Purdue University Purdue e-Pubs Open Access Theses Theses and Dissertations Fall 2014 Identifying Conditions to Optimize Lactic Acid Production from Food Waste Raymond M. RedCorn Purdue University Follow this and additional works at:https://docs.lib.purdue.edu/open_access_theses Part of theChemical Engineering Commons, and theChemistry Commons Recommended Citation RedCorn, Raymond M., "Identifying Conditions to Optimize Lactic Acid Production from Food Waste" (2014).Open Access Theses. 372. https://docs.lib.purdue.edu/open_access_theses/372 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. (cid:42)(cid:85)(cid:68)(cid:71)(cid:88)(cid:68)(cid:87)(cid:72)(cid:3)(cid:54)(cid:70)(cid:75)(cid:82)(cid:82)(cid:79)(cid:3)(cid:41)(cid:82)(cid:85)(cid:80)(cid:3)(cid:22)(cid:19) (cid:11)(cid:56)(cid:83)(cid:71)(cid:68)(cid:87)(cid:72)(cid:71)(cid:3)(cid:20)(cid:20)(cid:18)(cid:21)(cid:19)(cid:18)(cid:21)(cid:19)(cid:20)(cid:23)(cid:12)(cid:3) PURDUE UNIVERSITY GRADUATE SCHOOL Thesis/Dissertation Acceptance (cid:55)(cid:75)(cid:76)(cid:86)(cid:3)(cid:76)(cid:86)(cid:3)(cid:87)(cid:82)(cid:3)(cid:70)(cid:72)(cid:85)(cid:87)(cid:76)(cid:73)(cid:92)(cid:3)(cid:87)(cid:75)(cid:68)(cid:87)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:87)(cid:75)(cid:72)(cid:86)(cid:76)(cid:86)(cid:18)(cid:71)(cid:76)(cid:86)(cid:86)(cid:72)(cid:85)(cid:87)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81)(cid:3)(cid:83)(cid:85)(cid:72)(cid:83)(cid:68)(cid:85)(cid:72)(cid:71)(cid:3) RaymondRedCorn (cid:37)(cid:92)(cid:3) (cid:40)(cid:81)(cid:87)(cid:76)(cid:87)(cid:79)(cid:72)(cid:71)(cid:3)(cid:3) (cid:3)IdentifyingConditionstoOptimizeLacticAcidProductionfromFoodWaste MasterofScienceinEngineering (cid:41)(cid:82)(cid:85)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:71)(cid:72)(cid:74)(cid:85)(cid:72)(cid:72)(cid:3)(cid:82)(cid:73)(cid:3)(cid:3)(cid:3) (cid:44)(cid:86)(cid:3)(cid:68)(cid:83)(cid:83)(cid:85)(cid:82)(cid:89)(cid:72)(cid:71)(cid:3)(cid:69)(cid:92)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:73)(cid:76)(cid:81)(cid:68)(cid:79)(cid:3)(cid:72)(cid:91)(cid:68)(cid:80)(cid:76)(cid:81)(cid:76)(cid:81)(cid:74)(cid:3)(cid:70)(cid:82)(cid:80)(cid:80)(cid:76)(cid:87)(cid:87)(cid:72)(cid:72)(cid:29)(cid:3) Dr.AbigailEngelberth (cid:3) (cid:3) Dr.NathanMosier Dr.LoringNies To the best of my knowledge and as understood by the student in the Thesis/Dissertation Agreement, Publication Delay, and Certification/Disclaimer (Graduate School Form 32), this thesis/dissertation adheres to the provisions of Purdue University’s “Policy on Integrity in Research” and the use of (cid:3)copyrighted material. Dr.AbigailEngelberth (cid:36)(cid:83)(cid:83)(cid:85)(cid:82)(cid:89)(cid:72)(cid:71)(cid:3)(cid:69)(cid:92)(cid:3)(cid:48)(cid:68)(cid:77)(cid:82)(cid:85)(cid:3)(cid:51)(cid:85)(cid:82)(cid:73)(cid:72)(cid:86)(cid:86)(cid:82)(cid:85)(cid:11)(cid:86)(cid:12)(cid:29)(cid:3)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:3) (cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:66)(cid:3) (cid:3)(cid:36)(cid:83)(cid:83)(cid:85)(cid:82)(cid:89)(cid:72)(cid:71)(cid:3)(cid:69)(cid:92)(cid:29)Dr.BernardEngel 12/01/2014 (cid:43)(cid:72)(cid:68)(cid:71)(cid:3)(cid:82)(cid:73)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:39)(cid:72)(cid:83)(cid:68)(cid:85)(cid:87)(cid:80)(cid:72)(cid:81)(cid:87)(cid:3)(cid:42)(cid:85)(cid:68)(cid:71)(cid:88)(cid:68)(cid:87)(cid:72)(cid:3)(cid:51)(cid:85)(cid:82)(cid:74)(cid:85)(cid:68)(cid:80)(cid:3) (cid:3)(cid:3)(cid:3)(cid:39)(cid:68)(cid:87)(cid:72) i IDENTIFYING CONDITIONS TO OPTIMIZE LACTIC ACID PRODUCTION FROM FOOD WASTE A Thesis Submitted to the Faculty of Purdue University by Raymond M. RedCorn In Partial Fulfillment of the Requirements for the Degree of Master of Science in Engineering December 2014 Purdue University West Lafayette, Indiana ii To Jedediah Creel, for saving my life…and never letting me forget it. iii ACKNOWLEDGEMENTS - Dr. Abigail Engelberth, Advisor, for guidance, support, and thoughtfulness, - Dr. Nathan Mosier and Dr. Loring Nies, Committee Members, for support, assistance, and knowledge, - Charles Daniels, SURF Student, for hard work in performing experiments - Dr. Linda Lee, Director of the ESE IGP, for guidance and connection to resources, - Members of the Laboratory of Renewable Resource Engineering including Xingya (Linda) Liu, Rick Hendrickson, Mahdieh Aghazadeh, Jinsha Li, He (Heather) Zhang, Emma Barber, Barron Hewetson, Tommy Kreke, Iman Beheshti, - Hao Zhang, NingNing Chen and Dr.Thomas Kuczek, Statistical Consulting Services, for guidance on the experimental design, - Steve Nelson, Bob Busch and David Henderson of the West Lafayette WWTP for assistance in collecting primary sludge, - Randy Drake, Crew Chief of Buildings and Grounds Department Purdue University, for assistance in gathering food waste, - Dr. Inez Hua and Dr. James Camberato for recommendations and troubleshooting on ammonium testing, - Sloan foundation Indigenous Scholars Program and the Purdue Native Center - Marcia Croft, PhD student in Horticulture, for support, lovingness and inspiration. iv TABLE OF CONTENTS Page LIST OF TABLES ............................................................................................................ vii LIST OF FIGURES ......................................................................................................... viii ABSTRACT ........................................................................................................................ x CHAPTER 1. INTRODUCTION .................................................................................... 1 1.1 Value Added Co-products ......................................................................................... 1 1.2 Polylactic Acid .......................................................................................................... 1 1.3 Biological Nutrient Removal .................................................................................... 3 1.4 Lactic Acid from Food Waste ................................................................................... 4 1.5 Basis of Experiment .................................................................................................. 5 CHAPTER 2. LITERATURE REVIEW ......................................................................... 6 2.1 Approach ................................................................................................................... 6 2.2 Production of Organic Acids from Sludge ................................................................ 6 2.2.1 Organic Acid Production from Anaerobic Digestion ...................................... 8 2.2.2 Previous Work on Organic Acid Production ................................................... 9 2.2.3 Potential Inhibitors to Organic Acid Production ........................................... 16 2.2.4 Downstream Processing of Sludge ................................................................ 18 2.2.5 Value of Organic Acids ................................................................................. 20 2.2.5.1 Propionic Acid .......................................................................................... 21 2.2.5.2 Acetic Acid ............................................................................................... 21 2.2.5.3 Succinic Acid ............................................................................................ 22 2.2.5.4 Butyric Acid ............................................................................................. 22 2.2.6 Summary of Literature Review on Organic Acids in Anaerobic Digestion .. 23 2.3 Lactic Acid Production from Food Waste ............................................................... 24 v Page 2.3.1 Polylactic acid Polymers ................................................................................ 24 2.3.2 Food Waste Generation ................................................................................. 26 2.3.3 Economic Potential of Value Added Products from Food Waste ................. 27 2.3.4 Review of Food Waste Fermentations to Lactic Acid ................................... 31 2.4 Summary of Literature Review ............................................................................... 34 CHAPTER 3. MATERIALS AND METHODS ............................................................ 36 3.1 Batch Preparation .................................................................................................... 36 3.1.1 Food Waste Collection .................................................................................. 36 3.1.2 Primary Sludge .............................................................................................. 37 3.2 Reactor Setup .......................................................................................................... 38 3.3 Analytical Methods ................................................................................................. 41 3.3.1 Acids .............................................................................................................. 41 3.3.2 Ammonium .................................................................................................... 42 3.3.3 Carbohydrates ................................................................................................ 42 3.3.4 Lipids ............................................................................................................. 42 3.3.5 Proteins .......................................................................................................... 43 3.3.6 Optical Purity ................................................................................................. 43 CHAPTER 4. IDENTIFYING CONDITIONS TO OPMIZE LACTIC ACID PRODUCTION FORM FOOD WASTE .......................................................................... 44 4.1 Abstract ................................................................................................................... 44 4.2 Introduction ............................................................................................................. 45 4.3 Materials and Methods ............................................................................................ 50 4.3.1 Batch Preparation ........................................................................................... 50 4.3.2 Reactor Setup ................................................................................................. 51 4.3.3 Experimental Design ..................................................................................... 52 4.3.4 Analytical Methods ........................................................................................ 55 4.3.4.1 Acids ......................................................................................................... 55 4.3.4.2 Ammonium ............................................................................................... 55 4.3.4.3 Carbohydrates ........................................................................................... 55 vi Page 4.3.4.4 Lipids ........................................................................................................ 56 4.3.4.5 Protein ....................................................................................................... 56 4.3.4.6 Optical Purity ............................................................................................ 56 4.4 Results and Discussion ............................................................................................ 56 4.4.1 General Food Waste Characteristics .............................................................. 56 4.4.2 Batch 1 and 2 – Narrowing in on Conditions ................................................ 59 4.4.3 Batch 3 – Optimizing Yield and Concentration ............................................ 60 4.4.4 Batches 4 and 5 – Refining Conditions ......................................................... 62 4.4.5 Optical Purity ................................................................................................. 65 4.4.6 Optimal pH and Termperature ....................................................................... 65 4.4.7 Biological Nutrient Removal Potential .......................................................... 66 4.4.8 Bacteria and Pathways ................................................................................... 67 4.5 Conclusion ............................................................................................................... 69 4.6 Acknowledgements ................................................................................................. 69 CHAPTER 5. CONCLUSION ....................................................................................... 71 5.1 Summary ................................................................................................................. 71 5.2 Polylactic acid Polymerization Potential ................................................................. 72 5.3 Biological Nutrient Removal Potential ................................................................... 73 REFERENCES ................................................................................................................. 74 APPENDIX ....................................................................................................................... 79 vii LIST OF TABLES Table .............................................................................................................................. Page Table 2-1 Summary of Maximized Organic Acid Concentrations in Fermentation Broths ........................................................................................................................................... 15 Table 2-2 Values of Organic Acids found in Anaerobic Digestion .................................. 23 Table 2-3 Market Price of Value Added Compounds from Food Waste ......................... 30 Table 2-4 Review of Open Food Waste Digestions .......................................................... 35 Table 3-1 Factors varied for Batches 1 and 2 ................................................................... 40 Table 4-1 Factors varied for Batches 1 and 2 ................................................................... 53 Table 4-2: Properties of food waste batches prior to dilution. Volatile solis vary while the ratio of volatile solids to total solids remains constant ..................................................... 58 Table 4-3 Lactic Acid Concentrations (g L-1) in Batch 4 and 5 (150 g VS L-1, 16 hrs; Temp in °C) ...................................................................................................................... 62 viii LIST OF FIGURES Figure ............................................................................................................................. Page Figure 2-1 Carbon Flow in a Typical Anaerobic Degradation Process (Batstone et al., 2002; TUGTAS, 2011) ....................................................................................................... 7 Figure 2-2 Historical Per Capita Food Waste in the United States (EPA, 2007; US Cencus Bureau, 2007) .................................................................................................................... 27 Figure 3-1 Schematic Bioflow 110 Reactor Setup. Mixing is constantly performed. Temperature is held at the setpoint with a heat blanket based on a feedback loop. pH is held at the setpoint by the addition of NaOH based on a feedback loop. Gas is diverted to a graduated cylinder inverted in water to maintain atmospheric pressure. Samples are siphoned via a submerged tube which is sealed when not in use. .................................... 39 Figure 4-1 Schematic Bioflow 110 Reactor Setup. Mixing is constantly performed. Temperature is held at the setpoint with a heat blanket based on a feedback loop. pH is held at the setpoint by the addition of NaOH based on a feedback loop. Gas is diverted to a graduated cylinder inverted in water to maintain atmospheric pressure. Samples are siphoned via a submerged tube which is sealed when not in use. .................................... 52 Figure 4-2 a) Effect of pH and Temperature on the conc. of lactic acid; b) Effect of Temperature and Loading Rate on the conc. of lactic acid; c) Effect of Loading rate and time on the concentration of lactic acid. ........................................................................... 59 Figure 4-3 Effect of Loading Rate on Lactic Acid Yield (pH 5.3, 41°C, 24hrs) .............. 61
Description: