ebook img

IEA Bioenergy Algae report update PDF

158 Pages·2017·21.61 MB·English
by  LaurensLieve
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview IEA Bioenergy Algae report update

State of Technology Review – Algae Bioenergy An IEA Bioenergy Inter-Task Strategic Project Image of climate simulating photobioreactor growing microalgae under controlled light, CO2 and temperature, image by Dennis Schoeder, NREL (#25528) Published by IEA Bioenergy: Task 39: January 2017 State of Technology Review – Algae Bioenergy An IEA Bioenergy Inter-Task Strategic Project Report coordinated by Lieve M.L. Laurens, National Renewable energy Laboratory, Golden, CO, USA, funded by IEA Bioenergy Task 39, with input from members of IEA Bioenergy tasks 34, 37, 38, 39 and 42 Copyright © 2017 IEA Bioenergy Task 39. All rights Reserved ISBN: 978-1-910154-30-4 Published by IEA Bioenergy IEA Bioenergy, also known as the Technology Collaboration Programme (TCP) for a Programme of Research, Development and Demonstration on Bioenergy, functions within a Framework created by the International Energy Agency (IEA). Views, findings and publications of IEA Bioenergy do not necessarily represent the views or policies of the IEA Secretariat or of its individual Member countries. KEY MESSAGES • Algae exhibit high photosynthetic efficiencies and yield (~55 tonnes ha-1 yr-1) up to twice that of terrestrial plants and remain an attractive target for improving the sustainability of future bioenergy production • The single biggest barrier to market deployment of algae remains the high cost of cultivating the algal biomass feedstocks, currently a factor of 10-20 too high for commodity fuel production • A decline in the price of petroleum, coupled with on-going low prices for natural gas and absence of consistent policies on carbon pricing, causes a significant challenge in the development of cost-competitive production algae-based bioenergy products like gaseous and liquid fuels. • Nearer term opportunities exist to use algae in an integrated biorefinery context to make higher value food, feed, nutraceutical and oleochemical bio-products, to help drive the economic development bioenergy production • Alternative market opportunities for algal biomass, e.g. food and feed applications, will generate land use competition • Resource (water, land, sunlight) and nutrients (N, P) remain key drivers for economic and environmental sustainability, where integration with wastewater provides near-term opportunities • Recent technology developments facilitate the use of all algal biomass components; no longer focusing the biomass production solely on achieving high lipid production • Numerous permutations of process operations are described in the literature; three categories are promising for future commercial development; 1) biomass conversion and fractionation into lipids, protein and carbohydrates and 2) thermochemical hydrothermal liquefaction and 3) biogas production from whole algal biomass • Algae-based production to produce bioenergy products like liquid or gaseous fuels as primary products is not foreseen to be economically viable in the near to intermediate term and the technical, cost and sustainability barriers are reviewed • Macroalgae have significant potential as a biogas, chemicals and biofuels crop in temperate oceanic climates in coastal areas. Their commercial exploitation also remains limited due to cost and scalability challenges • There is a clear and urgent need for more open data sharing and harmonization of analytical approaches, from cultivation to product isolation, to TEA and LCA modelling, allowing for the identification and prioritization of barriers to low cost bioenergy production 1 CONTRIBUTORS COORDINATING AUTHOR Lieve M. L. Laurens, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA [email protected] TECHNICAL EDITORS James D. McMillan, National Renewable Energy Laboratory, Golden, Colorado, USA Lieve M.L. Laurens, National Renewable Energy Laboratory, Golden, Colorado, USA PARTICIPATING TASK LEADERS AND TASK MEMBERS James D. McMillan, Task 39, National Renewable Energy Laboratory, Golden, Colorado, USA David Baxter, Task 37, European Commission Joint Research Centre, Petten, The Netherlands Annette L. Cowie, Task 38, New South Wales Department of Primary Industries, Armidale, Australia Jack (John) N. Saddler, Task 39, University of British Columbia, Vancouver, Canada Maria Barbosa, Task 42, Wageningen UR, Wageningen, The Netherlands Jerry Murphy, Task 37, MaREI Centre, Environmental Research Institute, University College, Cork, Ireland Bernhard Drosg, Task 37, University of Natural Resources and Life Sciences, Vienna, Austria Douglas C. Elliott, Task 34, Pacific Northwest National Laboratory, Richland, Washington, USA Judit Sandquist, Task 39, SINTEF, Trondheim, Norway David Chiaramonti, Task 39, Università degli Studi di Firenze, Florence, Italy Dina Bacovsky, Task 39, Bioenergy2020+, Wieselburg, Austria 2 CHAPTER AUTHORS 1. Introduction Lieve M.L. Laurens1 2. International Activities Advancing Algae for Bioenergy Lieve M.L. Laurens1, Melodie Chen-Glasser1, James D. McMillan1 3. Overview of Current Technology Routes for Algae-Derived Bioenergy Products Lieve M.L. Laurens1, Melodie Chen-Glasser1 (sections 3.1-3.6), David Chiaramonti2 (section 3.5) 4. Biochemical Processes for Algal-Biomass-Derived Fuels Lieve M.L. Laurens1 (sections 4.1-4.3, 4.5-4.6), Bernhard Drosg3 (section 4.4) 5. Processes for Thermochemical Conversion of Algae Douglas C. Elliott4 6. Biorefineries and Bioproducts from Algae Lieve M.L. Laurens1 (sections 6.1-6.5,6.7), Maria Barbosa5 (section 6.6) 7. Techno-Economic Analysis of Current Pathways to Biofuels and Bioproducts Lieve M.L. Laurens1 (sections 7.1-7.3, 7.6), Douglas C. Elliott4 (section 7.3), Maria Barbosa5 (sections 7.4-7.5) 8. Sustainability and Life-cycle Assessment of Algal Bioenergy Filipa Figueiredo6, Rita Garcia6, Érica Castanheira6, João Malça6,7, Fausto Freire6, Miguel Brandão8, E. D. Frank9, Alison Goss Eng10, Annette Cowie11 (sections 8.2-8.3, 8.5) Lieve M.L. Laurens1 (sections 8.1, 8.4, 8.5) 9. Biogas from Macroalgae Jerry D. Murphy12 10. Macroalgae for Higher Value Products and Liquid Fuels Judit Sandquist13, Jorunn Skjermo13, James D. McMillan1 11. Conclusions and Recommendations Lieve M.L. Laurens1 Appendix A: Overview of Input Metrics Related for Producing Algae Biofuels Lieve M.L. Laurens1 Appendix B: Company and Research Group Overview Melodie Chen-Glasser1, Dina Bacovsky14, Judit Sandquist13, Douglass C. Elliott4, Lieve M.L. Laurens1 1 National Renewable Energy Laboratory, Golden, Colorado, USA 2 University of Florence, Florence, Italy 3 BOKU - University of Natural Resources and Life Sciences, Vienna, Austria 4 Pacific Northwest National Laboratory, Richland, Washington, USA 5 AlgaePARC, Wageningen University, Wageningen, The Netherlands 6 ADAI-LAETA, Dept. of Mechanical Engineering, University of Coimbra, Portugal 7 Dept. of Mechanical Engineering, ISEC, Polytechnic Institute of Coimbra, Portugal 8 IEA Bioenergy Task 38, Portugal 9 Argonne National Laboratory, Lemont, Illinois, USA 10 US Department of Energy, Washington DC, USA 11 New South Wales Department of Primary Industries, Australia 12 MaREI Centre, Environmental Research Institute, University College, Cork, Ireland 13 SINTEF Energy Research, Trondheim, Norway 14 Bioenergy2020+, Austria 3 Table of Contents CONTRIBUTORS .............................................................................................................. 2 List of Tables .................................................................................................................. 6 List of Figures ................................................................................................................. 7 List of Abbreviations ....................................................................................................... 8 Executive Summary ....................................................................................................... 10 The Challenge .............................................................................................................. 10 This Report and Teams Involved ..................................................................................... 10 State of Technology ...................................................................................................... 11 Opportunities and Outlook ............................................................................................. 16 1. Introduction ............................................................................................................ 17 2. International Activities Advancing Algae for Bioenergy .......................................... 19 2.1. Influential Reports Since 2010 ............................................................................... 19 2.2. International Fuel Use and Petrochemical Markets .................................................... 19 2.3. International Biofuels Policy ................................................................................... 21 2.4. North American Support For Algae Technology Development ...................................... 23 2.5. European Support For Algae Technology Development .............................................. 25 2.6. Global Industrial Development of Algae Technology .................................................. 26 3. Overview of Current Technology Routes for Algae-Derived Bioenergy Products ...... 29 3.1. Algal Biology ....................................................................................................... 29 3.2. Theoretical Constraints to Production and Yields of Algal Biomass ............................... 33 3.3. Phototrophic Cultivation of Microalgae ..................................................................... 35 3.4. Nutrient and CO Utilization ................................................................................... 39 2 3.5. Integration with Wastewater Treatment .................................................................. 41 3.6. Alternative Algae Production Scenarios .................................................................... 43 4. Biochemical Processes for Algal-Biomass-Derived Fuels ......................................... 45 4.1. Overview of Conversion Pathway Structure .............................................................. 45 4.2. Feedstock Effects on Biochemical Process Effectiveness ............................................. 48 4.3. Process Options for Fuel Production ........................................................................ 49 4.4. Microalgae for Biogas and Biomethane .................................................................... 51 4.5. Conclusions ......................................................................................................... 54 5. Processes for Thermochemical Conversion of Algae ................................................ 55 5.1. Process Options ................................................................................................... 55 5.2. Feedstock Effects ................................................................................................. 57 5.3. Biocrude Product Description ................................................................................. 57 5.4. Upgrading of Biocrude to Liquid Fuels ..................................................................... 58 5.5. Byproduct Water Description and Utilization ............................................................. 59 5.6. Recycling of Nutrients ........................................................................................... 60 5.7. Conclusions ......................................................................................................... 60 6. Biorefineries and Bioproducts from Algae ............................................................... 61 6.1. Microalgae Biorefinery .......................................................................................... 61 6.2. Microalgae-Based Feedstocks for Commodity Bio-products ......................................... 63 6.3. Microalgae-Based Oleochemicals ............................................................................ 64 6.4. Microalgal Carbohydrate-Bio-products ..................................................................... 66 6.5. Microalgal Protein Products .................................................................................... 67 6.6. Research Program Framework ............................................................................... 68 6.7. Conclusions ......................................................................................................... 68 7. Techno-economic Analysis of Current Pathways to Biofuels and Bioproducts ......... 69 7.1. Review of Assumptions and Sensitivities Around TEA ................................................ 70 7.2. TEA of Algal Biomass Production ............................................................................ 74 7.3. TEA Case Study for Open Pond Cultivation and Biochemical and Thermochemical Conversion to Fuels ...................................................................................................... 76 7.4. Example Studies of Biorefinery Economic Assessments .............................................. 76 4 7.5. TEA Case Study of Photobioreactor Cultivation for Biorefinery Applications ................... 77 7.6. Conclusions ......................................................................................................... 80 8. Sustainability and Life-Cycle Assessment of Algal Bioenergy .................................. 82 8.1. Microalgae Sustainability Considerations ................................................................. 82 8.2. Life Cycle Assessment of Microalgae Bioenergy Systems ............................................ 85 8.3. System Boundaries .............................................................................................. 89 8.4. Resource Assessment for Algae Operations .............................................................. 91 8.5. Conclusions ......................................................................................................... 93 9. Biogas from Macroalgae .......................................................................................... 95 9.1. Introduction ........................................................................................................ 95 9.2. Characteristics of Seaweeds .................................................................................. 96 9.3. Composition of Seaweed ....................................................................................... 97 9.3.1. Proximate Analysis ......................................................................................... 97 9.3.2. Ultimate Analysis ........................................................................................... 97 9.3.3. Biomethane Potential from Monodigestion of Seaweed ........................................ 97 9.3.4. Annual Variation in Composition and Biomethane Potential in Brown Seaweed ........ 98 9.4. Ensiling of Seaweeds .......................................................................................... 100 9.5. Continuous Digestion of Seaweed ......................................................................... 101 Difficulties in Long-Term Digestion of Seaweed ............................................................ 101 Co-Digestion of Green Seaweed with Slurry ................................................................ 101 Mono-Digestion of Brown Seaweed ............................................................................ 101 9.6. Gross Energy Yields of Seaweed Biomethane Production .......................................... 102 Yields per Hectare of Seaweed Biomethane Systems .................................................... 102 Comparison of Energy Yields per Hectare with Land Based Systems ............................... 103 9.6.1. Potential of Seaweed Resource ....................................................................... 105 9.7. Conclusions and Recommendations ...................................................................... 105 10. Macroalgae for Higher Value Products and Liquid Fuels ...................................... 106 10.1. Macroalgae Potential ......................................................................................... 106 10.2. Major European Projects .................................................................................... 108 10.3. National Companies and Projects ........................................................................ 108 Denmark ................................................................................................................ 108 The Netherlands ...................................................................................................... 109 Norway .................................................................................................................. 109 Others ................................................................................................................... 110 11. Conclusions and Recommendations .................................................................... 111 Appendix A: Overview of Input Metrics for Describing Algae Bioenergy Operations .... 114 Appendix B: Company and Research Group Overview .................................................. 117 11.1. Examples of commercial phototrophic algae cultivation operations .......................... 117 11.2. Examples of Installed operations of hydrothermal liquefaction of algae .................... 117 11.3. Examples of Commercial Heterotrophic algae Operations ....................................... 118 11.4. Overview of Global commercial and research operations ........................................ 120 References .................................................................................................................. 130 5 List of Tables Table 2-1: Summary of commercial and research operations working towards commodity algae- based (both micro- and macroalgae) products globally .......................................................... 27 Table 4-1: Methane and biogas production yields from different microalgal species .................. 52 Table 6-1: Bioderived products from algae biochemical components. ..................................... 62 Table 6-2: Summary of feed production for different markets ............................................... 63 Table 6-3: Fatty acid profile of three algal species compared to typical linseed and soybean oil. 66 Table 7-1: Final harmonization assumptions for base-case scenario process inputs .................. 72 Table 7-2: Experimental data used in the study; obtained outdoors at AlgaePARC in pilot plant production systems .......................................................................................................... 78 Table 8-1: Proposed generic environmental indicators for assessing sustainability of algal biofuels ..................................................................................................................................... 83 Table 9-1: Characteristics of raw seaweeds collected in Cork in 2013 ..................................... 98 Table 9-2: Overview of Biomethane Potential (BMP) for different types of macroalgae ............. 99 Table 9-3: Potential gross energy production per hectare per annum based on a variety of species of seaweed ................................................................................................................... 104 Table A-11-1: Overview of suggested harmonized inputs in measurements used for reporting on algae operations ............................................................................................................ 114 Table A-11-2: Commercial and research operations working towards commodity algae-based (both micro- and macroalgae) products globally ................................................................. 120 6 List of Figures Figure 2-1: Projected future petroleum and liquid fuel consumption ...................................... 20 Figure 2-2: Overview of global commercial and research operations ...................................... 28 Figure 3-1: Overview of cellular morphology during biochemical compositional rearrangement .. 30 Figure 3-2: Flow of algae strains from outdoor native water sample through to outdoor deployment ..................................................................................................................... 31 Figure 3-3: Simplified overview of the microalgal lipid biosynthesis pathway .......................... 34 Figure 3-5: Outdoor open pond microalgae production systems at scale ................................. 37 Figure 3-6: Cultivation systems for algae growth. ............................................................... 38 Figure 3-7: Illustration of a sequence of typical process operations in a lignocellulosic ethanol production plant .............................................................................................................. 42 Figure 4-1:Illustration of major algae conversion pathways under development. ................... 47 Figure 4-2:Total lipid content (as FAME) shown on a biomass basis (% DW) in early, mid or late-harvested Scenedesmus acutus biomass, ...................................................................... 49 Figure 5-1: Process flow diagram for hydrothermal processing of whole algae ......................... 56 Figure 6-1: Illustration of relationship between fatty acid profile and application to different oleochemical industrial chemical ........................................................................................ 65 Figure 7-1: Overview of a generic algae production and conversion/extraction process ............ 70 Figure 7-2: Direct installed capital cost allocation for PBR ................................................... 73 Figure 7-3: Techno-economic assessment results color-coded by growth platform and conversion technology ...................................................................................................................... 74 Figure 7-5: The four types of algal cultivation reactor systems being investigated at AlgaePARC 78 Figure 7-6: Projected biomass production costs in installed PBR systems ............................... 79 Figure 8-1: Illustration of boundary conditions for Life Cycle Analysis (LCA) of microalgal biofuels. ..................................................................................................................................... 87 Figure 8-2: GHG intensity of microalgae biodiesel in the reviewed studies .............................. 88 Figure 8-3: Overview of global current near term lipid productivity of Nannochloropsis ............ 92 Figure 8-4: Overview of GIS siting information correlated with biomass and oil predicted productivity across the contiguous US ................................................................................. 93 Figure 9-1: Seaweeds collected from West Cork ................................................................. 96 Figure 9-2: Annual variation in composition of L. digitata in Ireland and associated biomethane potential ....................................................................................................................... 100 Figure 9-3: Annual variation in polyphenol and biomethane potential of A. nodosum ............. 100 Figure 9-4: Evaluation of 30 weeks of mono-digestion of L. digitata with increasing organic loading rate .................................................................................................................. 102 Figure 10-1: Illustration of commercial seaweed farming ................................................... 107 7 List of Abbreviations ACCase Acetyl-CoA Carboxylase Gene ATP3 Algae Testbed Public Private Partnership ACC Algal Carbon Conversion ALU Algal Lipid Extraction and Upgrading ALU Algal Lipid Extraction and Upgrading AET Alternative Electron Transport ARRA American Recovery and Reinvestment Act AD Anaerobic Digestion ANL Argonne National Laboratory AzCATI Arizona Center for Algae Technology and Innovation AFDW Ash-free dry Weight BGY Billion Gallons per Year CAD Canadian Dollars C:N Carbon to Nitrogen Ratio CHG Catalytic Hydrothermal Gasification CEVA Center of Studies and Valorization of Algae COD Chemical Oxygen Demand CAP Combined Algal Processing CHP Combined Heat and Power CAB-comm Consortium for Algal Biofuels Commercialization CPI Consumer Price Index MAB3 Danish MacroAlgaeBiorefinery DLUC Direct Land use Change DAF Dissolved air Flotation EISA Energy Independence and Security Act ECN Energy Research Centre of the Netherlands EROI Energy Return on Investment EC European Commission FAME Fatty Acid Methyl Ester IEA International Energy Agency FT-ICR MS Fourier Transform ion Cyclotron Resonance FFA Free Fatty Acids FDCA Furandicarboxylic Acid Gge Gallon Gasoline Equivalent GWP Global Warming Potential GHG Greenhouse Gases HDN Hydrodenitrogenation HTL Hydrothermal Liquefaction ILUC Indirect Land use Change IBR Integrated Biorefinery IMTA Integrated Multi-trophic Aquaculture IV Iodine Value LCA Life Cycle Analysis ME Major Equipment MFSP Minimum Fuel Selling Price MYPP Multiyear Program Plan NAABB National Alliance for Algal Biofuels and Bioproducts NREL National Renewable Energy Laboratory NRC National Research Council NER Net Energy Ratio NPD Nitrogen and Phosphorus Detection 8

Description:
in the development of cost-competitive production algae-based bioenergy Algae-based production to produce bioenergy products like liquid or
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.