudyin[6]indicatedthatatwo-parameterre- 5) SimultaneousReconstructionof and : Whenrecon- construction is unstable using only one-sided data. To investi- structingbothdissipativeparameters,wechose gateinmoredetailaboutthatindication,wetestthealgorithm withone-sidedreflectiondata,bothfromtheleft-andright-hand side,aswellasdouble-sideddata. The results using noise-free data are depicted in Fig. 3. Even though regularization has been used to suppress the influence of small numerical errors, the reconstructions from one-sided data clearly exhibit deviations. The reconstructions The reconstructions for and from double-sided data are fromdouble-sideddataare,ontheotherhand,virtuallyperfect. depictedinFig.7.Thedeviations,usingnoise-freeornoisydata, TheresultswhenusingnoisydataaredepictedinFig.4,where arelargerthanintheotherconsideredcases. the reconstructions from one-sided data exhibit much larger deviationsthantheonesfromdouble-sideddata. B. ReconstructionsFromMeasurementData 4) SimultaneousReconstructionof and : Whenrecon- structingbothreactiveparameters,wechose Finally, we test the reconstruction algorithm on measured data.Thetransmissionlinestobeinvestigatedarebuiltfromthe samekindofflatbandcablethathasbeenusedforsoilmoisture 1566 IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,VOL.53,NO.5,MAY2005 TABLE II NOMINAL VALUES FOR THE DIELECTRIC MEDIA AROUNDTHEFLATBANDCABLE Fig.8. Resistorsattheloadend. Fig.10. Connectoratthefeedingend. Near the load end, we can expect an increased pile up of chargesontheconductors,whichyieldsanextraamountofca- pacitanceattheload.Theloadimpedancethusbecomes (32) Fig.9. FlatbandcablesandwichedbetweentwoblocksofPlexiglas. where pFisthestraycapacitanceattheloadend. andsnowwatercontentdeterminationsattheInstituteforMete- The measurements were performed with an orologyandClimateresearch(IMK),Karlsruhe,Germany(see HP8510C/HP8517A network analyzer system. The [1] and [5]). The band cable consists of three strip conductors feeding coaxial cable from the network analyzer has a ofcopperembeddedinaplasticbandofpolyethylene(see,e.g., characteristic impedance . At the feeding end, the Fig. 8). outerconductorsofthebandcableareattachedtothescreenof Theseriesinductancefortheevenmodeisestimatedto the coaxial connector via two wires, which are approximately nH/m[1].Foracablesubmergedintoadielectricmedium, 2cminlength(seeFig.10). experimentsatIMKindicatethattheshuntcapacitanceforthe Atthefeedingpoint,thesewiresyieldsanincreasedamount evenmodecanbeestimatedwiththeformula of shunt capacitance, which is modeled as a capacitor pF.Tocompensateforthisstraycapacitance,wemustuse (31) thefollowingreflectioncoefficientastheinputtothereconstruc- tionalgorithm: where is the relative permittivity in the surrounding media,ofwhichpropertiesvaryalongthecable. , and (33) arepartcapacitanceswiththevalues[1] where isthereflectioncoefficientrecordedbythenetwork pF/m pF/m pF/m. analyzer. Bothofthestraycapacitances and wereestimated To obtain a varying , i.e., a nonuniform shunt capacitance, frompriormeasurementsonshortersamplesofthecable,which certainsectionsofthecablearesandwichedbetweenblocksof weresurroundedbyairandeithershortcircuitedorresistively plasticmaterial(seeFig.9). loadedattherearend. Thetwokindsofplasticmaterialsusedintheexperimentsare 2) ReconstructionsofRelativePermittivityFromOne-Sided Plexiglas and polyethylene. We neither had information from ReflectionData: In the first experiment,a 775-mm section of anymanufactureraboutthedielectricconstantsforthesemedia, thecablewassandwichedbetweentwoblocksofPlexiglas(cf. nordidwemeasuredthedielectricconstantbyanyothermeans. Fig. 9). The order and lengths of the sections along the cable Thus,theonlyinformationwecomparewithinthisstudyisthe were followingnominalvaluesfoundin[16]and[17](seeTableII). Sincetheplasticmaterialshavenegligiblelosses,wetakethe air mm Plexiglas mm air mm shunt conductance . The seriesresistance inthe copper conductorsisalsosmalland,hence,neglected,i.e., . Measurement data from 382 evenly spaced frequencies in the 1) MeasurementSetupandCompensationforStrayCapac- rangeof45–500MHzwereusedforthereconstruction.Inthe itances: The length of the band cable was 2.00 m, and it was spectral approximation, we used . The inversion al- terminated with two 390- resistors between the central con- gorithm was tested with constant initial guesses for the shunt ductortoeachoftheouterconductors,yieldingaloadresistance capacitance in the range of 20–30 pF/m in steps of 2 pF/m. fortheevenmode(seeFig.8). The smallest value of the cost function and at the same time NORGREN:CHEBYSHEVCOLLOCATIONANDNEWTON-TYPEOPTIMIZATIONMETHODS 1567 Fig. 11. Reconstruction of shunt capacitance along a cable sandwiched Fig. 12. Reconstruction of shunt capacitance along a cable sandwiched betweenPlexiglasin0:500m<x<1:275m. between Plexiglas in 0:250 m < x < 1:025 m and polyethylene in 1:300m < x < 1:658m. thesmallestnumberofiterationswereobtainedwiththeinitial guessof26pF/m.Theresultofthereconstructionisdepictedin , i.e., quite close to the value in the previous case. Fig. 11. For the polyethylene, we get a reconstructed value around From the prior knowledge that the permittivity of the sur- 33 pF/m, which yields , i.e., below the nominal rounding media is piecewise constant, we see that the recon- valueinTableII.However,althoughtherearesystematicerrors structionissuccessful.TheboundariesoftheblocksofPlexiglas due to the air gaps, the proportion between the reconstructed are located correctly and, elsewhere, the profile tends to fluc- values for Plexiglas and polyethylene are in accordance with tuatearoundpiecewiseconstantvalues.Wherethecableissur- theproportionbetweenthenominalvaluesinTableII. roundedbyair,theshuntcapacitanceisapproximately18pF/m, which,accordingtotheexperimentallydeterminedmixingfor- mula (31), yields in the surrounding medium (air). V. DISCUSSIONANDCONCLUSIONS InthePlexiglasregion,theshuntcapacitanceisapproximately For the direct problem, the convergence of the Chebyshev 37 pF/m, which yields for the Plexiglas; a value collocation method is very fast for smooth parameter profiles. slightlybelowthenominalvalueinTableII.Therearemainly Thus,theoptimization-basedalgorithmisveryefficientforre- two reasons for this difference: the mixing formula (31) has constructingsmoothprofiles,requiringamoderatenumber of beendeterminedusingmediahavingalargeextentoutsidethe expansionfunctions.Itisstraightforwardtochangethe cable. Here, the blocks of Plexiglas has a thickness of 24 mm modeltootherparameterdependenciesbymodifyingthe ma- (see Fig. 9) whereby the air region outside the blocks reduces trix in (15). Such dependencies are, e.g., a surface-resistance theshuntcapacitance.Therearealsosmallairgapsbetweenthe modelfor [6]oradispersionmodelforthedielectricmedium, cable and the blocks of Plexiglas. As can be seen in Fig. 10, whichdeterminesboth and [7]. thecablehasindentationsintheinsulationneartheconductors, The simulations on synthetic data show that stable recon- wherethefieldisstrong.Hence,betweenthePlexiglasandthe structions of one parameter can be achieved using one-sided insulation,therewillbeairgaps,whichreducetheshuntcapac- reflection data. For two parameters, one must, in practice, use itance. double-sided reflection data and the only cases with reason- Inthesecondexperiment,onesectionofthecablewassand- able stability are the simultaneous reconstructions of a reac- wiched between the same two blocks of Plexiglas that were tiveparametertogetherwithadissipativeparameter.Inallcir- used in the first experiment. Another section of the cable was cumstances,onehastouseregularizationtoachievestablere- sandwichedbetweentwoblocksofpolyethylene.Theorderand constructions. The comparison between different optimization lengthsofthesectionsalongthecablewere methodsindicatethatNewton-typemethodsaremoreefficient thantheCGmethod. air mmPlexiglas mmair mm The reconstructions from measured reflection data show polyethylene mmair mm thatthemethodmayalsobeusedforreconstructingpiecewise Measurement data from 633 evenly spaced frequencies in the constantparameters,buttheconvergencethenrequiresalarger rangeof45–800MHzwereused.Inthespectralapproximation, number of expansion functions, which slows down the com- weused .Thealgorithmwastestedwithconstantinitial putation. The reconstructions of the permittivities of different guesses in the range of 26–32 pF/m in steps of 2 pF/m. The materials around the band cable yields consistent results, al- smallestvalueofthecostfunctionandthesmallestnumberof though the values are slightly too high in the air regions and iterationswereobtainedwiththeinitialguessof30pF/m.The slightlytoolowintheregionssurroundedbyplasticmaterials. resultisdepictedinFig.12. Theseerrorsmaypartlybeexplainedbytheairgaps.Also,for Also in this more difficult case, the reconstruction is suc- thebandcable,thereareuncertaintiesinthevaluesoftheseries cessful. The boundaries between the different regions are inductance and the part capacitances in the mixing formula located correctly and, elsewhere, the profile tend to fluctuate (31) (see, e.g., [18] where slightly different values have been around piecewise constant values. For the regions where proposed and used). Another source of error for this kind of the cable is surrounded by air, we obtain slightly different open cable is radiation, which introduces dissipation, which values of the shunt capacitance in the range of approximately cannot be easily included in the model. The introduction of 18-19 pF/m, which yields –1.11. For the Plexiglas, stray capacitances at the endpoints is necessary to account for we get a reconstructed value around 36 pF/m, which yields thegeometricalmismatchesattheconnectorandload.