ebook img

Identification of Novel Positive-Strand RNA Viruses by Metagenomic Analysis of Archaea ... PDF

12 Pages·2012·7.3 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Identification of Novel Positive-Strand RNA Viruses by Metagenomic Analysis of Archaea ...

Identification of Novel Positive-Strand RNA Viruses by Metagenomic Analysis of Archaea-Dominated Yellowstone Hot Springs BenjaminBolduc,a,dDanielP.Shaughnessy,a,cYuriI.Wolf,eEugeneV.Koonin,eFranciscoF.Roberto,fandMarkYounga,b,c ThermalBiologyInstituteaandDepartmentsofMicrobiology,bPlantSciencesandPlantPathology,candChemistryandBiochemistry,dMontanaStateUniversity,Bozeman, Montana,USA;NationalCenterforBiotechnologyInformation,NationalLibraryofMedicine,NationalInstitutesofHealth,Bethesda,Maryland,USAe;andIdahoNational Laboratory,IdahoFalls,Idaho,USAf TherearenoknownRNAvirusesthatinfectArchaea.Fillingthisgapinourknowledgeofviruseswillenhanceourunderstand- ingoftherelationshipsbetweenRNAvirusesfromthethreedomainsofcellularlifeand,inparticular,couldshedlightonthe originoftheenormousdiversityofRNAvirusesinfectingeukaryotes.WedescribeheretheidentificationofnovelRNAviralge- nomesegmentsfromhigh-temperatureacidichotspringsinYellowstoneNationalParkintheUnitedStates.Thesehotsprings D harborlow-complexitycellularcommunitiesdominatedbyseveralspeciesofhyperthermophilicArchaea.Aviralmetagenomics o approachwastakentoassemblesegmentsoftheseRNAvirusgenomesfromviralpopulationsisolateddirectlyfromhotspring w n samples.AnalysisoftheseRNAmetagenomesdemonstrateduniquegenecontentthatisnotgenerallyrelatedtoknownRNA lo virusesofBacteriaandEukarya.However,genesforRNA-dependentRNApolymerase(RdRp),ahallmarkofpositive-strand a d RNAviruses,wereidentifiedintwocontigs.Oneofthesecontigsisapproximately5,600nucleotidesinlengthandencodesa e d polyproteinthatalsocontainsaregionhomologoustothecapsidproteinofnodaviruses,tetraviruses,andbirnaviruses.Phylo- f geneticanalysesoftheRdRpsencodedinthesecontigsindicatethattheputativearchaealvirusesformauniquegroupthatis ro distinctfromtheRdRpsofRNAvirusesofEukaryaandBacteria.Collectively,ourfindingssuggesttheexistenceofnovelposi- m tive-strandRNAvirusesthatprobablyreplicateinhyperthermophilicarchaealhostsandarehighlydivergentfromRNAviruses h t thatinfecteukaryotesandevenmoredistantfromknownbacterialRNAviruses.Thesepositive-strandRNAvirusesmightbe tp : directancestorsofRNAvirusesofeukaryotes. / / jv i. a In contrast to viruses that infect Bacteria and Eukarya, little is overcomes many of the limitations of traditional culture-based sm knownaboutthevirusesthatinfectArchaea.Fewerthan50ar- approachesforthedetectionofnewviruses.Ingeneral,viralmet- . o chaealviruseshavebeendiscovered,comparedtomorethan5,500 agenomicsstudieshaverevealedanenormousdiversityandabun- r g virusesknowntoinfecthostsfromtheothertwodomainsoflife dance of viruses. For example, more than 5,000 different viral / o (2). Of the few archaeal viruses that have been characterized, genotypeswereidentifiedin200litersofseawater(12).Although n mainly those infecting members of the phylum Crenarchaeota, most viral metagenomics studies have focused primarily on A manyhaverevealedbothunusualgenecontent(56)andunique dsDNAviruses(5,72),recentadvancesinmethodologyhaveen- p r virionmorphologies(42,54,55,65).Todate,allarchaealviruses abledtheimplementationofRNAviralmetagenomicsasanap- il 3 possessdouble-strandedDNA(dsDNA)genomes,withtheexcep- proachforinvestigatingRNAviralcommunities.Studiesinma- , 2 tionofonesingle-strandedDNA(ssDNA)virusinfectingarchaea rine environments have revealed a diverse community of RNA 0 ofthegenusHalorubrum(52).NoRNAvirusesinfectingarchaea viruses broadly distributed throughout multiple viral taxa (16, 1 9 havebeendescribed.EukaryoticRNAvirusesareadominantviral 17).Inthesemetagenomicstudies,RNAvirusesinfectingbacteria b form:theyarenumerous,diverse,andwidespread,foundtoinfect orarchaeahavenotbeenidentified,supportingtheviewthatthe y animals,plants,andmanyunicellularforms(17,28,38,40,70). majorhostsforRNAvirusesinthemarineenvironmentareuni- g u OnlytwonarrowgroupsofbacterialRNAvirusesareknown,and cellulareukaryotes(73).MetagenomicanalysesofRNAvirusesin e s thesedonotshowacloserelationshipwiththevirusesinfecting fresh water have shown that the majority of sequences did not t eukaryotes (38, 40). Thus, the origin of the RNA viruses of eu- showsignificantsimilaritytoknownvirusesinpublicdatabases, karyotesremainsanenigma.Inthiscontext,thesearchforRNA following the trend of marine environments. Those sequences virusesinfectingarchaeaappearstobeofspecialinterestbecause thatdidmatchwerebroadlydistributedtonearly30familiesof thediscoveryofsuchviruseswouldhavethepotentialtoshednew virusesinfectingavarietyofeukaryotesbutdidnotincludethefew lightontheoriginofvirusesofeukaryotes. groups of identified RNA viruses infecting bacteria or putative Onefactorlimitingthediscoveryofarchaealviruseshasbeen RNA viruses of archaea (19). The absence of evidence of RNA therelianceonculture-dependentapproachesforvirusisolation. ManyArchaeainhabitextremeenvironments,suchasthosewith high-temperatureandhigh-salinityconditions,makingculture- Received6January2012 Accepted22February2012 dependentapproachesforvirusdiscoverydifficult.Overthepast Publishedaheadofprint29February2012 decade, direct sequencing of viral communities from environ- AddresscorrespondencetoMarkYoung,[email protected]. mentalsamples(viralmetagenomics)hasbeenusedtomorefully Supplementalmaterialforthisarticlemaybefoundathttp://jvi.asm.org/. understandviraldiversityinnaturalenvironments,includingma- Copyright©2012,AmericanSocietyforMicrobiology.AllRightsReserved. rine(13),sedimentary(10),humanandanimalfecal(11,14,33), doi:10.1128/JVI.07196-11 gut(23),andfreshwater(60)environments.Viralmetagenomics 5562 jvi.asm.org 0022-538X/12/$12.00 JournalofVirology p.5562–5573 EvidenceforHyperthermophilicRNAViruses virusesinfectingarchaeainbothmarineandfreshwaterenviron- bion)treatment.AliquotsofRNA-enrichedextractedviralnucleicacids ments(5,13,17,19)appearssurprisinginlightoftheindications weretreated(controls)ornottreatedwithRNaseOne(Promega)priorto thatarchaeacompriseupto40%oftheplanet’smicrobialbiomass cDNAsynthesis.First-strandcDNAsynthesisreactionswerecarriedout anduptoone-thirdoftheocean’sprokaryotes(34). using1mMrandomhexamersinthepresenceof10(cid:4)Ciof[(cid:6)-32P]dCTP The recently described clustered regularly interspaced short (MPBioMedicals).Reactionmixtureswereincubatedat25°Cfor10min andat50°Cfor90minandthenterminatedat85°Cfor5min,followedby palindromicrepeats(CRISPR)adaptiveimmunitysystemcanbe RNaseHtreatment.Trichloroaceticacid(TCA)-precipitatednucleicacids usedtolinkviralgenomesequencestocellularhosts.TheCRISPR were collected on glass fiber filters (Whatman G/F), and scintillation systemappearstobeanactivedefensemechanismagainstinvad- countsofprecipitatedandnonprecipitatedmaterialwerecollected. ingnucleicacids,includingviruses,throughageneticinterference Isolationofcellularfractionforcommunitysequenceanalysis.For pathway (7, 29, 44, 45, 68). The CRISPR system is present in communitysequenceanalysis(seeFig.S1inthesupplementalmaterial), (cid:1)40%and(cid:1)90%ofsequencedbacterialandarchaealgenomes, cellswereisolatedfrom(cid:1)500mlofhotspringwaterbyfiltrationonto respectively (41). A CRISPR locus is composed of a leader se- 0.45-(cid:4)m Pall filters (Millipore) and stored at (cid:7)20 C. Total DNA was quence that directs the transcription of a noncoding RNA that isolatedfromcellsusingphenol-chloroform-isoamylalcohol25:24:1ex- spans multiple copies of an (cid:1)25-nucleotide (nt) direct repeat tractionofthefiltersfollowedbyethanolprecipitation.DNAwasampli- (DR)regionthatareseparatedby(cid:1)35-ntspacersequencesthat fiedusingGenomePlexwhole-genomeamplification(Sigma).Amplifica- canformlongarrays.EachspacersequencewithinaCRISPRarray tion products were purified using a QIAquick PCR purification kit D isunique.Immunityrequiresasequencematchbetweenthein- (Qiagen).Approximately10(cid:4)gofcellularDNAwasprovidedtotheUni- ow versityofIllinoisChampaign-UrbanaSequencingCenter(Urbana,IL) vadingnucleicacidandthespacersequencesthatliebetweenDRs. n The sequence content of the DRs can often be used to assign a andsubjectedto454Titaniumpyrosequencing(Roche). lo Isolationofenrichedviralnucleicacids.Approximately1.2litersof a CRISPRtypeatthecellularfamilylevel(22).Ithasbeenshown hot spring water was filtered through two successive Pall 0.8-/0.2-(cid:4)m de thattheCRISPRlociprovidearecordofacell’sinteractionwith filters(Millipore).ThefiltrateflowthroughwasconcentratedwithUltra d viruses(45,64).Accordingly,theCRISPRDRandspacercontent centrifugal filters (Millipore) using a 100,000 molecular weight cutoff fr presentinanenvironmentalsamplecanbeusedtoconnectthe (100K MWCO) to a volume of 500 (cid:4)l. Total viral nucleic acids were om viruses present in that environment with bacterial or archaeal extractedfrom200(cid:4)lofeachsamplewiththePurelinkviralRNA/DNA hosts. minikit(Invitrogen)andelutedtoafinalvolumeof60(cid:4)l. ht t TheacidichotspringsinYellowstoneNationalPark(YNP)in Isolation,preparationandsequencingofenrichedRNAviralfrac- p : theUnitedStatesofferanopportunitytosearchforarchaealRNA tion.Animprovedmethodtoisolatenucleicacidsfromtheenrichedviral // vpirreuvsieosuisnraRnNeAnvgireonnemseeqnutewnhceereanAarlcyhsaise,atphreesedoemnviniraotne.mBeanstesdaorne frricahcteidonRNwAasvdireavleflroapcetidoanfst,e3r0in(cid:4)iltioafltRoTta-lPeCxtRrascctreedenniuncgle.iTcoacoibdtwaianstthreeaetend- jvi.a s inhabitedbymicrobialcommunitiesoflowcomplexitythatare with3URNase-freeDNaseI(Ambion)at37°Cfor20min,followedby m dominatedbyfewerthan10archaealspecies(30).Intheselow-pH theadditionofethylalcohol(EtOH)to37%.Thismixturewasappliedto .o (pH (cid:2) 4), high-temperature ((cid:3)80°C) springs, bacteria and eu- theRNA/DNAminikitcolumns(Purelink),eluted,andre-extractedfol- rg lowingthemanufacturer’sprotocols.Theelutednucleicacidsweream- / karyotes are scarce or, in many cases, absent (9, 30, 58). Using plifiedwiththeTransplexwhole-transcriptomeamplificationkit(Sigma). o traditionalculture-dependentapproaches,manydsDNAarchaeal ThereactionmixtureswerepurifiedusingQIAquickPCRpurificationkits n viruseshavebeenisolatedfromthesehigh-temperature,acidichot (Qiagen)followedbypassagethroughAmiconUltra-0.5filtercolumns A p springsinYNP(59)andotherthermalhotspringsworldwide(6, (100KMWCO).Approximately100ngofpurified,amplifiedviralcDNA r 48,53).Weusedaviralmetagenomicapproachtosearchdirectly productswereprovidedtotheBroadInstitute(Cambridge,MA)forse- il 3 for archaeal RNA viruses in several acidic hot springs found in quencingusingtheTitaniumchemistryonthe454FLXpyrosequencer , 2 YNP.WereportherethedetectionofputativearchaealRNAvirus (Roche). 0 genomes. Isolation, preparation, and amplification of enriched DNA viral 1 fraction.ToobtaintheenrichedDNAviralfraction,10(cid:4)lofenriched 9 b MATERIALSANDMETHODS viraltotalnucleicacidswasamplifiedwiththeGenomePlexwhole-ge- y YNP hot spring sample sites. Twenty-eight YNP high-temperature, nomeamplificationkit(Sigma).Thereactionmixtureswerepurifiedas g acidichotspringswereinitiallyscreenedforthepresenceofRNAinthe describedabovefortheenrichedRNAviralfractions.Approximately5(cid:4)g ue enrichedviralfraction(seeTableS1inthesupplementalmaterial)be- of purified, amplified viral DNA was provided to the Broad Institute s t tweenOctoberandNovember2008.In-depthsamplingformetagenomic (Cambridge,MA)forsequencingaswiththeenrichedRNAviralfrac- analysiswasperformedon3ofthesesites:NL10,NL17,andNL18.Atotal tions. of7pairedDNAviralandRNAviralsampleswerecollected.SiteNL10in Sequenceassemblyandanalysis.DNAsequencesweretrimmedof the Nymph Lake hot springs was sampled in October 2009, February bothprimerandtagsequences.Toaidinassembly,highlyrepresented 2010,andJune2010.NymphLakehotspringsitesNL17andNL18were duplicated sequences were identified and removed using CD-HIT-454 sampled in October 2009 and June 2010. Nymph Lake hot spring site (50)witha40-bpoverlapand98%sequenceidentity.All7viralRNAdata NL10wasalsosampledinAugust2008and2009fortotalcellularDNA. setswerethencross-assembledusinggsAssemblerversion2.5(Roche)at InitialscreeningofenrichedviralsamplesforRNAgenomesby32P- 98%sequenceidentitywitha50-bpoverlap.CellularandDNAviralmet- labeling experiments (reverse transcriptase [RT]-dependent signal agenomicdatasetswereassembledusingthesameprocedures.Theas- fromRNAviralfraction).Anenrichedviralfractionwascreatedfrom sembledRNAviralcontigs(greaterthan100bp)werecomparedagainst eachsamplebyfiltrationof26mlofhotspringwaterthroughtwosucces- the Nymph Lake viral DNA metagenomes, as well as the GreenGenes sive0.8-/0.2-(cid:4)mAcrodisc25-mmPFfilters(Millipore)toremovecells, rRNAdataset(18).SequencesmatchingeitherDNAviralreadsorribo- collection of the virus particles in the flowthrough, centrifugation at somalsequenceswereexcludedfromfutureanalysis.ThesefilteredRNA 30,000(cid:5)gfor2h,andresuspensionoftheviruspelletinto200(cid:4)lsterile viral contigs were subsequently analyzed against the NCBI-nr and -nt water.Totalviralnucleicacidswereextractedfromthevirus-enriched databasesusingBLASTN,BLASTX,TBLASTX,BLASTP,andPSI-BLAST fractionusingthemirVanamiRNA(microRNA)isolationkit(Ambion). foriterativesearchofproteinsequencedatabases(3).TheRPSTBLASTN Followingnucleicacidextraction,DNAwasremovedbyDNaseI(Am- programfromtheNCBIBLASTpackagewasusedtocomparecontigs May2012 Volume86 Number10 jvi.asm.org 5563 Bolducetal. againsttheconserveddomaindatabase.Theresultingmetagenomeswere faultparameters.ReadsidentifiedascontainingCRISPRsusingCRTwere alsoanalyzedusingtheMG-RASTmetagenomicsanalysisserver(49)to thenanalyzedusingCRISPRFinder(25).AllreadsidentifiedasCRISPRs assigntaxonomies.Contigsshowingsignificantmatches(E-valueof1(cid:5) withCRTwerealsoidentifiedasCRISPRswithCRISPRFinder.CRISPR- 10(cid:7)3)toRNA-dependentRNApolymerases(RdRps)andstructuralpro- containingreadswereparsedfordirectrepeats(DRs)andspacersgener- teinsweresubjectedtoamorerigorousexaminationusingHHpred(67) atedfromCRT.TheresultingCRISPRspacerswerecomparedagainstthe againstthepdb70database(November2010release).Sequenceassembly viral RNA and DNA metagenomes using BLASTN with an ungapped andanalysisareoutlinedinFig.S2inthesupplementalmaterial. alignmentand100%nucleotideidentityacrosstheentirelengthofthe Proteinstructureanalysis.SecondarystructurepredictionsforRdRp spacer.ReadswithspacersmatchingRNAcontigswerefurtheranalyzed andCPsequenceswereperformedusingtheHHpredsoftware.Sequence- byextractionoftheirassociatedDRsandidentificationoftheirclosest structurethreadingwasperformedusingthePhyreserver(35)andHH- referencemicrobialgenome. pred, the three-dimensional (3-D) model was built with MODELLER ExaminingtheviabilityofaeukaryoticvirusinYNPhotsprings.To (21),andvisualizationwasrenderedusingPyMOL(PyMOLMolecular testforpossibleexternalcontaminationofeukaryoticvirusesinthehot GraphicsSystem,version1.3r1).Multiplealignmentof3-Dstructuresof springsexamined,10ng(4,800genomes)ofpurifiedcowpeachlorotic capsidproteinswasextractedfromtheDALIdatabase(27). mottlevirus(CCMV),ahighlystablessRNAplantvirus,wasmixedwith Phylogenetic analysis of RdRps. Seed alignments of viral RdRp 50mlofhotspringwaterinaFalcontubeandplacedinthehotsprings. (cd01699) and group II intron reverse transcriptases (cd01651) were Aliquotsof50(cid:4)lweretakenfromthesampleatvarioustimeintervalsand downloadedfromtheNCBICDD(ConservedDomainDatabase)(47). analyzedwithquantitativeRT-PCR(qRT-PCR)usingSSoFastEvaGreen D Thesealignmentswereusedtogenerateposition-specificscoringmatrices supermix(LifeSciences)onaRotorGene-Qsystem(Qiagen). o (PSSM)thatservedasqueriesforPSI-BLASTiterativesearch(4)against Comparing RNA metagenomes to other environments. To assess w n positive-strandssRNAvirussequencesintheNCBIRefSeqdatabase,pro- whethersimilarRNAviralgenomeswerepresentinYNPhigh-tempera- lo ducing988matches.ThedetectedRdRpsequenceswereclusteredinto29 ture,near-neutralhotspringenvironmentsthataredominatedbybacte- a ria,viralRNAmetagenomeswerecomparedagainsttranscriptomelibrar- d groupsusingtheNCBIBLASTClustprogram(http://www.ncbi.nlm.nih e .gov/Web/Newsltr/Spring04/blastlab.html), roughly corresponding to iesofMushroomandOctopusSpringsinYNP(36,43)usingBLASTN. d varioustaxaofssRNAviruses.Additionally,aclusterof31nonredundant Nucleotidesequenceaccessionnumbers.Thenucleotidesequences fr ofcontig0002andcontig0028havebeensubmittedtoGenBankunder o sequencesofgroupIIintronreversetranscriptasesandaclusterwithtwo m accessionnumbersJQ756122andJQ756123,respectively. RdRpsequencesfromcontig00002andcontig00228wereaddedtothe h data set. Multiple sequence alignments within clusters were produced t usingtheMUSCLEprogram(20).Clusteralignmentswereprogressively RESULTS tp : alignedusingtheHHalignprogram(66);ateachstep,thehighest-scoring Aninitialsurveyof28YNPhotspringswasperformedtodeter- // pairofalignmentsreplacedthetwo“parent”alignments;alignmentposi- minewhichhotspringscontainedadetectableRNAsignalinthe jvi. tionscontaininglessthan33%nongapcharacterswereremoved.Forthe isolatedRNAviralfraction(seeTableS1inthesupplementalma- a s purpose of phylogenetic analysis, alignment positions containing less terial).Thesurveyedsiteswereselectedbasedonbeinghigh-tem- m than50%ofnongapcharacterswerefurthereliminatedfromthefinal perature((cid:3)80°C)andlow-pH((cid:2)4.0)springslikelytobedomi- .o alignment.Thephylogenetictreeofthefulldataset(1,021sequences)was r natedbyArchaea.Thisinitialscreenofviralfractionswasbasedon g reconstructedusingtheFastTreeprogramwithdefaultparameters(57). / Theoptimalsequenceevolutionmodelforthedatasetwasselectedusing an RNA-dependent reverse transcriptase (RT) assay where o theProtTestprogram(1).Arepresentativedatasetof104sequenceswas [32P]dCTPincorporationintofirst-strandcDNAwasdetermined n selectedusingthefulltreeforguidance;aphylogenetictreewasrecon- inRNase-treatedcontrolsanduntreatedenrichedviralsamples, A p structedusingtheRAxMLprogram(69)withthePROTGAMMALGF bothofwhichhadpreviouslybeenDNasetreated.While24sites r evolutionarymodel,asindicatedbytheProtTestanalysis.Bootstrapanal- showedlittledifferencebetweentheamountsof[32P]dCTPincor- il 3 ysiswith100replicationsandtheShimodaira-Hasegawalog-likelihood porated by RNase-treated and untreated samples, 3 hot springs , 2 testforalternativetreetopologiesderivedfromconstrainttreeswereper- showedreproducibleandstatisticallysignificantdifferences(Fig. 0 formedusingRAxML. 1). Resampling of these hot springs 12 months later resulted in 1 9 ValidationofselectedassembledcontigsfromenrichedRNAviral nearlyidenticaldetectionoftheRNAsignalintheRNAviralfrac- b metagenomesbyRT-PCRandDNAsequencing.Upto2yearsafterthe tion, suggesting that RNA viral communities were being main- y originalsampleswerecollectedfortheproductionoftheviralandcellular g metagenomes,additionalNL10,NL17,andNL18cellularandviralfrac- tained in these hot springs. The three sites (NL10, NL17, and u NL18) with the highest RT-dependent signals were selected for e tionsampleswerecollectedinJune2011andSeptember2011asdescribed s generatingmetagenomiclibraries. t abovetodeterminewhetherselectedRNAviralgenomeswerestillpresent inthesehotsprings.ViralnucleicacidswereextractedusingtheZRviral AstringentapproachwastakentoassembletheRNAviraland RNAkit(ZymoResearch)incombinationwithon-columnDNasediges- DNAviralmetagenomes.Removalofhighlyduplicatedsequence tion,asrecommendedbythemanufacturer.ForwardandreversePCR reads at 98% similarity with CD-HIT-454 resulted in a 41.6% primersdesignedfromselectedmetagenomiccontigs(seeTableS2inthe reductioninreadsacrosstheviralmetagenomes(Table1).These supplementalmaterial)wereusedwithSuperScriptIIIone-stepRT-PCR duplicatedsequencesareprobablyindicatorsofboththeamplifi- withPlatinumTaq(Invitrogen).TotestforRTdependency,theRTwas cationbiasandthehighsequencingdepthoftherelativelylow- excluded from the procedure. To test for strand specificity, only one complexity viral communities found in these hot springs. Re- primerwasaddedduringthecDNAsynthesisstageandthesecondprimer movalofthesehighlyrepresentedsequencingreadssignificantly wasaddedafterthe94°Cheatkillofthereversetranscriptaseandactiva- improved the overall assembly, resulting in much higher confi- tionofPlatinumTaq.PCRproductswereclonedintothepCR2.1vector dencecontigs. usingtheTopoTAcloningkit(Invitrogen).Sequencingoftheproducts The initial analysis of the viral RNA metagenomes indicated wasperformedusingSangersequencingwithBigDyeTerminatorversion thattheycontainedahighproportionofsequencesfoundinthe 3.1onanABI3100. AnalysisofCRISPRincellularandviralmetagenomes.Readsfrom paired viral DNA metagenomes. This finding suggests that the thecellularmetagenomeswereanalyzedforCRISPR-relatedsequences initialtreatmentoftheisolatedviralnucleicacidwithDNasewas withtheCRISPRRecognitionTool(CRT)(8),usingtheprogram’sde- insufficienttoremove100%oftheviralDNAsequences,probably 5564 jvi.asm.org JournalofVirology EvidenceforHyperthermophilicRNAViruses D o w n lo a d e d f r o m h t t p : / / jv i. a s m . o r g / o n FIG1SelectedexamplesoftheresultsofscreeninghotspringsforthepresenceofRNAtemplatesintheRNAvirus-enrichedfractions.[32P]dCTPincorporation A intoRT-dependentfirst-strandcDNAsynthesisisshown.Foreachhotspringsample,resultsareshownforpriorRNasetreatmentofthesample((cid:8)RNase), p wpohsiicthivwecaosnpterrofolwrmasedakansoawconnptorosilt.iRvee-ssatmrapnldinsgsRoNfsAelveicrtuesd,hcoowtspperainchgslo1r2otmicomntohtstlelavteirrudse(mCoCnMstVra)t,eadntdhtehmenaiengtaetnivaenccoenotfroRlNwAassiwgantaelri(nHth2Oev).irEarlrforracbtaiorsns.hTohwe ril 3 standarddeviations. , 2 0 1 9 duetoitsvastexcesscomparedtotheamountofRNAintheviral b fraction.ToaddressthisbiastowardDNAviralsequences,RNA TABLE1Cellular,DNAviral,andRNAviralassemblystatistics y contigswerecomparedagainsttheDNAviralmetagenomesusing RNAmetagenomesa gu BLASTN.MatchesofRNAcontigs(E-valueof1(cid:5)10(cid:7)30)against e DNA Pre-DNA Post-DNA Cellular s reads from the DNA metagenomes were excluded from further Parameter metagenomesa filtration filtration metagenomesb t analysis.Morethan72%ofthecontigsintheinitialRNAmetag- Totalno.ofreads 1,075,407 3,568,86 90,227 632,479 enomicdatasetswereremovedasaresultofmatchingsequences Totalno.ofbases 34.0 4.2 1.1 229 intheviralDNAdatasets(7,060oftheinitial9,696contigs).This (Mb) screeningprocedure,whileremovingthemajorityofcontigs,pro- %ofreads 72.90 34.1 34.1 64.6 videdconfidencethattheremainingcontigsassembledfromthe assembled RNAviralmetagenomeswerederivedfromRNAvirusespresent Largestcontig(bp) 21,541 5,846 5,846 23,333 inthathotspringandnotderivedfromviralDNAsequences. No.oflargecontigs 3,411 519 79 4,820 TheassemblyofsequencesfromtheNymphLakehotspring ((cid:3)1,000bp) Totalno.ofcontigs 27,746 9,696 2,636 22,649 sitesresultedinalargenumberofcontigsunderstringentassem- (cid:3)100bp bly conditions (98% identity within at least 50 bp of overlap) Averagecontig 573.9 434.3 409.5 716.8 (Table1).The14viralsamples(7enrichedRNAviralsamplesand length(bp) 7enrichedDNAviralsamples)generated(cid:1)2.8millionreadsand Avgcoverage(fold) 37.8 36.8 34.2 22.7 807Mbofsequence.Afterdeduplication,therewere877,000reads aSampledfromhotspringsitesNL10,NL17,andNL18inOctober2009andFebruary and590Mbofuniquesequence.TheassembledviralDNAmet- andJune2010. agenomesgenerated27,746totalcontigs,withanaveragelarge- bSampledfromhotspringsiteNL10inAugustof2008and2009. May2012 Volume86 Number10 jvi.asm.org 5565 Bolducetal. D FIG2HierarchicalclassificationofcontigswithMG-RAST.Classificationofcellular(A),viralDNA(B),andviralRNA(C)sequencesbasedontheM5NR o w databaseinMG-RAST.Sequenceswithinsufficientsignificanceorthosethatdidnotmatchwereclassifiedas“NotAssigned/Unknown.” n lo a d contig size ((cid:3)1,000 bp) of 1,898 bp. The assembled viral RNA ExaminationoftheputativeviralRNAcontigsshowedthatthe ed metagenomesgenerated9,696totalcontigs,withanaveragelarge- majority of sequences (56%) did not align to known sequences f r contiglengthof1,361bp.Nearly73%ofthesequencereadsinthe (Fig.2C).Asmallfractionofthesequencesmatchedknownvi- o m DNAviralmetagenomeswereeitherfullyorpartiallyassembled ruses (3%). The remaining sequences matched sequences from h intocontigs,whereas36.8%ofsequencereadsintheRNAviral Archaea(20%),Bacteria(10%),andEukaryota(11%). t t metagenomesassembledintocontigs.TheassembledviralDNA Analysis of the RNA viral contigs using NCBI’s protein and p : metagenomic contigs had an average length of 574 bp with an nucleotidenonredundantdatabasesandtheCDD,aswellasUni- // jv averagereaddepthof38-fold.ThefinalassembledviralRNAmet- prot/Swissprot(31),detectedseveralsequenceswithsimilarityto i. a agenomeshadanaveragecontiglengthof410bpwithanaverage RNA-dependent RNA polymerases (RdRps), a positive-strand s readdepthof34-foldbasecoverage. single-strandedRNAvirus“hallmarkgene”(39).Thelargestcon- m CellularDNAmetagenomes,comprising632,000sequencing tig in the RNA viral data set (5.6 kb) and smaller contigs with .o r readswhichrepresented229Mbofsequence,wereassembledun- similaritytoRdRpswereconfirmedtobepresentandpersistentin g / derthesamehigh-stringencyparametersastheviraldatasets(Ta- thehotspringsovertime.ResamplingoftheNL10andNL18RNA o ble 1). The NL0808 and NL0908 cellular assemblies generated viralfractionsandextractionofthetotalRNAfromthecellular n 22,649 contigs with an average contig length of 716 bp and an fractions18monthsafterthelastsamplingforthemetagenomic A p averagereaddepthof36-foldbasecoverage.Sixty-fivepercentof analysisshowedthecontinuedpresenceoftheRNAgenomeseg- r thereadsassembledintocontigs. ments.AnRT-PCRassaywithprimersdesignedfromtheseRNA il 3 Theanalysisoftheassembledcellularmetagenomesrevealed contigs was performed on samples taken from the same hot , 2 that81.0%ofthecontigshadasignificantmatchagainsttheserv- springsoveran18-monthperiod(Fig.3).Theseassaysdemon- 0 1 er’s protein databases (Fig. 2A). The majority of the sequences strated that sequences were single stranded because amplifiable 9 (57%) matched to Archaea, primarily to the Crenarchaeota productwasgeneratedonlywhencDNAsynthesisusedaspecific, b (86.9%) and to a lesser degree to the Euryarchaeota (11.6%). directional primer. The longest RT-dependent contig, con- y g Matches to Nanoarchaeota, Korarchaeota, and Thaumarchaeota tig00002,is5,662ntinlength,composedof258reads,andcon- u were also detected. A smaller portion of the cellular contigs tainsasinglelargeopenreadingframe(ORF)thatencodesapu- e s matchedtoBacteria(20.6%),mostlytoDelta-andGammaproteo- tative viral polyprotein encompassing an RdRp and a putative t bacteriaandFirmicutes(clostridiaandbacilli).However,overall capsidproteinasdetailedbelow.OmissionoftheRTortemplate thesematchestotheBacteriawereweakcomparedtothematches orpretreatmentofsampleswithRNasepriortotheRT-PCRassay totheArchaea.ThiscouldreflectsharedgenesbetweenArchaea eliminatedthesignal,indicatingthatthesourceofthesignalwas and Bacteria and/or a statistical bias toward bacterial sequences anRNAtemplateintheviralfraction(Fig.3).Thisanalysissup- duetotheiroverrepresentationcomparedtotherepresentationof portedtheoriginalcontigassembliesanddemonstratedthatthese archaealsequencesinthepublicdatabases.Insupportofthispos- putativeRNAvirusesarestablemembersoftheviralcommunity sibility, further analysis of the cellular metagenomes using the withinthehotspringsexplored. ribosomal databases available on the MG-RAST server (Ribo- Further search for RdRps, as well as viral structural (capsid) somal Database Project, SILVA rRNA Database Project, and proteins, was performed using a combination of BLAST, MG- Greengenes)revealed4matchesagainsttheCrenarchaeota(Ther- RAST, and HHpred. Two contigs were identified as containing moprotei), one match to the Nanoarchaea, and a single distal significantsimilaritytoknownRdRps.Asimilarsearchexamining matchtoSulfurihydrogenibiumyellowstonense,abacteriumofthe theDNA-enrichedviralmetagenomedatasetrevealednosimilar- phylumAquificaeoriginallyisolatedfromaYNPhotspring.Over- itytoRdRpsbutdidshowmanyhitstocapsidproteins,mainly all,theseresultsconfirmthattheYNPhotspringsanalyzedhere thoseofarchaealDNAviruses,asexpected. aredominatedbyArchaea. Contig00002containsasinglelongORFpotentiallycodingfor 5566 jvi.asm.org JournalofVirology EvidenceforHyperthermophilicRNAViruses D FIG3Detectionandsingle-strandednatureofRNAviralsequenceswithinhotspringsmonthsaftersamplingformetagenomicanalysis.Totalnucleicacidsof o samplesobtained18monthsaftertheoriginalsamplingwereextractedfromeithertheviralfractionortotalcellularfractionofNL10(B)andNL18(A),DNase w treated,andsubjectedtoRT-PCRformetagenomicanalysis.Thedetectionandstrand-specificnatureofcontig00009(A)andcontig00002(B)weredetermined n usingcontig-specificprimersets(seeTableS2inthesupplementalmaterial).Eitherforward((cid:8)),reverse((cid:7)),orboth((cid:8)/(cid:7))primerswereaddedtotheinitial lo first-strandcDNAsynthesismixandthemixtureincubatedasdescribedinMaterialsandMethods.Afterfirst-strandsynthesis,thecompleteprimerpairwas a d added(ifnecessary)forthePCRstage.Thecontrol,wherereversetranscriptasewasexcludedfromtheprocedure((cid:7)RT),andthemolecular-sizemarker(bp)are e indicated. d f r o m a198-kDa(1,809aminoacids)polyproteinthatspansalmostthe portedthefindingofhighlysignificantsimilaritytoviralRdRps h entirelengthofthecontig,suggestingthatacompleteornearly and,additionally,ledtothedetectionofsequencesthatweresim- t t completeRNAviralgenomewasassembled.Inthemiddlepartof ilartocapsidproteinsofpositive-strandeukaryoticRNAviruses p : this polyprotein (approximately between amino acids 800 and withinthenodavirusfamily.Thesequencewiththehighestsimi- // jv 1020),aputativeRdRpdomainwasidentifiedusingseveralsearch laritytocapsidproteinsisapproximately90aminoacidsinlength i. a methods. A search of the Conserved Domain Database at the andislocatedCterminaltotheRdRp,spanningaminoacidresi- s NCBIusingtheRPS-BLASTprogramdetectedahighlysignificant dues1562to1652ofthepolyprotein.Thealignmentbetweenthis m similarity(E-valueofapproximately6(cid:5)10(cid:7)11)totheRdRpdo- portionofthepolyproteinandthecapsidproteinsofeukaryotic .o r main profile (no significant similarity to any other domain was virusesdemonstratedalevelofsimilaritythatwasnotstatistically g / detected for this or other parts of the polyprotein). A BLASTP significant,althoughthealignmentsincludedapproximately30% o searchofthenonredundantproteindatabaseattheNCBIyielded identicalaminoacidresidues.Nevertheless,amoredetailed,di- n statisticallysignificantsimilarity(E-valueof2(cid:5)10(cid:7)4,23%iden- rectcomparisonofthecontig00002polyproteinsequencetothe A p tityinanalignmentof341aminoacidresidues)totheRdRpof nodaviruscapsidproteinsequences,aswellastherelatedcapsid r Pariacatovirus,anodavirus,andlimited,not-significant(E-value proteinsequencesoftetravirusesandnodaviruses,allowedusto il 3 of approximately 0.1) similarity to the RdRps of several other extendthealignmentandidentifythemainstructuralelementsof , 2 RNAviruses,includingtombusvirusesandpestiviruses.Thesec- thecapsidproteins(Fig.5).Thenodaviruscapsidproteinadopts 0 1 onditerationofthePSI-BLASTsearchresultedinhighlysignifi- an8-strandjellyrollfoldthatisdistantlyrelatedtothestructures 9 cantsimilaritytotheRdRpsofavarietyofpositive-strandRNA ofthecapsidproteinsofothersmallicosahedralpositive-strand b virusesofeukaryotes.ThisputativeRdRpsequencecontainsall RNA viruses. In addition, unlike other well-characterized viral y g three highly conserved motifs, A (D-X[4,5]-D) and B ([S/T]G- capsid proteins, nodaviruses possess an autoproteolytic activity u X[3]-T-X[4]-N[S/T)],whichareinvolvedinnucleotideselection thatisinvolvedintheprocessingofthecapsidproteinprecursor e s aswellasmetalbinding(24),andC,whichcontainsthehighly (the (cid:6) protein) into the mature large ((cid:9)) and small ((cid:10)) capsid t conservedGDDmotifandisanessentialpartoftheMg2(cid:8)-bind- proteins(61,63).Thenodaviruscapsidproteinisthefounding ingsite(Fig.4A)(32,37).ModelingoftheinferredproteinRdRp memberoftheA6peptidasesuperfamilythatemploysanunusual onto the X-ray structure of the positive-strand single-stranded catalyticmechanisminvolvinganinteractionbetweentheactive NorwalkvirusRdRpstructureshowedthattheputativearchaeal aspartateofthecapsidproteinprecursorandaconservedaspara- virus RdRp contained the principal structural elements of the ginethatisproximaltothescissilepeptidebondintheC-terminal Palm domain of the RdRps of eukaryotic positive-strand RNA partoftheprotein,attheboundarybetween(cid:9)and(cid:10)capsidpro- viruses(Fig.4B).MatchestoRdRpswerealsodetectedforcon- teins (75). These residues, which are essential for autocatalytic tig00228(comprising10reads),whichencompassedthreeover- cleavageofthenodaviruscapsidproteinprecursor,arealsocon- lapping short ORFs, each of which showed approximately 70% servedinthesequencesofcapsidproteinsoftetraviruses.Coun- amino acid sequence identity to the predicted RdRp of con- terpartstoboththecatalyticaspartateandthecleavagesiteaspar- tig00002(Fig.4A).Thus,thiscontigappearstoencodeanRdRpof agineweredetectedinthecontig00002polyprotein,andregions aputativearchaealvirusthatisrelatedtobutclearlydistinctfrom surroundingthesetwoconservedaminoacidswerefoundtohave theputativevirusencodedbycontig00002. thehighestlevelsofsequencesimilarity(Fig.5).Exhaustiveanal- Acomparisonofthecontig00002polyproteinsequencetoda- ysisofthepartsofthecontig00002polyproteinoutsidetheRdRp tabasesofproteinfamilyprofilesusingtheHHPredprogramsup- andcapsidproteinregionsfailedtodetectsimilaritytoanyother May2012 Volume86 Number10 jvi.asm.org 5567 Bolducetal. D o w n lo a d e d f r o m h t t p : / / jv i. a s m . o r g / o n A p r il 3 , 2 0 1 9 b y g u e s t FIG4TheRdRpoftheputativearchaealviruses.(A)MultiplesequencealignmentoftheputativearchaealvirusRdRpswithhomologsfrompositive-strand RNAvirusesofeukaryotesandbacteriaandreversetranscriptasesfrombacterialgroup2introns.The(nearly)universallyconservedaminoacidresiduesinthe threesignaturemotifsoftheRdRpsarehighlightedincyan,andpartiallyconservedresiduesarehighlightedinyellow.Thetoptwosequencesarefromthe putativearchaealvirusesidentifiedinthiswork.Therestofthesequencesincluderepresentativesofthe29clustersofviralRdRpsidentifiedasdescribedin MaterialsandMethods.Thetwosequencesatthebottom(RTG2)arereversetranscriptases.EachsequenceisdenotedbytheGenBankidentifier(GInumber) andthenameofthevirusgroup(typicallyfamily)andsubgroup(typicallygenus).Thenumbersdenotethelengths(numberofaminoacids)inless-well- conservedregionsbetweentheconservedmotifsandthedistancesbetweentheendsoftherespectiveproteinsandthealignedsegments.(B)Structuralmodelof thecentralcoreregionoftheputativearchaealvirusRdRpfromcontig00002(blue)usingthecalicivirusRdRpasatemplate(red;PDBID3bso)(74). known proteins or domains. Collectively, the observation of a thattheyformedalineagedistinctfromknownRdRpsofeu- large polyprotein (a common feature of eukaryotic positive- karyotic and bacterial RNA viruses (Fig. 6). The putative strand RNA viruses) containing putative RdRp and capsid pro- RdRpsencodedbycontig00002andcontig00228didnotshow teinsinadditiontoapossibleautoproteolyticactivitysuggestthat specificaffinitywithanyofthethreesuperfamiliesofeukaryote thiscontigcorrespondstoanearfull-lengthgenomeofaprevi- positive-strand RNA viruses (picornavirus-like, alphavirus-like, ouslyunknownpositive-strandRNAvirus. and flavivirus-like) or the only known bacterial lineage (levivi- PhylogeneticanalysisoftheidentifiedRdRpsequencesshowed ruses), and statistical tests showed that association with any of 5568 jvi.asm.org JournalofVirology D o w n lo a d e d f r o m h t t p : / / jv i. a s m . o r g / o n A p r il 3 , 2 0 1 9 b y g u e s t FIG5Thepredictedcapsidproteinoftheputativearchaealvirusanditspotentialautoproteolyticactivity.Multiplealignmentoftheputativearchaealviruscapsidproteinwith thecapsidproteinsequencesofnodaviruses,tetraviruses,andbirnaviruses.SequencesareidentifiedeitherbyPDBIDorbyGenBankGInumbers.Secondarystructureisshown forthethreeavailablecrystalstructuresdenotedbythecorrespondingPDBcodes(l,loop;H,helix;E,beta-strand).Alignmentcolumnswithhomogeneityof0.4orgreater(see MaterialsandMethods)arehighlightedinyellow.ThecatalyticAspishighlightedincyan,andthecleavagesiteAsnishighlightedingreen. May2012 Volume86 Number10 jvi.asm.org 5569 Bolducetal. D o w n lo a d e d f r o m h t t p : / / jv i. a s m . o r g / FIG6 PhylogenetictreeoftheRdRps.TheunrootedphylogenetictreewasgeneratedasdescribedinMaterialsandMethods.Bootstrapsupportvaluesgreater o n than0.5areindicatedfordeepinternalbranches.Largegroupsofpositive-strandRNAvirusesfromeukaryotesandbacteria(Levigroup)andthebacterial A retrotranscribingelements(RT)areindicatedandshownbyuniquecolors. p r il 3 thesemajorlineagesoradditionaldistinctlineages,suchasnoda- tomicanalysisoftwohigh-temperatureYNPhotspringsatneu- , 2 viruses,couldnotbeconvincinglyruledout(seethesupplemental tral or alkaline pHs (Mushroom and Octopus Springs) that are 0 1 material).Theseresultsarecompatiblewithacentralpositionof known to be dominated by thermophilic bacteria. These hot 9 thenewRdRpinthetreeand,hence,withitspossibleancestral springsharborathermophilicbacterialcommunityofrelatively b status. highcomplexitythatconsistsofChloroflexi,Cyanobacteria,Acido- y g ToinvestigatethepossibilitythattheRNAvirusgenomesde- bacteria, and Chlorobi (36). A BLASTN analysis found that the u tectedwerecontaminantsofthehotspringsintroducedfromex- greatmajorityofthecontigs(97%ofthetotalRNAviralcontigs) e s ternalsources,wetestedtheabilityofanRNAplantvirusknown didnothavestatisticallysignificantmatchestothemetatranscrip- t foritshighstabilitytobemaintainedwithinthehotspringenvi- tomeoftheseneutraloralkalineYNPhotsprings.Threepercent ronment.SamplesofCCMVweremixedwithhotspringwaterin oftheRNAviralcontigsdidshowasignificantmatch.However, 50-mlFalcontubesandplacedbackintothehotsprings.Aliquots the average length of the matching contigs was 342 bp, much were taken at regular intervals for up to 30 min and quantified shorterthantheoverallaveragecontiglength.Thisanalysisindi- usingaqRT-PCRassaywhichcandetectasfewas10viralgenome catesthatthereislittleoverlapbetweentheRNAviralcommunity copies.Within1minofsampling,therewasnodetectableamount presentinthearchaea-dominatedacidichotspringsandthebac- oftheCCMVRNA(datanotshown).Thisexperimentindicates teria-dominatedneutraloralkalinehotspringsandprovidesfur- that it is unlikely that an externally introduced RNA virus can therevidencethattheputativeviralRNAgenomesdetectedare survivelongenoughtobedetected,especiallyintheformoflong associatedwitharchaealhosts. RNAsegments,underthehigh-temperatureacidicconditionsof Finally,weanalyzedtheCRISPRdirectrepeat(DR)andspacer thehotspringsfromwhichtheputativearchaealvirussequences content present in our cellular metagenomic data sets in an at- wereobtained. tempttolinktheputativeRNAviralgenomesdirectlytoaspecific To further probe the possibility that the detected RNA viral hosttypeandtoinvestigatepotentialhostimmunitytoRNAvi- genomesreplicateinarchaealhosts,thesesequenceswerecom- ruses.CRISPRDRsandspacerswereextractedfromthecellular pared to the sequences produced by environmental transcrip- metagenomicdatasets.Thespacersequences(10,349)werecom- 5570 jvi.asm.org JournalofVirology EvidenceforHyperthermophilicRNAViruses D o w n lo a d e d f FIG7AnalysisofcellularCRISPRdirectrepeatunitsandnumbersofuniquespacersmatchingarchaealspeciesandRNAviralmetagenomecontigs.(A) r o SchematicrepresentationoftheCRISPRlociindicatingthedirectrepeatstructureinterspacedwithspacerregions.(B)ThenumberofCRISPRspacersequences m with100%matchtoviralRNAcontigsandthealignmentofthedirectrepeatstructures(topsequence)withtheclosestsequencedorganism(bottomsequence). h PercentagesofidentityandEvaluesareindicated. t t p : / / jv pared with the assembled viral RNA and DNA metagenomes. domains. Polyproteins of positive-strand RNA viruses of eu- i. Forty-six spacers (0.44%), associated with 4 types of DRs, were karyotes,inparticularvirusesofthepicornavirus-likesuperfam- a s identicaltoRNAsequenceswithintheviralmetagenomicdataset ily,areprocessedbyviralproteasestoyieldindividualfunctional m (Fig. 7). A similar comparison of the spacers to the DNA viral proteins.Adistinctproteasedomainwasnotdetectedinthevirus .o metagenome revealed 628 (6.07%) identical spacers (data not polyproteinencodedincontig00002.However,thecatalyticsite rg shown).ThemajorityofmatchingspacersequencesoftheRNA andthecleavagesiteofthenodaviruscapsidautoproteasewere / o metagenome(44/46)wererelatedtoDRsofthearchaealspecies conservedintheregionoftheputativearchaealviruspolyprotein n SulfolobusislandicusandSulfolobusacidocaldarius.Thesewerethe thatissimilartotheviralcapsidproteins(Fig.5).Innodaviruses, A p onlysignificantmatchesfoundintheCRISPRfinderdirectrepeat thecapsidproteinprecursorisencodedinadistinctsegmentof r database.ThesefindingssuggestthattheRNAviralgenomesrep- genomicRNAsuchthattheproteaseisinvolvedonlyintheauto- il 3 licateinanarchaealhostbelongingtotheSulfolobales,acelltype catalytic maturation of the capsid proteins (15, 62, 75). In the , 2 commonlyfoundinNL10andacidichotspringsworldwide,and novelvirusdescribedhere,thisproteasemightperformmorever- 0 elicitaCRISPR-mediatedimmuneresponse.However,wecannot satilerolesbycatalyzingadditionalcleavageeventsandreleasing 1 9 categorically rule out the unlikely possibility that the CRISPR the RdRp, the capsid protein, and possibly, other mature viral b spacermatchestotheRNAviralmetagenomeareinfacttoDNA proteinsthatremaintobeidentified. y viral sequences that are still present in our viral RNA metag- Theresultsofthisstudydonotunequivocallydemonstratethe g u enomicdataset. existenceofarchaealRNAviruses.Itcannotberuledoutthatthe e s detectedRNAgenomesegmentsoriginatefromvirusesreplicating t DISCUSSION inbacterialhostspresentinthesehotsprings.However,several To our knowledge, this work is the first attempt at viral RNA linesofindependentexperimentalandcomparativegenomicevi- communityanalysisinextremeenvironments.Theresultsdem- dencesuggestthattheRNAgenomesegmentsidentifiedprobably onstratethepresenceofputativeRNAviralgenomesinhigh-tem- originatefromvirusesreplicatinginarchaealhosts.First,analysis peratureacidichotspringsdominatedbyArchaea.Severallinesof ofboththeoverallcompositionofthecellularmetagenomesby experimental and comparative genomic evidence support the MG-RASTandthe16SrRNAgenecontentshowsthatthemicro- conclusionthattheassembledgenomesegmentsbelongtoRNA biota of the sampled hot springs consists primarily of Archaea. viral genomes. In particular, two contigs encoded protein se- Second, the putative RNA viral sequences were recovered from quenceswithaspecific,significantsimilaritytotheRdRp,ahall- multiplehotspringsatmultipletimepoints.Third,experimental mark protein of positive-strand RNA viruses. One of these, the exposure of a plant RNA virus known for high stability to the 5.6-kbcontig00002,mightcomprisea(nearly)completeviralge- acidic hot springs environment shows that the virus is rapidly nome with signature features of positive-strand RNA viruses of degradedundertheseconditions.Fourth,whenwecomparedthe eukaryotes.Specifically,thiscontigencodesapolyproteinthatis RNAviralsequencesdetectedintheYNPacidichotspringswith similarinsizetothepolyproteinsofdiverseeukaryotepositive- thetranscriptomesofYNPneutraloralkalinehotspringsthatare strandRNAvirusesthatcontainboththeRdRpandcapsidprotein knowntobedominatedbybacteriaratherthanarchaea,therewas May2012 Volume86 Number10 jvi.asm.org 5571

Description:
A viral metagenomics approach was taken to assemble segments of these RNA virus genomes from viral populations isolated directly from hot spring samples.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.