ebook img

Identification of Operators on Elementary Locally Compact Abelian Groups PDF

109 Pages·2015·1.09 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Identification of Operators on Elementary Locally Compact Abelian Groups

Introduction TheIdentificationProblem SufficientConditions NecessaryConditions Epilogue References Identification of Operators on Elementary Locally Compact Abelian Groups Go¨khan Civan [email protected] NorbertWienerCenterforHarmonicAnalysisandApplications DepartmentofMathematics UniversityofMaryland,CollegePark July 23, 2015 IdentificationofOperatorsonElementaryLocallyCompactAbelianGroups G¨okhanCivan(UMD) (cid:73) Time-invariant operators = convolution operators: (cid:90) g → τ(·−y)g(y)dy (cid:73) Time-variant operators: (cid:90) g → τ(·,·−y)g(y)dy (cid:73) Set κ(x,y)=τ(x,x−y): (cid:90) g → κ(·,y)g(y)dy Introduction TheIdentificationProblem SufficientConditions NecessaryConditions Epilogue References Time-Variant Linear Channels (cid:73) Time-variant channels arise in mobile communications [Str06] and super-resolution radar [BGE11]. IdentificationofOperatorsonElementaryLocallyCompactAbelianGroups G¨okhanCivan(UMD) (cid:73) Time-variant operators: (cid:90) g → τ(·,·−y)g(y)dy (cid:73) Set κ(x,y)=τ(x,x−y): (cid:90) g → κ(·,y)g(y)dy Introduction TheIdentificationProblem SufficientConditions NecessaryConditions Epilogue References Time-Variant Linear Channels (cid:73) Time-variant channels arise in mobile communications [Str06] and super-resolution radar [BGE11]. (cid:73) Time-invariant operators = convolution operators: (cid:90) g → τ(·−y)g(y)dy IdentificationofOperatorsonElementaryLocallyCompactAbelianGroups G¨okhanCivan(UMD) (cid:73) Set κ(x,y)=τ(x,x−y): (cid:90) g → κ(·,y)g(y)dy Introduction TheIdentificationProblem SufficientConditions NecessaryConditions Epilogue References Time-Variant Linear Channels (cid:73) Time-variant channels arise in mobile communications [Str06] and super-resolution radar [BGE11]. (cid:73) Time-invariant operators = convolution operators: (cid:90) g → τ(·−y)g(y)dy (cid:73) Time-variant operators: (cid:90) g → τ(·,·−y)g(y)dy IdentificationofOperatorsonElementaryLocallyCompactAbelianGroups G¨okhanCivan(UMD) Introduction TheIdentificationProblem SufficientConditions NecessaryConditions Epilogue References Time-Variant Linear Channels (cid:73) Time-variant channels arise in mobile communications [Str06] and super-resolution radar [BGE11]. (cid:73) Time-invariant operators = convolution operators: (cid:90) g → τ(·−y)g(y)dy (cid:73) Time-variant operators: (cid:90) g → τ(·,·−y)g(y)dy (cid:73) Set κ(x,y)=τ(x,x−y): (cid:90) g → κ(·,y)g(y)dy IdentificationofOperatorsonElementaryLocallyCompactAbelianGroups G¨okhanCivan(UMD) (cid:73) (cid:90) g → η(x,ω)M T gdxdω ω x T : translation (time delay) x M : modulation (Doppler shift) ω (cid:73) g is transformed into a weighted sum of time-frequency shifts of itself. Introduction TheIdentificationProblem SufficientConditions NecessaryConditions Epilogue References Time-Variant Linear Channels (cont.) (cid:73) The spreading function: (cid:90) η(x,ω)= κ(y,y −x)e−2πyωdy η is a function of time and frequency. IdentificationofOperatorsonElementaryLocallyCompactAbelianGroups G¨okhanCivan(UMD) (cid:73) g is transformed into a weighted sum of time-frequency shifts of itself. Introduction TheIdentificationProblem SufficientConditions NecessaryConditions Epilogue References Time-Variant Linear Channels (cont.) (cid:73) The spreading function: (cid:90) η(x,ω)= κ(y,y −x)e−2πyωdy η is a function of time and frequency. (cid:73) (cid:90) g → η(x,ω)M T gdxdω ω x T : translation (time delay) x M : modulation (Doppler shift) ω IdentificationofOperatorsonElementaryLocallyCompactAbelianGroups G¨okhanCivan(UMD) Introduction TheIdentificationProblem SufficientConditions NecessaryConditions Epilogue References Time-Variant Linear Channels (cont.) (cid:73) The spreading function: (cid:90) η(x,ω)= κ(y,y −x)e−2πyωdy η is a function of time and frequency. (cid:73) (cid:90) g → η(x,ω)M T gdxdω ω x T : translation (time delay) x M : modulation (Doppler shift) ω (cid:73) g is transformed into a weighted sum of time-frequency shifts of itself. IdentificationofOperatorsonElementaryLocallyCompactAbelianGroups G¨okhanCivan(UMD) (cid:73) Is it possible to identify this family by a single probing signal? (cid:73) Kailtah’s conjecture: Yes if µ(R)≤1 No if µ(R)>1 (cid:73) Bello [Bel69] removed the restriction that R should be a rectangle. Introduction TheIdentificationProblem SufficientConditions NecessaryConditions Epilogue References Work of Kailath and Bello (cid:73) Kailath [Kai62] considered a family of operators where η is supported in a fixed rectangle R in the time-frequency plane. IdentificationofOperatorsonElementaryLocallyCompactAbelianGroups G¨okhanCivan(UMD) (cid:73) Kailtah’s conjecture: Yes if µ(R)≤1 No if µ(R)>1 (cid:73) Bello [Bel69] removed the restriction that R should be a rectangle. Introduction TheIdentificationProblem SufficientConditions NecessaryConditions Epilogue References Work of Kailath and Bello (cid:73) Kailath [Kai62] considered a family of operators where η is supported in a fixed rectangle R in the time-frequency plane. (cid:73) Is it possible to identify this family by a single probing signal? IdentificationofOperatorsonElementaryLocallyCompactAbelianGroups G¨okhanCivan(UMD)

Description:
Sufficient Conditions. Necessary Conditions. Epilogue. References. Identification of Operators on Elementary Locally Compact Abelian. Groups.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.