ebook img

Idescat. SORT. A construction of continuous-time ARMA models by iterations of Ornstein PDF

36 Pages·2016·1.87 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Idescat. SORT. A construction of continuous-time ARMA models by iterations of Ornstein

Statistics& Statistics&OperationsResearchTransactions OperationsResearch SORT40(2)July-December2016,267-302 © Institutd’Estad´ısticadeCatalunya Transactions ISSN:1696-2281 [email protected] eISSN:2013-8830 www.idescat.cat/sort/ A construction of continuous-time ARMA models by iterations of Ornstein-Uhlenbeck processes ArgimiroArratia1, AlejandraCaban˜a2 and EnriqueM.Caban˜a3 Abstract Wepresentaconstructionofafamilyofcontinuous-timeARMAprocessesbasedon piterations ofthelinearoperatorthatmapsa Le´vyprocessontoanOrnstein-Uhlenbeckprocess. Thecon- structionresemblestheproceduretobuildanAR(p)fromanAR(1).Weshowthatthisfamilyisin facta subfamilyofthewell-knownCARMA(p,q) processes,withseveralinterestingadvantages, including a smaller number of parameters. The resulting processes are linear combinations of Ornstein-UhlenbeckprocessesalldrivenbythesameLe´vyprocess.Thisprovidesastraightfor- wardcomputationofcovariances,astate-spacemodelrepresentationandmethodsforestimating parameters.Furthermore,the discrete and equallyspaced samplingof the process turnsto be an ARMA(p,p−1) process. We propose methods for estimating the parameters of the iterated Ornstein-UhlenbeckprocesswhenthenoiseiseitherdrivenbyaWieneroramoregeneralLe´vy process,andshowsimulationsandapplicationstorealdata. MSC: 60G10,62M10,62M9960M99. Keywords: Ornstein-Uhlenbeckprocess,Le´vyprocess,ContinuousARMA,stationaryprocess. 1. Introduction Thelink betweendiscrete time autoregressivemovingaverage(ARMA) processesand stationaryprocesseswithcontinuous-timehasbeenofinterestformanyyears,seeforin- stance,Doob(1944),Durbin(1961),Bergstrom(1984,1996)andmorerecentlyBrock- well (2009), Thornton and Chambers (2013). Continuous time ARMA processes are better suited than their discrete counterpartsfor modelling irregularly spaceddata, and when the white noise is driven by a non-Gaussian process it becomes a more realistic modelinfinanceandotherfieldsofapplication. 1UniversitatPolite`cnicadeCatalunya,Barcelona,[email protected] SupportedbySpain’sMINECOprojectAPCOM(TIN2014-57226-P) andGeneralitatdeCatalunya2014SGR 890(MACDA). 2UniversitatAuto`nomadeBarcelona,[email protected] SupportedbySpain’sMINECOprojectMTM2015-69493-R. 3UniversidaddelaRepu´blica,Montevideo,[email protected] Received: November2015 Accepted: May2016 268 Aconstructionofcontinuous-timeARMAmodelsbyiterationsofOrnstein-Uhlenbeckprocesses A popular continuous-time representation of ARMA(p,q) process (known as CARMA(p,q))canbeobtainedviaastate-spacerepresentationoftheformalequation a(D)Y(t)=σb(D)DΛ(t), where σ > 0 is a scale parameter, D denotes differentiation with respect to t, Λ is a second-orderLe´vyprocess,a(z)=zp+a zp−1+...+a isapolynomialoforder pand 1 p b(z)=b +b z+...+b zqapolynomialoforderq≤ p−1withcoefficientb 6=0(see, 0 1 q q e.g., Brockwell, 2004, 2009, Thornton and Chambers, 2013). The parameters of this modelare estimated by adjusting first an ARMA(p,q), q< p to regularly spaceddata. Then obtain the parameters of the continuous version whose values at the observation timeshavethesamedistributionofthefittedARMA.Hence, p+q+1parametershave tobeestimated. We proposein this work a parsimoniousmodelfor continuousautoregression,with fewer parameters (as we shall see exactly p plus the variance). Our construction de- partsfromtheobservationthataOrnstein-Uhlenbeck(OU)processcanbethoughtofas continuous-timeinterpolationofanautoregressiveprocessoforderone(i.e.anAR(1)). Thisis shownin Section2,wherewealsoreviewsomewellknownfactsonLe´vypro- cesses,ARMAmodelsandtheirrepresentations.Themodelisobtainedbyaprocedure that resembles the one that allows to build an AR(p) from an AR(1). Departing from thisanalogy,wedefineandanalysetheresultofiteratingtheapplicationoftheoperator that maps a Wiener process onto an OU process. This operator is defined in Section 3 anddenotedOU,withsubscriptsdenotingtheparametersinvolved. The p iterations of OU, for each positive integer p, give rise to a new family of processes, the Ornstein-Uhlenbeck processes of order p, denoted OU(p). They can be used as models for either stationary continuous-time processes or the series obtained by observing these continuous processes at equally spaced instants. We show that an OU(p) process can be expressedas a linear combination of ordinary OU processes,or generalizedOUprocesses,alsodefinedinSection3.Thisresultresemblestheaggrega- tionsofGaussian(andnon-Gaussian)processesstudiedwiththeideaofdeconstructing a complicated economic model into simpler constituents. In the extensiveliterature on aggregations (or superpositions) of stochastic processes the aggregated processes are driven by independent Le´vy processes (see, e.g., Granger and Morris, 1976, Granger, 1980,Barndorff-Nielsen,2001,Eliazar andKlafter, 2009,amongmanyothers). A dis- tinctivepointofourconstructionisthatthestochasticprocessesobtainedbyconvolution oftheOU operatorresultin a linearcombinationcomprisedofprocessesdrivenbythe sameLe´vyprocess. Another consequence of writing the OU(p) process as the aggregation of simpler onesisthederivationofaclosedformulaforitscovariance.Thishasimportantpractical implications since it allows to easily estimate the parameters of a OU(p) process by matchingcorrelations(aprocedureresemblingthemethodofmoments,tobedescribed inSection6.2),andbymaximumlikelihood. ArgimiroArratia,AlejandraCaban˜aandEnriqueM.Caban˜a 269 In Section 4 we show how to write the discrete version of a OU(p) as a state-space model, and from this representation we show in Section 5 that for p>1, a OU(p) be- haves like an aggregation of AR processes (in the manner considered in Granger and Morris (1976)), that turns outto be anARMA(p,q),with q≤ p−1.Consequentlythe OU(p)processesareasubfamilyoftheCARMA(p,q)processes.Notwithstandingthis structural similarity, the family of discretized OU(p) processes is more parsimonious than the family of ARMA(p,p−1) processes, and we shall see empirically that it is abletofitwelltheautocovariancesforlarge lags.Hence,OUprocessesofhigherorder appear as a new continuous model, competitive in a discrete time setting with higher order autoregressive processes (AR or ARMA). The estimation of the parameters of OU(p)processesisattemptedinSection6.Simulationsandapplicationstorealdataare providedinSection6.5.OurconcludingremarksareinSection7. 2. Preliminaries LetusrecallthataLe´vyprocessΛ(t)isaca`dla`gfunction,withindependentandstation- ary increments, that vanishesint =0. As a consequence,Λ(t) is, for eacht, a random variable with an infinitely divisible law (Sato, 1999). A Wiener process W is a cen- tred Gaussian process, with independent increments and variance E(W(t)−W(s))2 = σ2|t−s|. Wiener processes are the only Le´vy processes with almost surely continu- ous paths. For parameter λ>0 the classical Ornstein-Uhlenbeckprocess is defined as t e−λ(t−s)dW(s)(UhlenbeckandOrnstein,1930). −∞ Wiener processcanbereplacedbya secondorderLe´vyprocessΛ to definea Le´vy R drivenOrnstein-Uhlenbeckprocessas t x(t)(=x (t)):= e−λ(t−s)dΛ(s) (1) λ,Λ Z−∞ Thepreviousequationcanbeformallywrittenindifferentialform dx(t)=−λx(t)dt+dΛ(t) (2) We may think of x as the result of accumulating a random noise dΛ, with reversion to themean(thatweassumetobe0)ofexponentialdecaywithrateλ. WhentheOrnstein-Uhlenbeckprocessxissampledatequallyspacedtimes{hτ :h= 0,1,2,...,n},τ >0,theseriesX =x(hτ)obeysanautoregressivemodeloforder1(i.e. h (h+1)τ an AR(1)), because X =e−λτX +Z , where Z = e−λ((h+1)τ−s)dΛ(s), h+1 h h+1 h+1 hτ isthestochasticinnovation. Z Hence,wecanconsidertheOUprocessascontinuous-timeinterpolationofanAR(1) process. Notice that both models are stationary. This link between AR(1) and OU(1) suggeststhedefinitionofiteratedOUprocessesintroducedinSection3. 270 Aconstructionofcontinuous-timeARMAmodelsbyiterationsofOrnstein-Uhlenbeckprocesses An ARMA(p,q) or autoregressive moving average process of order (p,q) has the followingform x =φ x +···+φ x +θ ǫ +θ ǫ +···+θ ǫ t 1 t−1 p t−p 0 t 1 t−1 q t−q where φ , ...,φ are the autoregressiveparameters,θ , ...,θ are the movingaverage 1 p 0 q parameters,andthewhite-noiseprocessǫ hasvarianceone.DenotebyB thebackshift t operatorthatcarries x into x .By consideringthepolynomialsin thebackshiftoper- t t−1 ator, φ(B)=1−φ B−···−φ Bp and θ(B)=θ +θ B+···+θ Bq 1 p 0 1 q theARMA(p,q)modelcanbewrittenas φ(B)x =θ(B)ǫ (3) t t This compact expression comes in handy for analysing structural properties of time series. It also links to the representation of ARMA processes as a state-space model, useful for simplifying maximum likelihood estimation and forecasting. A state-space modelhasthegeneralform Y =AY +ηηη (4) t t−1 t x =KTY +N (5) t t t where (4) is the state equation and (5) is the observation equation, with Y the m- t dimensionalstatevector,AandK arem×mandm×kcoefficientmatrices,KT denotes thetransposeofK,ηηη andN are mandk dimensionalwhite noises.N wouldbepresent onlyiftheprocessx isobservedsubjecttoadditionalnoise(seeBox,Jenkins,andRein- t sel,1994forfurtherdetails).WepresentinSection4astate-spacemodelrepresentation ofourgeneralizedOUprocess. 3. Ornstein-Uhlenbeck processes of order ppp The AR(1) process X = φX +ǫ , where ǫ , t ∈Z, is a white noise, can be written t t−1 t t as (1−φB)X = ǫ using the back-shift operator B. Equivalently, X can be written t t t as X = MA ǫ, where MA is the moving average that maps ǫ onto MA ǫ ,= t 1/ρ t 1/ρ t 1/ρ t ∞ 1 ǫ ,andρ(=1/φ)istherootofthecharacteristicpolynomial1−φz. j=0ρj t−j P ArgimiroArratia,AlejandraCaban˜aandEnriqueM.Caban˜a 271 p Moreover, the AR(p) process X = φ X +ǫ ( or φ(B)X =ǫ ), where φ(z)= t j t−j t t t j=1 X p p 1− φ zj=∏(1−z/ρ )hasrootsρ =eλj,j=1,...,p,canbeobtainedbyapplying j j j j=1 j=1 thecXompositionofthemovingaveragesMA tothenoise,thatis: 1/ρj p X =∏MA ǫ t 1/ρj t j=1 NowconsidertheoperatorMAe−λ thatmapsǫt onto MAe−λǫt = e−λ(t−l)ǫl l≤t,integer X AcontinuousversionofthisoperatorisOU thatmapsy(t),t ∈Ronto λ t OU y(t)= e−λ(t−s)dy(s), (6) λ Z−∞ whenever the integral can be defined. The definition of OU is extended to include λ complexprocesses,byreplacingλbyκ=λ+iµ,λ>0,µ∈Rin(6).Thesetofcomplex numberswith positiverealpartisdenotedbyC+, andthe conjugateofκis denotedby κ¯. For p≥1andparametersκκκ=(κ ,...,κ ),thepreviousargumentsuggeststodefine 1 p thefollowingprocessobtainedasrepeatedcompositionsofoperatorsOU , j=1,...,p: κj p OU y(t):=OU OU ···OU y(t)=∏OU y(t) (7) κκκ κ1 κ2 κp κj j=1 ThisiscalledOrnstein-Uhlenbeckprocessoforderpwithparametersκκκ=(κ ,...,κ )∈ 1 p (C+)p. The composition ∏p OU is unambiguouslydefined becausethe application j=1 κj ofOU operatorsiscommutativeasshowninTheorem1(i)below. κj The particular case of interest where the underlying noise is a second order Le´vy processΛ,namely, p OU Λ(t):=OU OU ···OU Λ(t)=∏OU Λ(t) (8) κκκ κ1 κ2 κp κj j=1 is called the Le´vy-driven Ornstein-Uhlenbeck process of order p with parametersκκκ= (κ ,...,κ )∈(C+)p. 1 p 272 Aconstructionofcontinuous-timeARMAmodelsbyiterationsofOrnstein-Uhlenbeckprocesses Fortechnicalreasons,itisconvenienttointroducetheOrnstein-Uhlenbeckoperator OU(h) ofdegreehwithparameterκthatmapsyonto κ t (−κ(t−s))h OU(h)y(t)= e−κ(t−s) dy(s) (9) κ Z−∞ h! andΛonto t (−κ(t−s))h ξ(h)(t)= e−κ(t−s) dΛ(s) (10) κ Z−∞ h! We call the process (10) generalized Ornstein-Uhlenbeck process of order 1 and degree h. For the remainder of the paper we restrict the underlying noise to a second orderLe´vyΛ,butnotethatthegeneralpropertiesoftheOU operatorthatwearegoing κ toshowholdforanyrandomfunctiony(t)forwhichtheintegral(6)isdefined. 3.1. Properties of the operatorOOOUUU κκκ Thefollowingstatementssummarizesomepropertiesofproducts(compositions)ofthe operatorsdefinedby(7)and(9),andcorrespondingly,ofthestationarycentredprocesses ξ(h), h ≥ 0. In particular, the Ornstein-Uhlenbeck processes of order 1 and degree 0, κ ξ(0)=ξ aretheordinaryOrnstein-Uhlenbeckprocesses(1). κ κ Theorem1 (i) Whenκ 6=κ ,theproductOU OU canbecomputedas 1 2 κ2 κ1 κ κ 1 OU + 2 OU κ −κ κ1 κ −κ κ2 1 2 2 1 andisthereforecommutative. (ii) Thecomposition∏p OU constructedwithpairwisedifferentκ ,...,κ isequal j=1 κj 1 p tothelinearcombination p p ∏OU = K (κ ,...,κ )OU , (11) κj j 1 p κj j=1 j=1 X withcoefficients 1 K (κ ,...,κ )= . (12) j 1 p ∏ (1−κ/κ ) κl6=κj l j ArgimiroArratia,AlejandraCaban˜aandEnriqueM.Caban˜a 273 (iii) Fori=1,2,...,OU OU(i)=OU(i)−κOU(i+1). κ κ κ κ (iv) Foranypositiveinteger pthe p-thpoweroftheOrnstein-Uhlenbeckoperatorhas theexpansion p−1 p−1 OUp = OU(j). (13) κ j κ j=0(cid:18) (cid:19) X (v) Letκ ,...,κ bepairwisedifferentcomplexnumberswithpositiverealparts,and 1 q p ,...,p positiveintegers,andletusdenotebyκκκacomplexvectorin(C+)pwith 1 q componentsκ repeated p times, p ≥1, h=1,...,q, q p = p. Then, with h h h h=1 h K (κκκ)definedby(12), h P q q 1 q ∏OUph = OUph = K (κκκ)OUph. h=1 κh h=1 ∏l6=h(1−κl/κh)pl κh h=1 h κh X X An immediate consequenceis that the operatorOU with p-vectorparameterκκκ canbe κκκ written as a linear combination of p operators OU or OU(h) for suitable scalar values κ κ κ and non-negative integer h. Therefore, the process OU Λ can be written as a linear κκκ combinationofOUprocessesdrivenbythesameLe´vyprocess,asstatedinthefollowing Corollary. Corollary1 q (i) TheprocessOU (Λ)=∏OUph(Λ)canbeexpressedasthelinearcombination κκκ κh h=1 q ph−1 OU (Λ)= K (κκκ) ph−1 ξ(j) (14) κκκ h j κh h=1 j=0 X X(cid:0) (cid:1) ofthe pprocesses{ξ(j):h=1,...,q,j=0...,p −1}(see(10)). κh h (ii) Consequently, q ph−1 OUκκκΛ(t)= Kh(κκκ) ph−j 1 −t∞e−κh(t−s)(−κh(jt!−s))jdΛ(s) h=1 j=0 X X(cid:0) (cid:1)R Corollary2 For real λ,µ, with λ>0, the product OU OU is real, that is, ap- λ+iµ λ−iµ pliedtoarealprocessproducesarealimage. TheproofsofTheorem1andcorollariesareinAppendixA. 274 Aconstructionofcontinuous-timeARMAmodelsbyiterationsofOrnstein-Uhlenbeckprocesses 3.2. Computingthe covariances Therepresentation q ph−1 p −1 x:=OU (Λ)= K (κ) h OU(j)(Λ) κκκ h j κh h=1 j=0 (cid:18) (cid:19) X X of x as a linear combination of the processes ξ(i) = OU(i)(Λ) allows a direct compu- κh κh tation of the covariances γ(t) = Ex(t)x¯(0) through a closed formula, in terms of the covariancesγ(i1,i2)(t)=Eξ(i1)(t)ξ¯(i2)(0): κ1,κ2 κ1 κ2 q ph′−1 q ph′′−1 p −1 p −1 γ(t)= K (κκκ)K¯ (κκκ) h′ h′′ γ(i′,i′′) (t) (15) h′ h′′ i′ i′′ κh′,κh′′ h′=1 i′=0 h′′=1 i′′=0 (cid:18) (cid:19)(cid:18) (cid:19) X X X X withv2=VarΛ(1), 0 (t−s)i1 (−s)i2 γ(i1,i2)(t)=v2(−κ )i1(−κ¯ )i2 e−κ1(t−s) e−κ¯2(−s) ds κ1,κ2 1 2 Z−∞ i1! i2! i1 i tj 0 =v2(−κ )i1(−κ¯ )i2e−κ1t 1 e(κ1+κ¯2)s(−s)i1+i2−jds 1 2 j=0(cid:18)j(cid:19)i1!i2!Z−∞ X v2(−κ )i1(−κ¯ )i2e−κ1t i1 tj(i +i − j)! 1 2 1 2 = (16) i2! j!(i1− j)!(κ1+κ¯2)(i1+i2−j+1) j=0 X Arealexpressionforthecovariancewhentheimaginaryparametersappearasconjugate pairscanbeobtainedbutitismuchmoreinvolvedthanthisone. 4. The OU(ppp) process as a state-space model Theorem 1 and its corollaries lead to express the OU(p) process by means of linear state-space models. The state-space modelling provides a unified methodology for the analysisoftimeseries(seeDurbinandKoopman,2001). In the simplest case, where the elements of κκκ are all different, the process x(t) = OU Λ(t)isalinearcombinationofthestatevectorξξξ (t)=(ξ (t),ξ (t),...,ξ (t))T, κκκ κκκ κ1 κ2 κp whereξ =OU (Λ). κj κj ArgimiroArratia,AlejandraCaban˜aandEnriqueM.Caban˜a 275 Moreprecisely,thevectorialprocess ξξξ (t)=(ξ (t),ξ (t),...,ξ (t))T, ξ =OU (Λ) κκκ κ1 κ2 κp κj κj andx(t)=OU Λ(t)satisfythelinearequations κκκ ξξξ (t)=diag(e−κ1τ,e−κ2τ,...,e−κpτ)ξξξ (t−τ)+ηηη (t) (17) κκκ κκκ κκκ,τττ and x(t)=KKKT(κκκ)ξξξ(t), (18) t ηηη (t)=(η (t),η (t),...,η (t))T, η (t)= e−κj(t−s)dΛ(s), κκκ,τττ κ1,τ κ2,τ κp,τ κj,τ Zt−τ t 1−e−(κj+κ¯l)τ Var(ηηη (t))=v2((v )), v = e−(κj+κ¯l)(t−s)ds= (19) κκκ,τττ j,l j,l κ +κ¯ Zt−τ j l andthecoefficientsfrom(12),KKKT(κκκ)=(K (κκκ),K (κκκ),...,K (κκκ)). 1 2 p The initial value ξξξ(0) is estimated by means of its conditional expectation ξξξˆ(0)= KKKT(κκκ)Vx(0) 1 E(ξ(0)|x(0))= ,withV =Var(ξξξ(0))= . KKKT(κκκ)VKKK (cid:18)(cid:18)κj+κ¯l(cid:19)(cid:19) AnapplicationofKalmanfiltertothisstate-spacemodelleadstocomputethelikeli- hoodofxxx=(x(0),x(τ),...,x(nτ)).SomeKalman filterprograms includedin software packages require the processes in the state-space to be real. That condition is not ful- filled by the modeldescribedby equations(17) and (18). An equivalentdescriptionby meansofrealprocessescanbeobtainedbyorderingtheparametersκκκwiththeimaginary componentspairedwith theirconjugatesinsuchawaythatκ =κ¯ ,h=1,2,...,c 2h 2h−1 andtheimaginarycomponentℑ(κ )=0ifandonlyif2c< j≤ p. j Then the matrix M=((M )) with all elements equal to zero except M = j,k 2h−1,2h−1 M =1,−M =M =i, h=1,2,...,candM =1, 2c< j≤ p,induces 2h−1,2h 2h,2h−1 2h,2h j,j thelineartransformationξξξ 7→Mξξξ thatleadstothenewstate-spacedescription Mξξξ(t)=Mdiag(e−κ1τ,e−κ2τ,...,e−κpτ)M−1Mξξξ(t−τ)+Mηηη(t), (20) x(t)=KKKTM−1Mξξξ(t), (21) wheretheprocessesMξξξ arereal. 276 Aconstructionofcontinuous-timeARMAmodelsbyiterationsofOrnstein-Uhlenbeckprocesses Observethatthereisnolossofgeneralityinchoosingthespacingτ betweenobser- vations as unity for the derivation of the state-spaceequations. Hence, we set τ =1 in thesequeland,inaddition,τ willbeomittedfromthenotation. When κ ,...,κ are all different, p ,...,p are positive integers, q p = p and 1 q 1 q h=1 h κκκ is a p-vector with p repeated components equal to κ , the OU(p) process x(t) = h h P OU Λ(t)isalinearfunctionofthestate-spacevector κκκ ξ(0),ξ(1),...,ξ(p1−1),...,ξ(0),ξ(1),...,ξ(pq−1) κ1 κ1 κ1 κq κq κq (cid:16) (cid:17) where the components are given by (10), and the transition equation is no longer ex- pressedbyadiagonalmatrix.Inthiscasethestate-spacemodelhasthefollowingform ξξξ(t)=Aξξξ(t−1)+ηηη(t) x(t)=KKKTξξξ(t) (22) Weleavethetechnicaldetailsofthis derivationto AppendixB. Thetermsξξξ(t),A,ηηη(t) and KKK are precisely defined in (36). The real version of (22), when the processξξξ has imaginary components is obtained by multiplying both equations by a block-diagonal matrix C (which is defined precisely in the Appendix), giving us the real state-space model Cξξξ(t)=(CAC−1)(Cξξξ(t−1))+Cηηη(t), (23) x(t)=(KKKTC−1)(Cξξξ(t)). (24) 5. The OU(ppp) as an ARMA(ppp, ppp−−−111) Thestudiesofpropertiesoflineartransformationsandaggregationsofsimilarprocesses haveproducedagreatamountofworkstemmingfromtheseminalpaperbyGrangerand Morris (1976) on the invariance of MA and ARMA processes under these operations. These results and extensions to vector autoregressive moving average (VARMA) pro- cessesarecompiledinthetextbookbyLu¨tkepohl(2005). The description of the OU(p) process x = OU (Λ) with parameters κκκ as a linear κκκ state-space model, given in the previous section, will allow us to show that the series x(0), x(1), ..., x(n) satisfies an ARMA(p,q) model with q smaller than p. We refer the reader to (Lu¨tkepohl, 2005, Ch. 11) for a presentation on VARMA processes and, in particular, to the following result on the invariance property of VARMA processes underlineartransformations,whichwequotewithaminorchangeofnotation:

Description:
Then obtain the parameters of the continuous version whose values at the observation times have the same distribution of the fitted ARMA. Hence, p+q+1 parameters have to be estimated. We propose in this work a parsimonious model for continuous autoregression, with fewer parameters (as we shall
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.