Identification of Novel Positive-Strand RNA Viruses by Metagenomic Analysis of Archaea-Dominated Yellowstone Hot Springs BenjaminBolduc,a,dDanielP.Shaughnessy,a,cYuriI.Wolf,eEugeneV.Koonin,eFranciscoF.Roberto,fandMarkYounga,b,c ThermalBiologyInstituteaandDepartmentsofMicrobiology,bPlantSciencesandPlantPathology,candChemistryandBiochemistry,dMontanaStateUniversity,Bozeman, Montana,USA;NationalCenterforBiotechnologyInformation,NationalLibraryofMedicine,NationalInstitutesofHealth,Bethesda,Maryland,USAe;andIdahoNational Laboratory,IdahoFalls,Idaho,USAf TherearenoknownRNAvirusesthatinfectArchaea.Fillingthisgapinourknowledgeofviruseswillenhanceourunderstand- ingoftherelationshipsbetweenRNAvirusesfromthethreedomainsofcellularlifeand,inparticular,couldshedlightonthe originoftheenormousdiversityofRNAvirusesinfectingeukaryotes.WedescribeheretheidentificationofnovelRNAviralge- nomesegmentsfromhigh-temperatureacidichotspringsinYellowstoneNationalParkintheUnitedStates.Thesehotsprings D harborlow-complexitycellularcommunitiesdominatedbyseveralspeciesofhyperthermophilicArchaea.Aviralmetagenomics o approachwastakentoassemblesegmentsoftheseRNAvirusgenomesfromviralpopulationsisolateddirectlyfromhotspring w n samples.AnalysisoftheseRNAmetagenomesdemonstrateduniquegenecontentthatisnotgenerallyrelatedtoknownRNA lo virusesofBacteriaandEukarya.However,genesforRNA-dependentRNApolymerase(RdRp),ahallmarkofpositive-strand a d RNAviruses,wereidentifiedintwocontigs.Oneofthesecontigsisapproximately5,600nucleotidesinlengthandencodesa e d polyproteinthatalsocontainsaregionhomologoustothecapsidproteinofnodaviruses,tetraviruses,andbirnaviruses.Phylo- f geneticanalysesoftheRdRpsencodedinthesecontigsindicatethattheputativearchaealvirusesformauniquegroupthatis ro distinctfromtheRdRpsofRNAvirusesofEukaryaandBacteria.Collectively,ourfindingssuggesttheexistenceofnovelposi- m tive-strandRNAvirusesthatprobablyreplicateinhyperthermophilicarchaealhostsandarehighlydivergentfromRNAviruses h t thatinfecteukaryotesandevenmoredistantfromknownbacterialRNAviruses.Thesepositive-strandRNAvirusesmightbe tp : directancestorsofRNAvirusesofeukaryotes. / / jv i. a In contrast to viruses that infect Bacteria and Eukarya, little is overcomes many of the limitations of traditional culture-based sm knownaboutthevirusesthatinfectArchaea.Fewerthan50ar- approachesforthedetectionofnewviruses.Ingeneral,viralmet- . o chaealviruseshavebeendiscovered,comparedtomorethan5,500 agenomicsstudieshaverevealedanenormousdiversityandabun- r g virusesknowntoinfecthostsfromtheothertwodomainsoflife dance of viruses. For example, more than 5,000 different viral / o (2). Of the few archaeal viruses that have been characterized, genotypeswereidentifiedin200litersofseawater(12).Although n mainly those infecting members of the phylum Crenarchaeota, most viral metagenomics studies have focused primarily on A manyhaverevealedbothunusualgenecontent(56)andunique dsDNAviruses(5,72),recentadvancesinmethodologyhaveen- p r virionmorphologies(42,54,55,65).Todate,allarchaealviruses abledtheimplementationofRNAviralmetagenomicsasanap- il 3 possessdouble-strandedDNA(dsDNA)genomes,withtheexcep- proachforinvestigatingRNAviralcommunities.Studiesinma- , 2 tionofonesingle-strandedDNA(ssDNA)virusinfectingarchaea rine environments have revealed a diverse community of RNA 0 ofthegenusHalorubrum(52).NoRNAvirusesinfectingarchaea viruses broadly distributed throughout multiple viral taxa (16, 1 9 havebeendescribed.EukaryoticRNAvirusesareadominantviral 17).Inthesemetagenomicstudies,RNAvirusesinfectingbacteria b form:theyarenumerous,diverse,andwidespread,foundtoinfect orarchaeahavenotbeenidentified,supportingtheviewthatthe y animals,plants,andmanyunicellularforms(17,28,38,40,70). majorhostsforRNAvirusesinthemarineenvironmentareuni- g u OnlytwonarrowgroupsofbacterialRNAvirusesareknown,and cellulareukaryotes(73).MetagenomicanalysesofRNAvirusesin e s thesedonotshowacloserelationshipwiththevirusesinfecting fresh water have shown that the majority of sequences did not t eukaryotes (38, 40). Thus, the origin of the RNA viruses of eu- showsignificantsimilaritytoknownvirusesinpublicdatabases, karyotesremainsanenigma.Inthiscontext,thesearchforRNA following the trend of marine environments. Those sequences virusesinfectingarchaeaappearstobeofspecialinterestbecause thatdidmatchwerebroadlydistributedtonearly30familiesof thediscoveryofsuchviruseswouldhavethepotentialtoshednew virusesinfectingavarietyofeukaryotesbutdidnotincludethefew lightontheoriginofvirusesofeukaryotes. groups of identified RNA viruses infecting bacteria or putative Onefactorlimitingthediscoveryofarchaealviruseshasbeen RNA viruses of archaea (19). The absence of evidence of RNA therelianceonculture-dependentapproachesforvirusisolation. ManyArchaeainhabitextremeenvironments,suchasthosewith high-temperatureandhigh-salinityconditions,makingculture- Received6January2012 Accepted22February2012 dependentapproachesforvirusdiscoverydifficult.Overthepast Publishedaheadofprint29February2012 decade, direct sequencing of viral communities from environ- AddresscorrespondencetoMarkYoung,[email protected]. mentalsamples(viralmetagenomics)hasbeenusedtomorefully Supplementalmaterialforthisarticlemaybefoundathttp://jvi.asm.org/. understandviraldiversityinnaturalenvironments,includingma- Copyright©2012,AmericanSocietyforMicrobiology.AllRightsReserved. rine(13),sedimentary(10),humanandanimalfecal(11,14,33), doi:10.1128/JVI.07196-11 gut(23),andfreshwater(60)environments.Viralmetagenomics 5562 jvi.asm.org 0022-538X/12/$12.00 JournalofVirology p.5562–5573 EvidenceforHyperthermophilicRNAViruses virusesinfectingarchaeainbothmarineandfreshwaterenviron- bion)treatment.AliquotsofRNA-enrichedextractedviralnucleicacids ments(5,13,17,19)appearssurprisinginlightoftheindications weretreated(controls)ornottreatedwithRNaseOne(Promega)priorto thatarchaeacompriseupto40%oftheplanet’smicrobialbiomass cDNAsynthesis.First-strandcDNAsynthesisreactionswerecarriedout anduptoone-thirdoftheocean’sprokaryotes(34). using1mMrandomhexamersinthepresenceof10(cid:4)Ciof[(cid:6)-32P]dCTP The recently described clustered regularly interspaced short (MPBioMedicals).Reactionmixtureswereincubatedat25°Cfor10min andat50°Cfor90minandthenterminatedat85°Cfor5min,followedby palindromicrepeats(CRISPR)adaptiveimmunitysystemcanbe RNaseHtreatment.Trichloroaceticacid(TCA)-precipitatednucleicacids usedtolinkviralgenomesequencestocellularhosts.TheCRISPR were collected on glass fiber filters (Whatman G/F), and scintillation systemappearstobeanactivedefensemechanismagainstinvad- countsofprecipitatedandnonprecipitatedmaterialwerecollected. ingnucleicacids,includingviruses,throughageneticinterference Isolationofcellularfractionforcommunitysequenceanalysis.For pathway (7, 29, 44, 45, 68). The CRISPR system is present in communitysequenceanalysis(seeFig.S1inthesupplementalmaterial), (cid:1)40%and(cid:1)90%ofsequencedbacterialandarchaealgenomes, cellswereisolatedfrom(cid:1)500mlofhotspringwaterbyfiltrationonto respectively (41). A CRISPR locus is composed of a leader se- 0.45-(cid:4)m Pall filters (Millipore) and stored at (cid:7)20 C. Total DNA was quence that directs the transcription of a noncoding RNA that isolatedfromcellsusingphenol-chloroform-isoamylalcohol25:24:1ex- spans multiple copies of an (cid:1)25-nucleotide (nt) direct repeat tractionofthefiltersfollowedbyethanolprecipitation.DNAwasampli- (DR)regionthatareseparatedby(cid:1)35-ntspacersequencesthat fiedusingGenomePlexwhole-genomeamplification(Sigma).Amplifica- canformlongarrays.EachspacersequencewithinaCRISPRarray tion products were purified using a QIAquick PCR purification kit D isunique.Immunityrequiresasequencematchbetweenthein- (Qiagen).Approximately10(cid:4)gofcellularDNAwasprovidedtotheUni- ow versityofIllinoisChampaign-UrbanaSequencingCenter(Urbana,IL) vadingnucleicacidandthespacersequencesthatliebetweenDRs. n The sequence content of the DRs can often be used to assign a andsubjectedto454Titaniumpyrosequencing(Roche). lo Isolationofenrichedviralnucleicacids.Approximately1.2litersof a CRISPRtypeatthecellularfamilylevel(22).Ithasbeenshown hot spring water was filtered through two successive Pall 0.8-/0.2-(cid:4)m de thattheCRISPRlociprovidearecordofacell’sinteractionwith filters(Millipore).ThefiltrateflowthroughwasconcentratedwithUltra d viruses(45,64).Accordingly,theCRISPRDRandspacercontent centrifugal filters (Millipore) using a 100,000 molecular weight cutoff fr presentinanenvironmentalsamplecanbeusedtoconnectthe (100K MWCO) to a volume of 500 (cid:4)l. Total viral nucleic acids were om viruses present in that environment with bacterial or archaeal extractedfrom200(cid:4)lofeachsamplewiththePurelinkviralRNA/DNA hosts. minikit(Invitrogen)andelutedtoafinalvolumeof60(cid:4)l. ht t TheacidichotspringsinYellowstoneNationalPark(YNP)in Isolation,preparationandsequencingofenrichedRNAviralfrac- p : theUnitedStatesofferanopportunitytosearchforarchaealRNA tion.Animprovedmethodtoisolatenucleicacidsfromtheenrichedviral // vpirreuvsieosuisnraRnNeAnvgireonnemseeqnutewnhceereanAarlcyhsaise,atphreesedoemnviniraotne.mBeanstesdaorne frricahcteidonRNwAasvdireavleflroapcetidoanfst,e3r0in(cid:4)iltioafltRoTta-lPeCxtRrascctreedenniuncgle.iTcoacoibdtwaianstthreeaetend- jvi.a s inhabitedbymicrobialcommunitiesoflowcomplexitythatare with3URNase-freeDNaseI(Ambion)at37°Cfor20min,followedby m dominatedbyfewerthan10archaealspecies(30).Intheselow-pH theadditionofethylalcohol(EtOH)to37%.Thismixturewasappliedto .o (pH (cid:2) 4), high-temperature ((cid:3)80°C) springs, bacteria and eu- theRNA/DNAminikitcolumns(Purelink),eluted,andre-extractedfol- rg lowingthemanufacturer’sprotocols.Theelutednucleicacidsweream- / karyotes are scarce or, in many cases, absent (9, 30, 58). Using plifiedwiththeTransplexwhole-transcriptomeamplificationkit(Sigma). o traditionalculture-dependentapproaches,manydsDNAarchaeal ThereactionmixtureswerepurifiedusingQIAquickPCRpurificationkits n viruseshavebeenisolatedfromthesehigh-temperature,acidichot (Qiagen)followedbypassagethroughAmiconUltra-0.5filtercolumns A p springsinYNP(59)andotherthermalhotspringsworldwide(6, (100KMWCO).Approximately100ngofpurified,amplifiedviralcDNA r 48,53).Weusedaviralmetagenomicapproachtosearchdirectly productswereprovidedtotheBroadInstitute(Cambridge,MA)forse- il 3 for archaeal RNA viruses in several acidic hot springs found in quencingusingtheTitaniumchemistryonthe454FLXpyrosequencer , 2 YNP.WereportherethedetectionofputativearchaealRNAvirus (Roche). 0 genomes. Isolation, preparation, and amplification of enriched DNA viral 1 fraction.ToobtaintheenrichedDNAviralfraction,10(cid:4)lofenriched 9 b MATERIALSANDMETHODS viraltotalnucleicacidswasamplifiedwiththeGenomePlexwhole-ge- y YNP hot spring sample sites. Twenty-eight YNP high-temperature, nomeamplificationkit(Sigma).Thereactionmixtureswerepurifiedas g acidichotspringswereinitiallyscreenedforthepresenceofRNAinthe describedabovefortheenrichedRNAviralfractions.Approximately5(cid:4)g ue enrichedviralfraction(seeTableS1inthesupplementalmaterial)be- of purified, amplified viral DNA was provided to the Broad Institute s t tweenOctoberandNovember2008.In-depthsamplingformetagenomic (Cambridge,MA)forsequencingaswiththeenrichedRNAviralfrac- analysiswasperformedon3ofthesesites:NL10,NL17,andNL18.Atotal tions. of7pairedDNAviralandRNAviralsampleswerecollected.SiteNL10in Sequenceassemblyandanalysis.DNAsequencesweretrimmedof the Nymph Lake hot springs was sampled in October 2009, February bothprimerandtagsequences.Toaidinassembly,highlyrepresented 2010,andJune2010.NymphLakehotspringsitesNL17andNL18were duplicated sequences were identified and removed using CD-HIT-454 sampled in October 2009 and June 2010. Nymph Lake hot spring site (50)witha40-bpoverlapand98%sequenceidentity.All7viralRNAdata NL10wasalsosampledinAugust2008and2009fortotalcellularDNA. setswerethencross-assembledusinggsAssemblerversion2.5(Roche)at InitialscreeningofenrichedviralsamplesforRNAgenomesby32P- 98%sequenceidentitywitha50-bpoverlap.CellularandDNAviralmet- labeling experiments (reverse transcriptase [RT]-dependent signal agenomicdatasetswereassembledusingthesameprocedures.Theas- fromRNAviralfraction).Anenrichedviralfractionwascreatedfrom sembledRNAviralcontigs(greaterthan100bp)werecomparedagainst eachsamplebyfiltrationof26mlofhotspringwaterthroughtwosucces- the Nymph Lake viral DNA metagenomes, as well as the GreenGenes sive0.8-/0.2-(cid:4)mAcrodisc25-mmPFfilters(Millipore)toremovecells, rRNAdataset(18).SequencesmatchingeitherDNAviralreadsorribo- collection of the virus particles in the flowthrough, centrifugation at somalsequenceswereexcludedfromfutureanalysis.ThesefilteredRNA 30,000(cid:5)gfor2h,andresuspensionoftheviruspelletinto200(cid:4)lsterile viral contigs were subsequently analyzed against the NCBI-nr and -nt water.Totalviralnucleicacidswereextractedfromthevirus-enriched databasesusingBLASTN,BLASTX,TBLASTX,BLASTP,andPSI-BLAST fractionusingthemirVanamiRNA(microRNA)isolationkit(Ambion). foriterativesearchofproteinsequencedatabases(3).TheRPSTBLASTN Followingnucleicacidextraction,DNAwasremovedbyDNaseI(Am- programfromtheNCBIBLASTpackagewasusedtocomparecontigs May2012 Volume86 Number10 jvi.asm.org 5563 Bolducetal. againsttheconserveddomaindatabase.Theresultingmetagenomeswere faultparameters.ReadsidentifiedascontainingCRISPRsusingCRTwere alsoanalyzedusingtheMG-RASTmetagenomicsanalysisserver(49)to thenanalyzedusingCRISPRFinder(25).AllreadsidentifiedasCRISPRs assigntaxonomies.Contigsshowingsignificantmatches(E-valueof1(cid:5) withCRTwerealsoidentifiedasCRISPRswithCRISPRFinder.CRISPR- 10(cid:7)3)toRNA-dependentRNApolymerases(RdRps)andstructuralpro- containingreadswereparsedfordirectrepeats(DRs)andspacersgener- teinsweresubjectedtoamorerigorousexaminationusingHHpred(67) atedfromCRT.TheresultingCRISPRspacerswerecomparedagainstthe againstthepdb70database(November2010release).Sequenceassembly viral RNA and DNA metagenomes using BLASTN with an ungapped andanalysisareoutlinedinFig.S2inthesupplementalmaterial. alignmentand100%nucleotideidentityacrosstheentirelengthofthe Proteinstructureanalysis.SecondarystructurepredictionsforRdRp spacer.ReadswithspacersmatchingRNAcontigswerefurtheranalyzed andCPsequenceswereperformedusingtheHHpredsoftware.Sequence- byextractionoftheirassociatedDRsandidentificationoftheirclosest structurethreadingwasperformedusingthePhyreserver(35)andHH- referencemicrobialgenome. pred, the three-dimensional (3-D) model was built with MODELLER ExaminingtheviabilityofaeukaryoticvirusinYNPhotsprings.To (21),andvisualizationwasrenderedusingPyMOL(PyMOLMolecular testforpossibleexternalcontaminationofeukaryoticvirusesinthehot GraphicsSystem,version1.3r1).Multiplealignmentof3-Dstructuresof springsexamined,10ng(4,800genomes)ofpurifiedcowpeachlorotic capsidproteinswasextractedfromtheDALIdatabase(27). mottlevirus(CCMV),ahighlystablessRNAplantvirus,wasmixedwith Phylogenetic analysis of RdRps. Seed alignments of viral RdRp 50mlofhotspringwaterinaFalcontubeandplacedinthehotsprings. (cd01699) and group II intron reverse transcriptases (cd01651) were Aliquotsof50(cid:4)lweretakenfromthesampleatvarioustimeintervalsand downloadedfromtheNCBICDD(ConservedDomainDatabase)(47). analyzedwithquantitativeRT-PCR(qRT-PCR)usingSSoFastEvaGreen D Thesealignmentswereusedtogenerateposition-specificscoringmatrices supermix(LifeSciences)onaRotorGene-Qsystem(Qiagen). o (PSSM)thatservedasqueriesforPSI-BLASTiterativesearch(4)against Comparing RNA metagenomes to other environments. To assess w n positive-strandssRNAvirussequencesintheNCBIRefSeqdatabase,pro- whethersimilarRNAviralgenomeswerepresentinYNPhigh-tempera- lo ducing988matches.ThedetectedRdRpsequenceswereclusteredinto29 ture,near-neutralhotspringenvironmentsthataredominatedbybacte- a ria,viralRNAmetagenomeswerecomparedagainsttranscriptomelibrar- d groupsusingtheNCBIBLASTClustprogram(http://www.ncbi.nlm.nih e .gov/Web/Newsltr/Spring04/blastlab.html), roughly corresponding to iesofMushroomandOctopusSpringsinYNP(36,43)usingBLASTN. d varioustaxaofssRNAviruses.Additionally,aclusterof31nonredundant Nucleotidesequenceaccessionnumbers.Thenucleotidesequences fr ofcontig0002andcontig0028havebeensubmittedtoGenBankunder o sequencesofgroupIIintronreversetranscriptasesandaclusterwithtwo m accessionnumbersJQ756122andJQ756123,respectively. RdRpsequencesfromcontig00002andcontig00228wereaddedtothe h data set. Multiple sequence alignments within clusters were produced t usingtheMUSCLEprogram(20).Clusteralignmentswereprogressively RESULTS tp : alignedusingtheHHalignprogram(66);ateachstep,thehighest-scoring Aninitialsurveyof28YNPhotspringswasperformedtodeter- // pairofalignmentsreplacedthetwo“parent”alignments;alignmentposi- minewhichhotspringscontainedadetectableRNAsignalinthe jvi. tionscontaininglessthan33%nongapcharacterswereremoved.Forthe isolatedRNAviralfraction(seeTableS1inthesupplementalma- a s purpose of phylogenetic analysis, alignment positions containing less terial).Thesurveyedsiteswereselectedbasedonbeinghigh-tem- m than50%ofnongapcharacterswerefurthereliminatedfromthefinal perature((cid:3)80°C)andlow-pH((cid:2)4.0)springslikelytobedomi- .o alignment.Thephylogenetictreeofthefulldataset(1,021sequences)was r natedbyArchaea.Thisinitialscreenofviralfractionswasbasedon g reconstructedusingtheFastTreeprogramwithdefaultparameters(57). / Theoptimalsequenceevolutionmodelforthedatasetwasselectedusing an RNA-dependent reverse transcriptase (RT) assay where o theProtTestprogram(1).Arepresentativedatasetof104sequenceswas [32P]dCTPincorporationintofirst-strandcDNAwasdetermined n selectedusingthefulltreeforguidance;aphylogenetictreewasrecon- inRNase-treatedcontrolsanduntreatedenrichedviralsamples, A p structedusingtheRAxMLprogram(69)withthePROTGAMMALGF bothofwhichhadpreviouslybeenDNasetreated.While24sites r evolutionarymodel,asindicatedbytheProtTestanalysis.Bootstrapanal- showedlittledifferencebetweentheamountsof[32P]dCTPincor- il 3 ysiswith100replicationsandtheShimodaira-Hasegawalog-likelihood porated by RNase-treated and untreated samples, 3 hot springs , 2 testforalternativetreetopologiesderivedfromconstrainttreeswereper- showedreproducibleandstatisticallysignificantdifferences(Fig. 0 formedusingRAxML. 1). Resampling of these hot springs 12 months later resulted in 1 9 ValidationofselectedassembledcontigsfromenrichedRNAviral nearlyidenticaldetectionoftheRNAsignalintheRNAviralfrac- b metagenomesbyRT-PCRandDNAsequencing.Upto2yearsafterthe tion, suggesting that RNA viral communities were being main- y originalsampleswerecollectedfortheproductionoftheviralandcellular g metagenomes,additionalNL10,NL17,andNL18cellularandviralfrac- tained in these hot springs. The three sites (NL10, NL17, and u NL18) with the highest RT-dependent signals were selected for e tionsampleswerecollectedinJune2011andSeptember2011asdescribed s generatingmetagenomiclibraries. t abovetodeterminewhetherselectedRNAviralgenomeswerestillpresent inthesehotsprings.ViralnucleicacidswereextractedusingtheZRviral AstringentapproachwastakentoassembletheRNAviraland RNAkit(ZymoResearch)incombinationwithon-columnDNasediges- DNAviralmetagenomes.Removalofhighlyduplicatedsequence tion,asrecommendedbythemanufacturer.ForwardandreversePCR reads at 98% similarity with CD-HIT-454 resulted in a 41.6% primersdesignedfromselectedmetagenomiccontigs(seeTableS2inthe reductioninreadsacrosstheviralmetagenomes(Table1).These supplementalmaterial)wereusedwithSuperScriptIIIone-stepRT-PCR duplicatedsequencesareprobablyindicatorsofboththeamplifi- withPlatinumTaq(Invitrogen).TotestforRTdependency,theRTwas cationbiasandthehighsequencingdepthoftherelativelylow- excluded from the procedure. To test for strand specificity, only one complexity viral communities found in these hot springs. Re- primerwasaddedduringthecDNAsynthesisstageandthesecondprimer movalofthesehighlyrepresentedsequencingreadssignificantly wasaddedafterthe94°Cheatkillofthereversetranscriptaseandactiva- improved the overall assembly, resulting in much higher confi- tionofPlatinumTaq.PCRproductswereclonedintothepCR2.1vector dencecontigs. usingtheTopoTAcloningkit(Invitrogen).Sequencingoftheproducts The initial analysis of the viral RNA metagenomes indicated wasperformedusingSangersequencingwithBigDyeTerminatorversion thattheycontainedahighproportionofsequencesfoundinthe 3.1onanABI3100. AnalysisofCRISPRincellularandviralmetagenomes.Readsfrom paired viral DNA metagenomes. This finding suggests that the thecellularmetagenomeswereanalyzedforCRISPR-relatedsequences initialtreatmentoftheisolatedviralnucleicacidwithDNasewas withtheCRISPRRecognitionTool(CRT)(8),usingtheprogram’sde- insufficienttoremove100%oftheviralDNAsequences,probably 5564 jvi.asm.org JournalofVirology EvidenceforHyperthermophilicRNAViruses D o w n lo a d e d f r o m h t t p : / / jv i. a s m . o r g / o n FIG1SelectedexamplesoftheresultsofscreeninghotspringsforthepresenceofRNAtemplatesintheRNAvirus-enrichedfractions.[32P]dCTPincorporation A intoRT-dependentfirst-strandcDNAsynthesisisshown.Foreachhotspringsample,resultsareshownforpriorRNasetreatmentofthesample((cid:8)RNase), p wpohsiicthivwecaosnpterrofolwrmasedakansoawconnptorosilt.iRvee-ssatmrapnldinsgsRoNfsAelveicrtuesd,hcoowtspperainchgslo1r2otmicomntohtstlelavteirrudse(mCoCnMstVra)t,eadntdhtehmenaiengtaetnivaenccoenotfroRlNwAassiwgantaelri(nHth2Oev).irEarlrforracbtaiorsns.hTohwe ril 3 standarddeviations. , 2 0 1 9 duetoitsvastexcesscomparedtotheamountofRNAintheviral b fraction.ToaddressthisbiastowardDNAviralsequences,RNA TABLE1Cellular,DNAviral,andRNAviralassemblystatistics y contigswerecomparedagainsttheDNAviralmetagenomesusing RNAmetagenomesa gu BLASTN.MatchesofRNAcontigs(E-valueof1(cid:5)10(cid:7)30)against e DNA Pre-DNA Post-DNA Cellular s reads from the DNA metagenomes were excluded from further Parameter metagenomesa filtration filtration metagenomesb t analysis.Morethan72%ofthecontigsintheinitialRNAmetag- Totalno.ofreads 1,075,407 3,568,86 90,227 632,479 enomicdatasetswereremovedasaresultofmatchingsequences Totalno.ofbases 34.0 4.2 1.1 229 intheviralDNAdatasets(7,060oftheinitial9,696contigs).This (Mb) screeningprocedure,whileremovingthemajorityofcontigs,pro- %ofreads 72.90 34.1 34.1 64.6 videdconfidencethattheremainingcontigsassembledfromthe assembled RNAviralmetagenomeswerederivedfromRNAvirusespresent Largestcontig(bp) 21,541 5,846 5,846 23,333 inthathotspringandnotderivedfromviralDNAsequences. No.oflargecontigs 3,411 519 79 4,820 TheassemblyofsequencesfromtheNymphLakehotspring ((cid:3)1,000bp) Totalno.ofcontigs 27,746 9,696 2,636 22,649 sitesresultedinalargenumberofcontigsunderstringentassem- (cid:3)100bp bly conditions (98% identity within at least 50 bp of overlap) Averagecontig 573.9 434.3 409.5 716.8 (Table1).The14viralsamples(7enrichedRNAviralsamplesand length(bp) 7enrichedDNAviralsamples)generated(cid:1)2.8millionreadsand Avgcoverage(fold) 37.8 36.8 34.2 22.7 807Mbofsequence.Afterdeduplication,therewere877,000reads aSampledfromhotspringsitesNL10,NL17,andNL18inOctober2009andFebruary and590Mbofuniquesequence.TheassembledviralDNAmet- andJune2010. agenomesgenerated27,746totalcontigs,withanaveragelarge- bSampledfromhotspringsiteNL10inAugustof2008and2009. May2012 Volume86 Number10 jvi.asm.org 5565 Bolducetal. D FIG2HierarchicalclassificationofcontigswithMG-RAST.Classificationofcellular(A),viralDNA(B),andviralRNA(C)sequencesbasedontheM5NR o w databaseinMG-RAST.Sequenceswithinsufficientsignificanceorthosethatdidnotmatchwereclassifiedas“NotAssigned/Unknown.” n lo a d contig size ((cid:3)1,000 bp) of 1,898 bp. The assembled viral RNA ExaminationoftheputativeviralRNAcontigsshowedthatthe ed metagenomesgenerated9,696totalcontigs,withanaveragelarge- majority of sequences (56%) did not align to known sequences f r contiglengthof1,361bp.Nearly73%ofthesequencereadsinthe (Fig.2C).Asmallfractionofthesequencesmatchedknownvi- o m DNAviralmetagenomeswereeitherfullyorpartiallyassembled ruses (3%). The remaining sequences matched sequences from h intocontigs,whereas36.8%ofsequencereadsintheRNAviral Archaea(20%),Bacteria(10%),andEukaryota(11%). t t metagenomesassembledintocontigs.TheassembledviralDNA Analysis of the RNA viral contigs using NCBI’s protein and p : metagenomic contigs had an average length of 574 bp with an nucleotidenonredundantdatabasesandtheCDD,aswellasUni- // jv averagereaddepthof38-fold.ThefinalassembledviralRNAmet- prot/Swissprot(31),detectedseveralsequenceswithsimilarityto i. a agenomeshadanaveragecontiglengthof410bpwithanaverage RNA-dependent RNA polymerases (RdRps), a positive-strand s readdepthof34-foldbasecoverage. single-strandedRNAvirus“hallmarkgene”(39).Thelargestcon- m CellularDNAmetagenomes,comprising632,000sequencing tig in the RNA viral data set (5.6 kb) and smaller contigs with .o r readswhichrepresented229Mbofsequence,wereassembledun- similaritytoRdRpswereconfirmedtobepresentandpersistentin g / derthesamehigh-stringencyparametersastheviraldatasets(Ta- thehotspringsovertime.ResamplingoftheNL10andNL18RNA o ble 1). The NL0808 and NL0908 cellular assemblies generated viralfractionsandextractionofthetotalRNAfromthecellular n 22,649 contigs with an average contig length of 716 bp and an fractions18monthsafterthelastsamplingforthemetagenomic A p averagereaddepthof36-foldbasecoverage.Sixty-fivepercentof analysisshowedthecontinuedpresenceoftheRNAgenomeseg- r thereadsassembledintocontigs. ments.AnRT-PCRassaywithprimersdesignedfromtheseRNA il 3 Theanalysisoftheassembledcellularmetagenomesrevealed contigs was performed on samples taken from the same hot , 2 that81.0%ofthecontigshadasignificantmatchagainsttheserv- springsoveran18-monthperiod(Fig.3).Theseassaysdemon- 0 1 er’s protein databases (Fig. 2A). The majority of the sequences strated that sequences were single stranded because amplifiable 9 (57%) matched to Archaea, primarily to the Crenarchaeota productwasgeneratedonlywhencDNAsynthesisusedaspecific, b (86.9%) and to a lesser degree to the Euryarchaeota (11.6%). directional primer. The longest RT-dependent contig, con- y g Matches to Nanoarchaeota, Korarchaeota, and Thaumarchaeota tig00002,is5,662ntinlength,composedof258reads,andcon- u were also detected. A smaller portion of the cellular contigs tainsasinglelargeopenreadingframe(ORF)thatencodesapu- e s matchedtoBacteria(20.6%),mostlytoDelta-andGammaproteo- tative viral polyprotein encompassing an RdRp and a putative t bacteriaandFirmicutes(clostridiaandbacilli).However,overall capsidproteinasdetailedbelow.OmissionoftheRTortemplate thesematchestotheBacteriawereweakcomparedtothematches orpretreatmentofsampleswithRNasepriortotheRT-PCRassay totheArchaea.ThiscouldreflectsharedgenesbetweenArchaea eliminatedthesignal,indicatingthatthesourceofthesignalwas and Bacteria and/or a statistical bias toward bacterial sequences anRNAtemplateintheviralfraction(Fig.3).Thisanalysissup- duetotheiroverrepresentationcomparedtotherepresentationof portedtheoriginalcontigassembliesanddemonstratedthatthese archaealsequencesinthepublicdatabases.Insupportofthispos- putativeRNAvirusesarestablemembersoftheviralcommunity sibility, further analysis of the cellular metagenomes using the withinthehotspringsexplored. ribosomal databases available on the MG-RAST server (Ribo- Further search for RdRps, as well as viral structural (capsid) somal Database Project, SILVA rRNA Database Project, and proteins, was performed using a combination of BLAST, MG- Greengenes)revealed4matchesagainsttheCrenarchaeota(Ther- RAST, and HHpred. Two contigs were identified as containing moprotei), one match to the Nanoarchaea, and a single distal significantsimilaritytoknownRdRps.Asimilarsearchexamining matchtoSulfurihydrogenibiumyellowstonense,abacteriumofthe theDNA-enrichedviralmetagenomedatasetrevealednosimilar- phylumAquificaeoriginallyisolatedfromaYNPhotspring.Over- itytoRdRpsbutdidshowmanyhitstocapsidproteins,mainly all,theseresultsconfirmthattheYNPhotspringsanalyzedhere thoseofarchaealDNAviruses,asexpected. aredominatedbyArchaea. Contig00002containsasinglelongORFpotentiallycodingfor 5566 jvi.asm.org JournalofVirology EvidenceforHyperthermophilicRNAViruses D FIG3Detectionandsingle-strandednatureofRNAviralsequenceswithinhotspringsmonthsaftersamplingformetagenomicanalysis.Totalnucleicacidsof o samplesobtained18monthsaftertheoriginalsamplingwereextractedfromeithertheviralfractionortotalcellularfractionofNL10(B)andNL18(A),DNase w treated,andsubjectedtoRT-PCRformetagenomicanalysis.Thedetectionandstrand-specificnatureofcontig00009(A)andcontig00002(B)weredetermined n usingcontig-specificprimersets(seeTableS2inthesupplementalmaterial).Eitherforward((cid:8)),reverse((cid:7)),orboth((cid:8)/(cid:7))primerswereaddedtotheinitial lo first-strandcDNAsynthesismixandthemixtureincubatedasdescribedinMaterialsandMethods.Afterfirst-strandsynthesis,thecompleteprimerpairwas a d added(ifnecessary)forthePCRstage.Thecontrol,wherereversetranscriptasewasexcludedfromtheprocedure((cid:7)RT),andthemolecular-sizemarker(bp)are e indicated. d f r o m a198-kDa(1,809aminoacids)polyproteinthatspansalmostthe portedthefindingofhighlysignificantsimilaritytoviralRdRps h entirelengthofthecontig,suggestingthatacompleteornearly and,additionally,ledtothedetectionofsequencesthatweresim- t t completeRNAviralgenomewasassembled.Inthemiddlepartof ilartocapsidproteinsofpositive-strandeukaryoticRNAviruses p : this polyprotein (approximately between amino acids 800 and withinthenodavirusfamily.Thesequencewiththehighestsimi- // jv 1020),aputativeRdRpdomainwasidentifiedusingseveralsearch laritytocapsidproteinsisapproximately90aminoacidsinlength i. a methods. A search of the Conserved Domain Database at the andislocatedCterminaltotheRdRp,spanningaminoacidresi- s NCBIusingtheRPS-BLASTprogramdetectedahighlysignificant dues1562to1652ofthepolyprotein.Thealignmentbetweenthis m similarity(E-valueofapproximately6(cid:5)10(cid:7)11)totheRdRpdo- portionofthepolyproteinandthecapsidproteinsofeukaryotic .o r main profile (no significant similarity to any other domain was virusesdemonstratedalevelofsimilaritythatwasnotstatistically g / detected for this or other parts of the polyprotein). A BLASTP significant,althoughthealignmentsincludedapproximately30% o searchofthenonredundantproteindatabaseattheNCBIyielded identicalaminoacidresidues.Nevertheless,amoredetailed,di- n statisticallysignificantsimilarity(E-valueof2(cid:5)10(cid:7)4,23%iden- rectcomparisonofthecontig00002polyproteinsequencetothe A p tityinanalignmentof341aminoacidresidues)totheRdRpof nodaviruscapsidproteinsequences,aswellastherelatedcapsid r Pariacatovirus,anodavirus,andlimited,not-significant(E-value proteinsequencesoftetravirusesandnodaviruses,allowedusto il 3 of approximately 0.1) similarity to the RdRps of several other extendthealignmentandidentifythemainstructuralelementsof , 2 RNAviruses,includingtombusvirusesandpestiviruses.Thesec- thecapsidproteins(Fig.5).Thenodaviruscapsidproteinadopts 0 1 onditerationofthePSI-BLASTsearchresultedinhighlysignifi- an8-strandjellyrollfoldthatisdistantlyrelatedtothestructures 9 cantsimilaritytotheRdRpsofavarietyofpositive-strandRNA ofthecapsidproteinsofothersmallicosahedralpositive-strand b virusesofeukaryotes.ThisputativeRdRpsequencecontainsall RNA viruses. In addition, unlike other well-characterized viral y g three highly conserved motifs, A (D-X[4,5]-D) and B ([S/T]G- capsid proteins, nodaviruses possess an autoproteolytic activity u X[3]-T-X[4]-N[S/T)],whichareinvolvedinnucleotideselection thatisinvolvedintheprocessingofthecapsidproteinprecursor e s aswellasmetalbinding(24),andC,whichcontainsthehighly (the (cid:6) protein) into the mature large ((cid:9)) and small ((cid:10)) capsid t conservedGDDmotifandisanessentialpartoftheMg2(cid:8)-bind- proteins(61,63).Thenodaviruscapsidproteinisthefounding ingsite(Fig.4A)(32,37).ModelingoftheinferredproteinRdRp memberoftheA6peptidasesuperfamilythatemploysanunusual onto the X-ray structure of the positive-strand single-stranded catalyticmechanisminvolvinganinteractionbetweentheactive NorwalkvirusRdRpstructureshowedthattheputativearchaeal aspartateofthecapsidproteinprecursorandaconservedaspara- virus RdRp contained the principal structural elements of the ginethatisproximaltothescissilepeptidebondintheC-terminal Palm domain of the RdRps of eukaryotic positive-strand RNA partoftheprotein,attheboundarybetween(cid:9)and(cid:10)capsidpro- viruses(Fig.4B).MatchestoRdRpswerealsodetectedforcon- teins (75). These residues, which are essential for autocatalytic tig00228(comprising10reads),whichencompassedthreeover- cleavageofthenodaviruscapsidproteinprecursor,arealsocon- lapping short ORFs, each of which showed approximately 70% servedinthesequencesofcapsidproteinsoftetraviruses.Coun- amino acid sequence identity to the predicted RdRp of con- terpartstoboththecatalyticaspartateandthecleavagesiteaspar- tig00002(Fig.4A).Thus,thiscontigappearstoencodeanRdRpof agineweredetectedinthecontig00002polyprotein,andregions aputativearchaealvirusthatisrelatedtobutclearlydistinctfrom surroundingthesetwoconservedaminoacidswerefoundtohave theputativevirusencodedbycontig00002. thehighestlevelsofsequencesimilarity(Fig.5).Exhaustiveanal- Acomparisonofthecontig00002polyproteinsequencetoda- ysisofthepartsofthecontig00002polyproteinoutsidetheRdRp tabasesofproteinfamilyprofilesusingtheHHPredprogramsup- andcapsidproteinregionsfailedtodetectsimilaritytoanyother May2012 Volume86 Number10 jvi.asm.org 5567 Bolducetal. D o w n lo a d e d f r o m h t t p : / / jv i. a s m . o r g / o n A p r il 3 , 2 0 1 9 b y g u e s t FIG4TheRdRpoftheputativearchaealviruses.(A)MultiplesequencealignmentoftheputativearchaealvirusRdRpswithhomologsfrompositive-strand RNAvirusesofeukaryotesandbacteriaandreversetranscriptasesfrombacterialgroup2introns.The(nearly)universallyconservedaminoacidresiduesinthe threesignaturemotifsoftheRdRpsarehighlightedincyan,andpartiallyconservedresiduesarehighlightedinyellow.Thetoptwosequencesarefromthe putativearchaealvirusesidentifiedinthiswork.Therestofthesequencesincluderepresentativesofthe29clustersofviralRdRpsidentifiedasdescribedin MaterialsandMethods.Thetwosequencesatthebottom(RTG2)arereversetranscriptases.EachsequenceisdenotedbytheGenBankidentifier(GInumber) andthenameofthevirusgroup(typicallyfamily)andsubgroup(typicallygenus).Thenumbersdenotethelengths(numberofaminoacids)inless-well- conservedregionsbetweentheconservedmotifsandthedistancesbetweentheendsoftherespectiveproteinsandthealignedsegments.(B)Structuralmodelof thecentralcoreregionoftheputativearchaealvirusRdRpfromcontig00002(blue)usingthecalicivirusRdRpasatemplate(red;PDBID3bso)(74). known proteins or domains. Collectively, the observation of a thattheyformedalineagedistinctfromknownRdRpsofeu- large polyprotein (a common feature of eukaryotic positive- karyotic and bacterial RNA viruses (Fig. 6). The putative strand RNA viruses) containing putative RdRp and capsid pro- RdRpsencodedbycontig00002andcontig00228didnotshow teinsinadditiontoapossibleautoproteolyticactivitysuggestthat specificaffinitywithanyofthethreesuperfamiliesofeukaryote thiscontigcorrespondstoanearfull-lengthgenomeofaprevi- positive-strand RNA viruses (picornavirus-like, alphavirus-like, ouslyunknownpositive-strandRNAvirus. and flavivirus-like) or the only known bacterial lineage (levivi- PhylogeneticanalysisoftheidentifiedRdRpsequencesshowed ruses), and statistical tests showed that association with any of 5568 jvi.asm.org JournalofVirology D o w n lo a d e d f r o m h t t p : / / jv i. a s m . o r g / o n A p r il 3 , 2 0 1 9 b y g u e s t FIG5Thepredictedcapsidproteinoftheputativearchaealvirusanditspotentialautoproteolyticactivity.Multiplealignmentoftheputativearchaealviruscapsidproteinwith thecapsidproteinsequencesofnodaviruses,tetraviruses,andbirnaviruses.SequencesareidentifiedeitherbyPDBIDorbyGenBankGInumbers.Secondarystructureisshown forthethreeavailablecrystalstructuresdenotedbythecorrespondingPDBcodes(l,loop;H,helix;E,beta-strand).Alignmentcolumnswithhomogeneityof0.4orgreater(see MaterialsandMethods)arehighlightedinyellow.ThecatalyticAspishighlightedincyan,andthecleavagesiteAsnishighlightedingreen. May2012 Volume86 Number10 jvi.asm.org 5569 Bolducetal. D o w n lo a d e d f r o m h t t p : / / jv i. a s m . o r g / FIG6 PhylogenetictreeoftheRdRps.TheunrootedphylogenetictreewasgeneratedasdescribedinMaterialsandMethods.Bootstrapsupportvaluesgreater o n than0.5areindicatedfordeepinternalbranches.Largegroupsofpositive-strandRNAvirusesfromeukaryotesandbacteria(Levigroup)andthebacterial A retrotranscribingelements(RT)areindicatedandshownbyuniquecolors. p r il 3 thesemajorlineagesoradditionaldistinctlineages,suchasnoda- tomicanalysisoftwohigh-temperatureYNPhotspringsatneu- , 2 viruses,couldnotbeconvincinglyruledout(seethesupplemental tral or alkaline pHs (Mushroom and Octopus Springs) that are 0 1 material).Theseresultsarecompatiblewithacentralpositionof known to be dominated by thermophilic bacteria. These hot 9 thenewRdRpinthetreeand,hence,withitspossibleancestral springsharborathermophilicbacterialcommunityofrelatively b status. highcomplexitythatconsistsofChloroflexi,Cyanobacteria,Acido- y g ToinvestigatethepossibilitythattheRNAvirusgenomesde- bacteria, and Chlorobi (36). A BLASTN analysis found that the u tectedwerecontaminantsofthehotspringsintroducedfromex- greatmajorityofthecontigs(97%ofthetotalRNAviralcontigs) e s ternalsources,wetestedtheabilityofanRNAplantvirusknown didnothavestatisticallysignificantmatchestothemetatranscrip- t foritshighstabilitytobemaintainedwithinthehotspringenvi- tomeoftheseneutraloralkalineYNPhotsprings.Threepercent ronment.SamplesofCCMVweremixedwithhotspringwaterin oftheRNAviralcontigsdidshowasignificantmatch.However, 50-mlFalcontubesandplacedbackintothehotsprings.Aliquots the average length of the matching contigs was 342 bp, much were taken at regular intervals for up to 30 min and quantified shorterthantheoverallaveragecontiglength.Thisanalysisindi- usingaqRT-PCRassaywhichcandetectasfewas10viralgenome catesthatthereislittleoverlapbetweentheRNAviralcommunity copies.Within1minofsampling,therewasnodetectableamount presentinthearchaea-dominatedacidichotspringsandthebac- oftheCCMVRNA(datanotshown).Thisexperimentindicates teria-dominatedneutraloralkalinehotspringsandprovidesfur- that it is unlikely that an externally introduced RNA virus can therevidencethattheputativeviralRNAgenomesdetectedare survivelongenoughtobedetected,especiallyintheformoflong associatedwitharchaealhosts. RNAsegments,underthehigh-temperatureacidicconditionsof Finally,weanalyzedtheCRISPRdirectrepeat(DR)andspacer thehotspringsfromwhichtheputativearchaealvirussequences content present in our cellular metagenomic data sets in an at- wereobtained. tempttolinktheputativeRNAviralgenomesdirectlytoaspecific To further probe the possibility that the detected RNA viral hosttypeandtoinvestigatepotentialhostimmunitytoRNAvi- genomesreplicateinarchaealhosts,thesesequenceswerecom- ruses.CRISPRDRsandspacerswereextractedfromthecellular pared to the sequences produced by environmental transcrip- metagenomicdatasets.Thespacersequences(10,349)werecom- 5570 jvi.asm.org JournalofVirology EvidenceforHyperthermophilicRNAViruses D o w n lo a d e d f FIG7AnalysisofcellularCRISPRdirectrepeatunitsandnumbersofuniquespacersmatchingarchaealspeciesandRNAviralmetagenomecontigs.(A) r o SchematicrepresentationoftheCRISPRlociindicatingthedirectrepeatstructureinterspacedwithspacerregions.(B)ThenumberofCRISPRspacersequences m with100%matchtoviralRNAcontigsandthealignmentofthedirectrepeatstructures(topsequence)withtheclosestsequencedorganism(bottomsequence). h PercentagesofidentityandEvaluesareindicated. t t p : / / jv pared with the assembled viral RNA and DNA metagenomes. domains. Polyproteins of positive-strand RNA viruses of eu- i. Forty-six spacers (0.44%), associated with 4 types of DRs, were karyotes,inparticularvirusesofthepicornavirus-likesuperfam- a s identicaltoRNAsequenceswithintheviralmetagenomicdataset ily,areprocessedbyviralproteasestoyieldindividualfunctional m (Fig. 7). A similar comparison of the spacers to the DNA viral proteins.Adistinctproteasedomainwasnotdetectedinthevirus .o metagenome revealed 628 (6.07%) identical spacers (data not polyproteinencodedincontig00002.However,thecatalyticsite rg shown).ThemajorityofmatchingspacersequencesoftheRNA andthecleavagesiteofthenodaviruscapsidautoproteasewere / o metagenome(44/46)wererelatedtoDRsofthearchaealspecies conservedintheregionoftheputativearchaealviruspolyprotein n SulfolobusislandicusandSulfolobusacidocaldarius.Thesewerethe thatissimilartotheviralcapsidproteins(Fig.5).Innodaviruses, A p onlysignificantmatchesfoundintheCRISPRfinderdirectrepeat thecapsidproteinprecursorisencodedinadistinctsegmentof r database.ThesefindingssuggestthattheRNAviralgenomesrep- genomicRNAsuchthattheproteaseisinvolvedonlyintheauto- il 3 licateinanarchaealhostbelongingtotheSulfolobales,acelltype catalytic maturation of the capsid proteins (15, 62, 75). In the , 2 commonlyfoundinNL10andacidichotspringsworldwide,and novelvirusdescribedhere,thisproteasemightperformmorever- 0 elicitaCRISPR-mediatedimmuneresponse.However,wecannot satilerolesbycatalyzingadditionalcleavageeventsandreleasing 1 9 categorically rule out the unlikely possibility that the CRISPR the RdRp, the capsid protein, and possibly, other mature viral b spacermatchestotheRNAviralmetagenomeareinfacttoDNA proteinsthatremaintobeidentified. y viral sequences that are still present in our viral RNA metag- Theresultsofthisstudydonotunequivocallydemonstratethe g u enomicdataset. existenceofarchaealRNAviruses.Itcannotberuledoutthatthe e s detectedRNAgenomesegmentsoriginatefromvirusesreplicating t DISCUSSION inbacterialhostspresentinthesehotsprings.However,several To our knowledge, this work is the first attempt at viral RNA linesofindependentexperimentalandcomparativegenomicevi- communityanalysisinextremeenvironments.Theresultsdem- dencesuggestthattheRNAgenomesegmentsidentifiedprobably onstratethepresenceofputativeRNAviralgenomesinhigh-tem- originatefromvirusesreplicatinginarchaealhosts.First,analysis peratureacidichotspringsdominatedbyArchaea.Severallinesof ofboththeoverallcompositionofthecellularmetagenomesby experimental and comparative genomic evidence support the MG-RASTandthe16SrRNAgenecontentshowsthatthemicro- conclusionthattheassembledgenomesegmentsbelongtoRNA biota of the sampled hot springs consists primarily of Archaea. viral genomes. In particular, two contigs encoded protein se- Second, the putative RNA viral sequences were recovered from quenceswithaspecific,significantsimilaritytotheRdRp,ahall- multiplehotspringsatmultipletimepoints.Third,experimental mark protein of positive-strand RNA viruses. One of these, the exposure of a plant RNA virus known for high stability to the 5.6-kbcontig00002,mightcomprisea(nearly)completeviralge- acidic hot springs environment shows that the virus is rapidly nome with signature features of positive-strand RNA viruses of degradedundertheseconditions.Fourth,whenwecomparedthe eukaryotes.Specifically,thiscontigencodesapolyproteinthatis RNAviralsequencesdetectedintheYNPacidichotspringswith similarinsizetothepolyproteinsofdiverseeukaryotepositive- thetranscriptomesofYNPneutraloralkalinehotspringsthatare strandRNAvirusesthatcontainboththeRdRpandcapsidprotein knowntobedominatedbybacteriaratherthanarchaea,therewas May2012 Volume86 Number10 jvi.asm.org 5571
Description: