ebook img

Identified particle transverse momentum spectra in p+p and d+Au collisions at sqrt{s_NN} = 200 GeV PDF

0.05 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Identified particle transverse momentum spectra in p+p and d+Au collisions at sqrt{s_NN} = 200 GeV

Identified particle transverse momentum spectra in p+p and d+Au collisions at √s = 200 GeV NN Pawan Kumar Netrakanti (for STAR COLLABORATION) VariableEnergyCyclotronCentre,Kolkata 6 Abstract. Thetransversemomentum(pT)spectraforidentifiedchargedpions,protonsandanti-protonsfromp+pandd+Au 0 collisionsaremeasured around midrapidity (y <0.5) over therange of 0.3< pT <10GeV/cat√sNN =200 GeV. The | | 0 chargedpionandproton+anti-protonspectraathigh pTinp+pcollisionshavebeencomparedwiththenext-to-leadingorder 2 perturbativequantumchromodynamic(NLOpQCD)calculationswithaspecificfragmentationscheme.The p/p +and p¯/p − hasbeenstudiedathigh p .Thenuclearmodificationfactor(R )showsthattheidentifiedparticleCronineffectsaround T dAu n midrapidityaresignificantlynon-zero forchargedpionsandtobeeven largerforprotonsatintermediate pT (2< pT <5 a GeV/c). J Keywords: Particleproduction,perturbativequantumchromodynamics,fragmentationfunction 8 PACS: 25.75.-q,25.75.Dw,24.85.+p 1 1 INTRODUCTION v 2 Thestudyofidentifiedhadronspectraatlargetransverse 102 p+p STAR (p + + p -)/2 2 0 momentum(pT)in p+pcollisionscanbeusedtotestthe 3) STAR (p + p)/2 X 0.1 c 1 predictions from perturbative quantum chromodynam- -2V 1 AKKNLO 0 ics (pQCD) [1]. Comparisons between experimentally e 6 measured p spectra and theory can help to constrain G STAR Preliminary 0 thequarkanTdgluonfragmentationfunctions.Withinthe mb 10-2 x/ framework of pQCD, the expected initial-state nuclear 3 (p e effectsind+Aucollisionsaremultiplescattering(Cronin d 10-4 l- effect[2])andshadowingofthepartondistributionfunc- 3s / m =pT/2 uc tion. The studyof the nuclearmodificationfactor(RdAu) Ed 10-6 willhelpusinunderstandingthenucleareffectsinvolved v:n isntradi+nsApuarctoicllliesipornosd.uTchtieonpamrtoidcleelsraatnidosalastohgigivhespuTnciqoune- 10-80 1 2 3 4 5 6 7m =28pT 9 10 i X dataonFFratios,althoughextractionofthisinformation ismodel-dependent.Forexample, p/p +reflectstherel- Transverse Momentum (p ) (GeV/c) r T a ative probability of a parton to fragment into proton or pion at high pT [3]. The above aspects have been dis- FIGURE1. Midrapidityinvariantyieldsfor(p ++p )/2and − cussedinthismanuscript. (p+p¯)/2athighp forminimumbiasp+pcollisionscompared T toresultsfromNLOpQCDcalculationsusingAKK[12](PDF: CTEQ6M) set of fragmentation functions. The calculations EXPERIMENT AND ANALYSIS from AKK are for three different factorization scales: m = pT/2,m =pT,andm =2pT. The detectors used in the present analysis are the Time Projection Chamber (TPC), the Time-Of-Flight (TOF) has been described in Ref. [7].For p >2.5 GeV/c, we detector, a set of trigger detectors used for obtaining T usedatafromtheTPC.Particleidentificationatp inthe the minimum bias data, and the Forward Time Projec- T TPCcomesfromtherelativisticriseoftheionizationen- tion Chamber (FTPC) for the collision centrality deter- ergyloss(rdE/dx).Detailsofthemethodaredescribed mination in d+Au collisions in STAR experiment. The inRef.[8]. detailsof the designandothercharacteristicsofthe de- tectors can be found in Ref. [4]. The data from TOF is usedtoobtaintheidentifiedhadronspectrafor p <2.5 T GeV/c.Theprocedureforparticleidentificationin TOF 3.0 duction.Itisdefinedasaratiooftheinvariantyieldsof p M.B. theproducedparticlesind+Aucollisionstothoseinp+p 2.5 p+p M.B. collisions scaled by the underlyingnumber of nucleon- ) h M.B. |h |<0.5 nucleonbinarycollisions. 5 2.0 . <0 d2NdAu/dydpT y| 1.5 RdAu(pT) = N /s ineld2s /dydp , (| h bini pp pp T u 1.0 A where N is the average number of binary nucleon- Rd nucleonh(NbinNi)collisionsperevent,and N /s inelisthe 0.5 STAR Preliminary h bini pp nuclearoverlapfunctionT (b)[5,6].Thes inel istaken A pp 0.0 tobe42mb. 0 1 2 3 4 5 6 7 8 9 In Fig. 2 shows the RdAu for charged pions ((p ++p )/2) and combined proton and anti-proton Transverse Momentum p (GeV/c) − T (p+p¯)inminimum-biascollisionsat y <0.5.TheRdAu | | > 1 indicates a slight enhancementof high p charged T pions yields in d+Au collisions compared to binary FIGURE 2. Nuclear modification factor R for charged dAu collision scaled charged pion yields in p+p collisions pions(p ++p )/2andp+p¯at y <0.5inminimumbiasd+Au collisions.For−comparisonresu|lt|soninclusivechargedhadrons within the measured (y, pT) range. The RdAu for p+p¯ (STAR)fromRef.[5]at h <0.5areshown.Theshadedband is again greater than unity for pT > 1.0 GeV/c and is isthenormalizationunce|rta|intyfromtriggerandluminosityin larger than that of the charged pions. The RdAu results p+pandd+Aucollisions. foridentifiedparticleshasalsobeencomparedtothein- clusivechargedhadrons.Theuncertaintyindetermining the numberofbinarycollisionsin d+Au minimum-bias COMPARISONTO NLO PQCDAND collisionsis 5.3%. ∼ MODEL CALCULATIONS In Fig. 1 we compare (p + + p )/2 and (p+p¯)/2 yields PARTICLERATIO − in minimumbias p+pcollisionsatmidrapidityforhigh pT to those from NLO pQCD calculations. The NLO The p/p + and p¯/p − atmidrapidityasa functionof pT pQCD resultsare based oncalculationsperformedwith forp+pandd+Auminimumbiascollisionsareshownin Albino-Kniehl-Kramer(AKK)setoffragmentationfunc- Fig.3.AtRHIC,thep/p +andp¯/p −ratiosincreasewith tions [12]. We observe that our charged pion data for pT up to 2 GeV/c and then start to decrease for higher pT > 2 GeV/c in p+p collisions are reasonably well- pT in both p+p and d+Au collisions. The p¯/p − ratio explained by the NLO pQCD calculations using the rapidlyapproachesavalueof0.2,whichisalsoobserved AKK set of FFs. The calculations for the factorization in e++e− collisions for both quark and gluon jets [9]. scales of m = p /2, m = p , and m = 2p have been The p/p + ratios in p+p collisions compare well with T T T shown. The combined proton and anti-proton yield in results from lower energy ISR and FNAL fixed target p+p is lower comparedto NLO pQCD calculations us- experiments[10,11],while p¯/p −ratiosathigh pT have ing AKK FFs for the factorization scale m = p . The astrongenergydependencewithlargervaluesathigher T (p+p¯)/2 yield in p+p collisions, however,is reasonably beamenergies. well-explainedbyAKKsetofFFsfor m =2p .Forthe T firsttimeinp+pcollisionsweobserveareasonablygood SUMMARY agreementbetween the NLO pQCD calculations(using AKK FFs) and data at high p . This reflects the im- T portanceoftheflavor-separatedmeasurementsine++e We have measured the transverse momentum spectra − collisions in determining the FFs to baryons as used in for identified charged pions, protons and anti-protons AKKFFscalculation. from p+p and d+Au collisions at √sNN = 200 GeV around midrapidity (y < 0.5) over the range of 0.3 < | | p < 10 GeV/c. For particle identification we use the T NUCLEAR MODIFICATIONFACTOR ionizationenergylossanditsrelativisticriseintheTime Projection Chamber and the Time-of-Flight in STAR. The nuclear modification factor (R ) can be used to The charged pions, combined proton and anti-proton dAu study the effectsof cold nuclearmatter on particle pro- spectra in p+p and collisions have been compared to calculations with the next-to-leading order perturbative 1.0 p/p + p+p :STAR 200 GeV p/p - d+Au:STAR 200 GeV 0.8 p+p :ISR 53 GeV STAR Preliminary p+W :FNAL 38.8 GeV 0.6 0.4 0.2 STAR Preliminary 0.0 0 2 4 6 8 10 0 2 4 6 8 10 Transverse Momentum p (GeV/c) T FIGURE3. Ratioof p/p +and p¯/p −atmidrapidity(y <0.5)asafunctionof pTin p+pandd+Auminimumbiascollisions. ForcomparisontheresultsfromlowerenergiesatISRa|nd|FNALarealsoshownfor p/p + and p¯/p .Theerrorsrepresentedby − boxesarethepoint–to–pointsystematic. QCDcalculationswithaspecificfragmentationscheme. REFERENCES The NLO pQCD calculation explains the high p data T for charged pions reasonably well for p > 2 GeV/c 1. J.C.Collins,D.E.SoperandG.StermaninA.H.Muller T in p+pcollisions.The p+p¯ spectraarereasonablywell- edited,PerturbativeQuantumChromodynamics(World Scientific,1989)andAdv.Ser.Direct.HighEnergyPhys. explained for the first time by NLO pQCD calculation 5(1988)1;G.Stermanetal.,Rev.Mod.Phys.67(1995) usingtheAKKsetofFFswiththefactorizationscaleof 157. m =2pT.Animproveddescriptionofexperimentaldata 2. D.Antreasyanetal.,Phys.Rev.D19(1979)764. in RHIC’s p+p collisions by AKK FFs, which comes 3. P.B.Straubetal.,Phys.Rev.D45(1992)3030. fromNLOpQCDfitstotheflavorseparatede++e data, 4. K.H.Ackermanetal.,Nucl.Instrum.MethodsPhys.Res. − is extremely interesting. These findings may provide a Sect.A499(2003)624. 5. STARCollaboration,J.Adamset.al,Phys.Rev.Lett.91 better foundation for applications of jet quenching and (2003)072304. quark recombination models to explain the phenomena 6. STARCollaboration,J.Adamset.al,Phys.Rev.Lett.92 inA+Acollisionsinthis p range.Cronineffectaround T (2004)112301. midrapidityisobserevedtobesignificantlynon-zerofor 7. STARCollaboration,J.Adamset.al,Phys.Lett.B616 pions,whiletheeffectonprotonandanti-protonspectra (2005)8. isevenlargerattheintermediatep (2<p <5GeV/c). 8. M.Shaoetal.,arXiv:nucl-ex/0505026. T T The p/p + and p¯/p ratioshavebeenstudiedathigh p 9. OPALCollaboration,G.Abbiendietal.,Eur.Phys.J.C for p+pandd+Au−collisions. p/p ratiospeakat p 2T 16(2000)407. T≃ 10. British-ScandinavianCollaboration,B.Alperetal.,Nucl. GeV/cwithavalueof 0.5,andthendecreaseto 0.2 Phys.B100(1975)237. athigh pT withthepos∼sibleexceptionofthe p/p +∼ratio 11. E706Collaboration,L.Apanasevichetal.,Phys.Rev.D ind+Aucollisions. 68(2003)052001. 12. S.Albino,B.A.KniehlandG.Kramer,Nucl.Phys.B 725(2005)181. ACKNOWLEDGMENTS We would like to thank Simon Albino for providingus theNLOpQCDresults.WealsothankWernerVogelsang andStefanKretzerforusefuldiscussions.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.