ebook img

IEEE-1788 standardization of interval arithmetic PDF

117 Pages·2014·0.74 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview IEEE-1788 standardization of interval arithmetic

Intervalarithmetic:anintroduction Standardizationofintervalarithmetic:IEEEP1788 Conclusion IEEE-1788 standardization of interval arithmetic: introduction - link with MPFI Nathalie Revol INRIA - Universit´e de Lyon LIP (UMR 5668 CNRS - ENS Lyon - INRIA - UCBL) Third MPFR-MPC Developers Meeting Nancy, 20-22 January 2014 NathalieRevol-INRIA-Universit´edeLyon-LIP IEEE-1788standardizationofintervalarithmetic Intervalarithmetic:anintroduction Standardizationofintervalarithmetic:IEEEP1788 Conclusion Agenda Interval arithmetic: an introduction Introduction Cons and pros Standardization Standardization of interval arithmetic: IEEE P1788 Facts about the working group Overview of the IEEE-1788 standard Intervals Operations Predicates Exceptions and decorations Flavours Conclusion Exceptions and decorations Interval Newton iteration NathalieRevol-INRIA-Universit´edeLyon-LIP IEEE-1788standardizationofintervalarithmetic Intervalarithmetic:anintroduction Introduction Standardizationofintervalarithmetic:IEEEP1788 Consandpros Conclusion Standardization Agenda Interval arithmetic: an introduction Introduction Cons and pros Standardization Standardization of interval arithmetic: IEEE P1788 Facts about the working group Overview of the IEEE-1788 standard Intervals Operations Predicates Exceptions and decorations Flavours Conclusion Exceptions and decorations Interval Newton iteration NathalieRevol-INRIA-Universit´edeLyon-LIP IEEE-1788standardizationofintervalarithmetic Intervalarithmetic:anintroduction Introduction Standardizationofintervalarithmetic:IEEEP1788 Consandpros Conclusion Standardization Agenda Interval arithmetic: an introduction Introduction Cons and pros Standardization Standardization of interval arithmetic: IEEE P1788 Facts about the working group Overview of the IEEE-1788 standard Intervals Operations Predicates Exceptions and decorations Flavours Conclusion Exceptions and decorations Interval Newton iteration NathalieRevol-INRIA-Universit´edeLyon-LIP IEEE-1788standardizationofintervalarithmetic Intervalarithmetic:anintroduction Introduction Standardizationofintervalarithmetic:IEEEP1788 Consandpros Conclusion Standardization A brief introduction Interval arithmetic: instead of numbers, use intervals and compute. Fundamental theorem of interval arithmetic: (or “Thou shalt not lie”) (or “Inclusion property”): the exact result (number or set) is contained in the computed interval. No result is lost, the computed interval is guaranteed to contain every possible result. NathalieRevol-INRIA-Universit´edeLyon-LIP IEEE-1788standardizationofintervalarithmetic Intervalarithmetic:anintroduction Introduction Standardizationofintervalarithmetic:IEEEP1788 Consandpros Conclusion Standardization Definitions: intervals Objects: (cid:73) intervals of real numbers = closed connected sets of R (cid:73) interval for π: [3.14159,3.14160] (cid:73) data d measured with an absolute error less than ±ε: [d −ε,d +ε] (cid:73) interval vector: components = intervals; also called box [0 ; 2] [0;2] [0 ; 2] [4 ; 4.5] [4 ; 5] [−6 ; −5] 5 4.5 4 4 −5 0 2 −6 0 2 0 2 (cid:73) interval matrix: components = intervals. NathalieRevol-INRIA-Universit´edeLyon-LIP IEEE-1788standardizationofintervalarithmetic Intervalarithmetic:anintroduction Introduction Standardizationofintervalarithmetic:IEEEP1788 Consandpros Conclusion Standardization Definitions: operations x(cid:5)y = Hull{x (cid:5)y : x ∈ x,y ∈ y} Arithmetic and algebraic operations: use the monotonicity (cid:2) (cid:3) (cid:2) (cid:3) [x, x]+ y, y = x +y, x + y (cid:2) (cid:3) (cid:2) (cid:3) [x, x]− y, y = x − y, x −y (cid:2) (cid:3) (cid:2) (cid:3) [x, x]× y, y = min(x ×y,x × y, x ×y, x × y),max(ibid.) [x, x]2 = (cid:2)min(x2, x2),max(x2, x2)(cid:3) if 0 (cid:54)∈ [x, x] (cid:2)0,max(x2, x2)(cid:3) otherwise NathalieRevol-INRIA-Universit´edeLyon-LIP IEEE-1788standardizationofintervalarithmetic Intervalarithmetic:anintroduction Introduction Standardizationofintervalarithmetic:IEEEP1788 Consandpros Conclusion Standardization Definitions: functions Definition: an interval extension f of a function f satisfies ∀x, f(x) ⊂ f(x), and ∀x, f({x}) = f({x}). Elementary functions: again, use the monotonicity. expx = [expx,exp x] logx = [logx,log x] if x ≥ 0,[−∞,log x] if x > 0 sin[π/6,2π/3] = [1/2,1] ... NathalieRevol-INRIA-Universit´edeLyon-LIP IEEE-1788standardizationofintervalarithmetic Intervalarithmetic:anintroduction Introduction Standardizationofintervalarithmetic:IEEEP1788 Consandpros Conclusion Standardization Interval arithmetic: implementation using floating-point arithmetic Implementation using floating-point arithmetic: use directed rounding modes (cf. IEEE 754 standard) √ √ (cid:112) [2,3] = [(cid:53) 2,(cid:52) 3] NathalieRevol-INRIA-Universit´edeLyon-LIP IEEE-1788standardizationofintervalarithmetic Intervalarithmetic:anintroduction Introduction Standardizationofintervalarithmetic:IEEEP1788 Consandpros Conclusion Standardization Definitions: function extension f(x) = x2−x +1 = x(x −1)+1 = (x −1/2)2+3/4 on [−2,1]. Using x2−x +1, one gets [−2,1]2−[−2,1]+1=[0,4]+[−1,2]+1= [0,7]. Using x(x −1)+1, one gets [−2,1]·([−2,1]−1)+1=[−2,1]·[−3,0]+1=[−3,6]+1= [−2,7]. Using (x −1/2)2+3/4, one gets ([−2,1]−1/2)2+3/4=[−5/2,1/2]2+3/4=[0,25/4]+3/4= [3/4,7] = f([−2,1]). Problem with this definition: infinitely many interval extensions, syntactic use (instead of semantic). How to choose the best extension? A good one? NathalieRevol-INRIA-Universit´edeLyon-LIP IEEE-1788standardizationofintervalarithmetic

Description:
Standardization of interval arithmetic: IEEE P1788. Conclusion. IEEE-1788 by a triple 〈x0, e, e〉 (triplex):. [x, x] = x0 + [e, e]=[x0 + e, x0 + e]. Nathalie
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.