Hydrol.EarthSyst.Sci.,21,1669–1691,2017 www.hydrol-earth-syst-sci.net/21/1669/2017/ doi:10.5194/hess-21-1669-2017 ©Author(s)2017.CCAttribution3.0License. Identification of dominant hydrogeochemical processes for groundwaters in the Algerian Sahara supported by inverse modeling of chemical and isotopic data RabiaSlimani1,AbdelhamidGuendouz2,FabienneTrolard3,AdnaneSouffiMoulla4,BelhadjHamdi-Aïssa1,and GuilhemBourrié3 1OuarglaUniversity,Fac.desSciencesdelaNatureetdelaVie,Lab.BiochimiedesMilieuxDésertiques, 30000Ouargla,Algeria 2BlidaUniversity,ScienceandEngineeringFaculty,P.O.Box270,Soumaâ,Blida,Algeria 3INRA–UMR1114EMMAH,Avignon,France 4AlgiersNuclearResearchCentre,P.O.Box399,Alger-RP,16000Algiers,Algeria Correspondenceto:RabiaSlimani([email protected]) Received:8September2015–Discussionstarted:1February2016 Revised:31October2016–Accepted:20November2016–Published:21March2017 Abstract. Unpublished chemical and isotopic data taken 1 Introduction in November 1992 from the three major Saharan aquifers, namelytheContinentalIntercalaire(CI),theComplexeTer- Ascientificstudypublishedin2008(OECD,2008)showed minal (CT) and the phreatic aquifer (Phr), were integrated that 85% of the world population lives in the driest half withoriginalsamplesinordertochemicallyandisotopically of the earth. More than 1 billion people residing in arid characterize the largest Saharan aquifer system and investi- and semi-arid areas of the world have access to only few gatetheprocessesthroughwhichgroundwatersacquiretheir or nonrenewable water resources. The North-Western Sa- mineralization.InsteadofclassicalDebye–Hückelextended haraAquiferSystem(NWSAS)isoneofthelargestconfined law, a specific interaction theory (SIT) model, recently in- reservoirs in the world and its huge water reserves are es- corporatedinPHREEQC3.0,wasused.Inversemodelingof sentiallycomposedofanoldcomponent.Itisrepresentedby hydrochemical data constrained by isotopic data was used twomaindeepaquifers,theContinentalIntercalaireandthe here to quantitatively assess the influence of geochemical Complexe Terminal. This system covers a surface of more processes: at depth, the dissolution of salts from the geo- than 1millionkm2 (700000km2 in Algeria, 80000km2 in logical formations during upward leakage without evapora- Tunisiaand250000km2 inLibya).Duetotheclimaticcon- tionexplainsthetransitionsfromCItoCTandtoafirstend ditionsofSahara,theseformationsarepoorlyrenewed:about member,aclusterofPhr(clusterI);nearthesurface,thedis- 1billionm3yr−1essentiallyinfiltratedinthepiedmontofthe solutionofsaltsfromsabkhasbyrainwaterexplainsanother Saharan Atlas in Algeria, as well as in the Jebel Dahar and cluster of Phr (cluster II). In every case, secondary precip- Jebel Nafusa in Tunisia and Libya, respectively. However, itation of calcite occurs during dissolution. All Phr waters the very large extension of the system as well as the great result from the mixing of these two clusters together with thickness of the aquifer layers has favored the accumula- calciteprecipitationandionexchangeprocesses.Thesepro- tion of huge water reserves. Ouargla basin is located in the cessesarequantitativelyassessedbythePHREEQCmodel. middle of the NWSAS and thus benefits from groundwa- Globally, gypsum dissolution and calcite precipitation were ter resources (Fig. 1) which are contained in the following foundtoactasacarbonsink. three main reservoirs (UNESCO, 1972; Eckstein and Eck- stein,2003;OSS,2003,2008): PublishedbyCopernicusPublicationsonbehalfoftheEuropeanGeosciencesUnion. 1670R.Slimanietal.:IdentificationofdominanthydrogeochemicalprocessesforgroundwatersintheAlgerianSahara Figure1.LocationandschematicrelationsofaquifersinOuargla.Bluelinesrepresentlimitsbetweenaquifers,andthenamesofaquifers aregiveninboldletters;asthelimitbetweenSenonianandMio-Plioceneaquifersisnotwelldefined,adashedbluelineisused.Namesof villagesandcitiesaregiveninroman(Bamendil,Ouargla,SidiKhouiled),whilegeological/geomorphologicalfeaturesareinitalic(glacis, sabkha,chott,dunes).Depthsarerelativetothegroundsurface.Letters“a”and“b”refertothecrosssection(Fig.2)andtothelocalization map(Fig.3). – At the top, the phreatic aquifer (Phr), in the Quater- aquifers. In particular, such studies focused on the recharge nary sandy gypsum permeable formations of Quater- of the deep CI aquifer system. These investigations espe- nary, is almost unexploited, due to its extreme salinity ciallydealtwithwaterchemicalfacies,mappediso-contents (50gL−1). of various parameters and reported typical geochemical ra- tios([SO2−]/[Cl−],[Mg2+]/[Ca2+])aswellasothercorre- – In the middle, the Complexe Terminal (CT) (Cornet 4 lations.Minerals–solutionsequilibriawerecheckedbycom- and Gouscov, 1952; UNESCO, 1972) is the most ex- putingsaturationindiceswithrespecttocalcite,gypsum,an- ploited and includes several aquifers in different ge- hydrite and halite, but processes were only qualitatively as- ological formations. Groundwater circulates in one or sessed.Thepresentstudyaimsatapplyingforthefirsttime thetwolithostratigraphicformationsoftheEoceneand everinAlgeria,inversemodelingtoanextremeenvironment SenoniancarbonatesorintheMio-Pliocenesands. featuringalackofdataonascarcenaturalresource(ground- water). New data were hence collected in order to charac- – Atthebottom,theContinentalIntercalaire(CI),hosted terizethehydrochemicalandtheisotopiccompositionofthe in the lower Cretaceous continental formations (Bar- major aquifers in the Saharan region of Ouargla. New pos- remian and Albian), mainly composed of sandstones, sibilitiesofferedbyprogressingeochemicalmodelingwere sands and clays. It is only partially exploited because used.Theobjectivewasalsotoidentifytheoriginofthemin- ofitssignificantdepth. eralization and the water-rock interactions that occur along The integrated management of these groundwaters is theflowpath.Morespecifically,inversemodelingofchemi- presently a serious issue for local water resources man- calreactionsallowsonetoselectthebestconceptualmodel agers due to the large extension of the aquifers and the for the interpretation of the geochemical evolution of Ouar- complexity of the relations between them. Several stud- glaaquifersystem.Thestepwiseinversionstrategyinvolves ies (Guendouz, 1985; Fontes et al., 1986; Guendouz and designingalistofscenarios(hypotheses)thattakeintocon- Moulla,1996;Edmundsetal.,2003;Guendouzetal.,2003; sideration the most plausible combinations of geochemical Hamdi-Aïssa et al., 2004; Foster et al., 2006; OSS, 2008) processes that may occur within the studied medium. After started from chemical and isotopic information (2H, 18O, resolving the scenarios in a stepwise manner, the one that 234U, 238U, 36Cl) to characterize the relationships between provides the best conceptual geochemical model is then se- Hydrol.EarthSyst.Sci.,21,1669–1691,2017 www.hydrol-earth-syst-sci.net/21/1669/2017/ R.Slimanietal.:IdentificationofdominanthydrogeochemicalprocessesforgroundwatersintheAlgerianSahara1671 Figure2.GeologiccrosssectionintheregionofOuargla.Thebluepatternusedforchottandsabkhacorrespondtothelimitofthesaturated zone. lected, which allowed Dai et al. (2006) to optimize simul- 2 Methodology taneously transmissivities and geochemical transformations inaconfinedaquifer.InversemodelingwithPHREEQC3.0 2.1 Presentationofthestudyarea wasusedhereinadifferentway(onlyongeochemicaldata but for several aquifers) to account for the modifications of ThestudyareaislocatedinthenortheasterndesertofAlgeria the composition of water along the flow path. At least two (lowerSahara)(LeHouérou,2009)nearthecityofOuargla chemical analyses of groundwater at different points of the (Fig.1),31◦54(cid:48)to32◦1(cid:48)Nand5◦15(cid:48)to5◦27(cid:48)E,withamean flowpath,andasetofphases(mineralsand/orgases)which elevationof134(ma.s.l.).Itislocatedinthequaternaryval- potentiallyreactwhilewatercirculates,areneededtooperate ley of Oued Mya basin. The present climate belongs to the theprogram(Charltonetal.,1996). arid Mediterranean type (Dubief, 1963; Le Houérou, 2009; Anumberofassumptionsareinherenttotheapplicationof ONM, 1975/2013), as it is characterized by a mean annual inversegeochemicalmodeling:(i)thetwogroundwateranal- temperatureof22.5◦C,ayearlyrainfallof43.6mmyr−1and ysesfromtheinitialandthefinalboreholesshouldrepresent averyhighevaporationrateof2138mmyr−1. groundwater that flows along the same flow path; (ii) dis- Ouargla’s region and the entire lower Sahara has expe- persionanddiffusiondonotsignificantlyaffectgroundwater rienced during its long geological history alternating ma- chemistry;(iii)achemicalsteadystateprevailsintheground- rineandcontinentalsedimentationphases.DuringSecondary watersystemduringthetimeconsidered;and(iv)themineral era,verticalmovementsaffectedthePrecambrianbasement, phases used in the inverse calculation are or were present causing, in particular, collapse of its central part, along an in the aquifer (Zhu and Anderson, 2002). The soundness or axis passing approximately through the Oued Righ Valley the validity of the results depends on a valid conceptualiza- and the upper portion of the Oued Mya Valley. According tion of the groundwater system, on the validity of the ba- to Furon (1960), a epicontinental sea spread to the Lower sic hydrogeochemical concepts and principles, on the accu- EoceneofnorthernSahara.AftertheOligocene,theseagrad- racyofmodelinputdataandonthelevelofunderstandingof ually withdrew. It is estimated at present that this sea did the geochemical processes occurring in the area (Güler and not reach Ouargla and transgression stopped at the edge of Thyne,2004;Sharifetal.,2008).Theserequirementsareful- thebowl(Furon,1960;Lelièvre,1969).Thebasiniscarved filled in the region of Ouargla, which can be considered as into Mio-Pliocene (MP) deposits, which alternate with red a “window” to the largest Saharan aquifer, and thus one of sands, clays and sometimes marls; gypsum is not abundant thelargestaquifersintheworldinasemi-aridtohyper-arid anddatedfromthePontianera(duringtheMP)(Cornetand regionsubjecttobothglobalchanges:urbansprawlandcli- Gouscov, 1952; Dubief, 1953; Ould Baba Sy and Besbes, matechange.Themethodologydevelopedhereandthedata 2006).ThecontinentalPlioceneconsistsofalocallimestone collectedcaneasilybeintegratedinthePRECOSframework crust with puddingstone or lacustrine limestone (Fig. 2), proposed for the management of environmental resources shaped by eolian erosion into flat areas (regs). The Quater- (Trolardetal.,2016). nary formations are lithologically composed of alternating layers of permeable sand and relatively impermeable marl (Aumassipetal.,1972;Chellatetal.,2014). TheexploitationofMio-Plioceneaquiferisancientandat theoriginofthecreationoftheoasis(Lelièvre,1969;Mou- lias, 1927). The piezometric level was higher (145ma.s.l.) www.hydrol-earth-syst-sci.net/21/1669/2017/ Hydrol.EarthSyst.Sci.,21,1669–1691,2017 1672R.Slimanietal.:IdentificationofdominanthydrogeochemicalprocessesforgroundwatersintheAlgerianSahara but overexploitation at the end of the 19th century led to a solving the inverse problem under two alternate scenarios: catastrophic decrease of the resource, with presently more (1) considering a geochemical system in which calcite is than900boreholes(ANRH,2011). present and (2) considering a geochemical system without The exploitation of the Senonian aquifer dates back calcite.Aftersimulatingthetwoscenarios,itisusuallypossi- to1953atadepthbetween140and200m,withasmallini- bletoselectthesetupthatgivesthebestresultsasthesolution tial rate of approximately 9Ls−1; two boreholes have been totheinversemodelingaccordingtothefitbetweenthemod- exploited since 1965 and 1969, with a total flow rate of ap- eled and observed values. Then one can conclude whether proximately42Ls−1,fordrinkingwaterandirrigation. calcitedissolution/precipitationisrelevantornot.Thisstep- TheexploitationoftheAlbianaquiferdatesbackto1956; wise strategy allows us to identify the relevance of a given presently,twoboreholesareexploited: chemical process by inversely solving the problem through alternate scenarios in which the process is either participat- – ElHedebI,1335mdeep,withaflowrateof141Ls−1; ingornot(Daietal.,2006). Inthegeochemicalmodelinginverse,soundnessofresults – ElHedebII,1400mdeep,withaflowrateof68Ls−1. isdependentuponvalidconceptualizationofthesystem,va- lidityofbasicconceptsandprinciples,accuracyofinputdata 2.2 Samplingandanalyticalmethods andlevelofunderstandingofthegeochemicalprocesses.We usetheinformationfromthelithology,generalhydrochemi- The sampling programme consisted of collecting samples calevolutionpatterns,saturationindicesandmineralstability along transects corresponding to directions of flow for both diagramstoconstraintheinversemodels. thePhrandCTaquifers,whileitwaspossibletocollectonly eightsamplesfromtheCI.Atotalof107sampleswerecol- lected during a field campaign in 2013 along the main flow 3 Resultsanddiscussion pathofOuedMya.Ofthese,67werefrompiezometerstap- ping the phreatic aquifer, 32 from CT wells and the last 8 Tables1to4illustratetheresultsofthechemicalandtheiso- from boreholes tapping the CI aquifer (Fig. 3). Analyses of topicanalyses.Samplesareorderedaccordingtoanincreas- Na+, K+, Ca2+, Mg2+, Cl−, SO24− and HCO−3 were per- ingelectricconductivity(EC),andthisisassumedtoprovide formedbyionchromatographyatAlgiersNuclearResearch anorderforincreasingsaltcontent.Inboththephreaticand Center (CRNA). Previous and yet unpublished data (Guen- CT aquifers, temperature is close to 25◦C, while for the CI douzandMoulla,1996)sampledin1992areusedheretoo: aquifer, temperature is close to 50◦C. The values presented 59samplesforthePhraquifer,15samplesfortheCTaquifer inTables1to5arerawanalyticaldatathatwerecorrectedfor and 3 samples for the CI aquifer for chemical analyses and defects of charge balance before computing activities with dataof18Oand3H(GuendouzandMoulla,1996). PHREEQC. As analytical errors could not be ascribed to a specific analyte, the correction was made proportionally. 2.3 Geochemicalmethod Thecorrectionsdonotaffecttheanion-to-anionmoleratios, such as for [HCO−]/([Cl−]+2[SO2−]) or [SO2−]/[Cl−], PHREEQCwasusedtocheckminerals–solutionsequilibria 3 4 4 whereas they affect the cation-to-anion ratio, such as for usingthespecificinteractiontheory(SIT),i.e.,theextension [Na+]/[Cl−]. ofDebye–HückellawbyScatchardandGuggenheimincor- porated recently in PHREEQC 3.0 (Parkhurst and Appelo, 3.1 Characterizationofchemicalfaciesofthe 2013).Inversemodelingwasusedtocalculatethenumberof groundwater minerals and gases’ moles that must, respectively, dissolve or precipitate/degas to account for the difference in compo- Piper diagrams drawn for the studied groundwaters (Fig. 4) sition between initial and final water end members (Plum- broadly show a scatter plot dominated by a sodium chlo- mer and Back, 1980; Kenoyer and Bowser, 1992; Deutsch, ride facies. However, when going into small details, the 1997;PlummerandSprinckle,2001;GülerandThyne,2004; widespread chemical facies of the Phr aquifer are closer to Parkhurst and Appelo, 2013). This mass balance technique the NaCl cluster than those of the CI and CT aquifers. Re- hasbeenusedtoquantifyreactionscontrollingwaterchem- spectively,CaSO ,Na SO ,MgSO andNaClarethemost 4 2 4 4 istryalongflowpaths(Thomasetal.,1989).Itisalsousedto dominantchemicalspecies(minerals)thatarepresentinthe quantifythemixingproportionsofend-membercomponents phreatic waters. This sequential order of solutes is compa- in a flow system (Kuells et al., 2000; Belkhiri et al., 2010, rabletothatofothergroundwateroccurringinnorthAfrica 2012). andespeciallyintheneighboringareaofthechotts(depres- Inverse modeling involves designing a list of scenarios sionswheresaltsconcentratebyevaporation)Merouaneand (modeling setups) that take into account the most plausible Melrhir(Vallèsetal.,1997;Hamdi-Aïssaetal.,2004). combinationsofgeochemicalprocessesthatarelikelytooc- curinoursystem.Forexample,thewaytoidentifywhether calcitedissolution/precipitationisrelevantornotconsistsof Hydrol.EarthSyst.Sci.,21,1669–1691,2017 www.hydrol-earth-syst-sci.net/21/1669/2017/ R.Slimanietal.:IdentificationofdominanthydrogeochemicalprocessesforgroundwatersintheAlgerianSahara1673 Figure3.Locationmapofsamplingpoints. www.hydrol-earth-syst-sci.net/21/1669/2017/ Hydrol.EarthSyst.Sci.,21,1669–1691,2017 1674R.Slimanietal.:IdentificationofdominanthydrogeochemicalprocessesforgroundwatersintheAlgerianSahara Theyare,however,allundersaturatedwithrespecttogypsum (Fig.6). Moreover,theyareoversaturatedwithrespecttodolomite and undersaturated with respect to anhydrite and halite (Fig.7). Waters from the CT and phreatic aquifers show the same pattern,butsomeofthemaremorelargelyoversaturatedwith respecttocalcite,at25◦C. However, several phreatic waters (P031, P566, PLX4, PL18,P002,P023,P116,P066,P162andP036)thatarelo- cated in the sabkhas of Safioune, Oum er Raneb, Bamendil andAïnelBeïda’schottaresaturatedwithgypsumandanhy- drite.Thisisinaccordancewithhighlyevaporativeenviron- mentsfoundelsewhere(UNESCO,1972;Hamdi-Aïssaetal., 2004;Slimani,2006). NosignificanttrendofSIfromsouthtonorthupstreamand downstreamofOuedMya(Fig.7)isobserved.Thissuggests that the acquisition of mineralization is due to geochemical processes that have already reached equilibrium or steady Figure 4. Piper diagram for the Continental Intercalaire (filled stateintheupstreamareasofOuargla. squares),ComplexeTerminal(opencircles)andphreatic(opentri- angles)aquifers. 3.4 Changeoffaciesfromthecarbonatedclustertothe evaporites’cluster 3.2 Spatialdistributionofthemineralization The facies shifts progressively from the carbonated cluster (CIandCTaquifers)totheevaporites’cluster(Phraquifer) The salinity of the phreatic aquifer varies considerably de- with an increase in sulfates and chlorides at the expense of pendingonthelocation(namely,thedistancefromwellsor carbonates (SI of gypsum, anhydrite and halite). This is il- drains)andtime(duetotheinfluenceofirrigation)(Fig.5a). lustrated by a decrease of the [HCO−]/([Cl−]+2[SO2−]) Itssalinityislowaroundirrigatedandfairlywell-drained 3 4 ratio (Fig. 8) from 0.2 to 0 and of the [SO2−]/[Cl−] ratio areas,suchasthepalmgrovesofHassiMiloud,justnorthof 4 from 0.8 to values smaller than 0.3 (Fig. 9) while salinity Ouargla(Fig.3),thatbenefitfromfreshwaterandaredrained increases.Carbonateconcentrationstendtowardsverysmall tothesabkhaOumElRaneb.However,thethreelowestsalin- values,whileitisnotthecaseforsulfates.Thisisduetoboth ityvaluesareobservedinthewellsoftheOuarglapalmgrove gypsum dissolution and calcite precipitation. Chlorides in itself,wherethePhraquiferwatertableisdeeperthan2m. groundwatermaycomefromthreedifferentsources:(i)an- Conversely,thehighestsalinitywatersarefoundinwells cient sea water entrapped in sediments, (ii) dissolution of drilledinthechottsandsabkhas(asabkhaisthecentralpart halite and related minerals that are present in evaporite de- ofachottwheresalinityisthelargest)(SafiouneandOumer positsand(iii)dissolutionofdryfalloutfromtheatmosphere, Raneb)wheretheaquiferisoftenshallowerthan50cm. particularlyinthesearidregions(Matiatosetal.,2014;Hadj- ThesalinityoftheCT(Mio-Pliocene)aquifer(Fig.5b)is Ammaretal.,2014). muchlowerthanthatofthePhraquiferandrangesfrom1to 2gL−1;however,itshardnessislargeranditcontainsmore The[Na+]/[Cl−]ratiorangesfrom0.85to1.26fortheCI aquifer,from0.40to1.02fortheCTaquiferandfrom0.13 sulfate, chloride and sodium than the waters of the Senon- to 2.15 for the Phr aquifer. The measured points from the ian formations and those of the CI aquifer. The salinity of theSenonianaquiferrangesfrom1.1to1.7gL−1,whilethe threeconsideredaquifersarelinearlyscatteredwithgoodap- averagesalinityoftheCIaquiferis0.7gL−1(Fig.5c). proximation around the unity slope straight line that stands forhalitedissolution(Fig.10).Thelatterappearsasthemost A likely contamination of the Mio-Pliocene aquifer by dominantreactionoccurringinthemedium.However,atvery phreatic groundwaters through casing leakage in an area highsalinity,Na+ seemstoswervefromthestraightlineto- where water is heavily loaded with salt, and therefore par- wardssmallervalues. ticularlyaggressive,cannotbeexcluded. A further scrutiny of Fig. 10 shows that CI waters are 3.3 Saturationindices very close to the 1:1 line. CT waters are enriched in both Na+ and Cl− but slightly lower than the 1:1 line while The calculated saturation indices (SIs) reveal that waters phreatic waters are largely enriched and much more scat- fromCIat50◦Careclosetoequilibriumwithrespecttocal- tered.CTwatersareclosertotheseawatermoleratio(0.858), cite,exceptforthreesamplesthatareslightlyoversaturated. butsomelowervaluesimplyacontributionfromasourceof Hydrol.EarthSyst.Sci.,21,1669–1691,2017 www.hydrol-earth-syst-sci.net/21/1669/2017/ R.Slimanietal.:IdentificationofdominanthydrogeochemicalprocessesforgroundwatersintheAlgerianSahara1675 chloride other than halite or from entrapped seawater. Con- versely, a [Na+]/[Cl−] ratio larger than 1 is observed for phreatic waters, which implies the contribution of another sourceofsodium,mostlikelysodiumsulfate,thatispresent asmirabiliteorthenarditeinthechottsandthesabkhaareas. The[Br−]/[Cl−]ratiorangesfrom2×10−3 to3×10−3. − 34 33 Thevalueofthismolarratioforhaliteisaround2.5×10−3, Br 0.0 0.0 which matches the aforementioned range and confirms that halitedissolutionisthemostdominantreactiontakingplace + inthestudiedmedium. 2Ca 3.30.50.81.21.32.31.44.65.24.91.4 In the CI, CT and Phr aquifers, calcium originates both fromcarbonateandsulfate(Figs.11and12).Threesamples +2 58317854688 from the CI aquifer are close to the [Ca2+]/[HCO−] 1:2 Mg 2.0.1.1.5.3.4.3.5.5.4. line, while calcium sulfate dissolution explains the3excess ) ofcalcium.However,ninesamplesfromthePhraquiferare 1 +K −L 0.60.20.20.20.70.70.50.80.50.60.7 depletedincalcium,andplottedunderthe[Ca2+]/[HCO−] ol 1:2 line. This cannot be explained by precipitation of ca3l- m +a m 0.75.75.15.66.30.73.90.81.82.20.6 cite,assomeareundersaturatedwithrespecttothatmineral, N ( 1 111112 whileothersareoversaturated. − Inthiscase,acationexchangeprocessseemstooccurand 24 81299652782 O 6.1.1.1.3.4.5.5.7.7.6. lead to a preferential adsorption of divalent cations, with a S release of Na+. This is confirmed by the inverse modeling −Cl 5.85.86.26.59.812.413.114.315.115.318.6 tNhaa+tisanddevKel+opreedlebaseelosw. andwhichimpliesMg2+fixationand k. 54632919536 Larger sulfate values observed in the phreatic aquifer Al 3.0.0.1.3.1.2.2.3.3.2. (Fig.12)with[Ca2+]/[SO2−]<1canbeattributedtoaNa- 4 Mgsulfatedissolutionfromamineralbearingsuchelements. H 63655368663 p 7.7.7.7.7.7.7.6.7.7.7. Thisis,forinstance,thecaseofbloedite. T ◦(C) 46.549.347.448.948.949.347.450.546.550.154.5 3.5 Isotopegeochemistry ) The CT and CI aquifers exhibit depleted and homogeneous 1 C −m 09022224029 18Ocontents,rangingfrom−8.32to−7.85‰.Thiswasal- E Sc 2.1.2.2.2.2.2.2.2.2.2. readypreviouslyreportedbymanyauthors(Edmundsetal., quifer. (m 2o0th0e3r;hGaunedn,d1o8uOzveatluael.s, 2fo0r03th;eMpohurlelaatiectaaql.u,if2e0r1a2r)e. Ownidethlye Intercalairea Date 9Nov201219921992199222Feb201311Dec201011Dec201024Feb201327Feb20139Nov201222Feb2013 dWiemnisarapittceeehrrlsseye,dldoHicnaaansthesdeidaMvvnayoirlryiotshuobdtoeotftpwotehesSeeeanbvnkid−rhtau8era.te8lS4tlahinfiauenosducmno3oen.,r4nea2erec‰evtiafnopg(uoT,nraaadbptelpmedr.oo4xIr)ne-. ontinental Elev. 134134146132132134146110134110160 toihrfraibtgoaattrhieoaCn,IitshaenndownCaetTxeirsgttreaonbutl.neCdiwosnacvtleoerrssseewltyoit,htwhpeahtesruersarftlaioccceoatnaeendsdstomhuriotxhuingoghf eC g. 8686907676869036863666 HassiMilouduptoOuarglacityshowdepletedvalues.This h n 99200926963 fort Lo (m) 723723724721721723724721723721720 ifsrotmhethceleuarndfienrglyeirnpgriCntIoafndaCcoTnatrqibuuifteiorsn(tGootnhfieanPthinriweattaelr.s, a dat 5050109696501059505964 1975; Guendouz, 1985; Fontes et al., 1986; Guendouz and cal at. 4747438888474316471602 Moulla,1996). yti L 5353535454535359535956 Phreaticwatersresultfromamixingoftwoendmembers. nal 33333333333 Evidenceforthisisgivenbyconsideringthe[Cl−]and18O a d aa relationship(Fig.13).Thetwoclustersare(i)afirstclusterof n ss able1.Fielda Locality HedebIHedebIHedebIIAouinetMousAouinetMousHedebIHedebIIHassiKhfifHedebIHassiKhfifElBour 1osin8afOlt1ihn8-edOiteyn-p.eolnTretrhthieceedhrlneagdtrptoegaurrrntoisdouwfncdotahwmteeaprstoe(tuFsrediwgdy.iotr1hef4gpp)io,ohsnarien.taidvtie(civiw)aalautneeorstshaoencrdccaulurhrsiitngeghr T www.hydrol-earth-syst-sci.net/21/1669/2017/ Hydrol.EarthSyst.Sci.,21,1669–1691,2017 1676R.Slimanietal.:IdentificationofdominanthydrogeochemicalprocessesforgroundwatersintheAlgerianSahara T FraneGaretChemiaAbazatBourelAïchaChottPalmeraieStationdePompRouissatIRouissatIElBourAïnMoussaVItasElKoumElKoumN’GoussaElHoH.MiloudElBourH.MiloudAïnN’SaraAïnMoussaIIGhâzaletA.HA.LouiseAïnN’SaraSidiKouiledSARMekhadmaOglatLarbaâSaidOtbaIfriRouissatIIISaidOtbaIRouissatIIIDebicheSaidOtbaIElBourOglatLarbaâSaidOtbaIfriBamendilBamendil Locality Fieldanable2. ag u d e a cho naly tt tic a DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD S l 6F61F12F61F15F75F83F13F14F99F11F16F66F66F51F16F91F16F59F36F74F76F59F11F96F62F61F13F12F73F16F62F74F96F62F61F17F47F4 ite data 2139347088435077135735009302146510101144651 fo r A the MSMMSSMMMMMSSSMSMSSMSSSSMSSSSSMSMMSSMM qu C ife om r p le 33333333333333333333333333333333333333 x 55555555555555555555555555555555555555 e 73543433333775444539354364335345364366 L T 06258155686336707978790660857577660800 a e 1717505321655656244018696925559355328175523285755025890641065541245025897575 t. rm 54439644596446767340335717182872517199 in a l 7171717272727272727171727271717171717172727172717272727271727171727272727272 (m L aq 71336808278603915541352124982498264186807046163916398979706758167067686896650356190468689055782293690085106023528272235270678272264193690085106005860586 ) ong. uifer. E 16721313786243224808010021093143143198173169173255220119310255329221177216204248212248173211100177216204296296 lev. 27283554 26 821 2131 25322226252433131272026 26 27 20 Jan2013Jan2013Feb2013Feb2013Feb2013Feb20131992Jan20131992Feb2013Jan20131992Jan2013Jan20131992Jan2013Feb2013Feb2013Feb2013Feb2013Jan2013Jan2013Jan2013Feb2013Jan2013Jan2013Jan2013Jan2013Jan20131992Jan20131992Jan20131992199219921992Jan2013 Date (m S 3.84.13.53.43.43.32.03.12.32.43.72.53.12.92.12.62.82.67.52.82.63.42.62.52.42.42.42.35.63.12.22.33.12.32.32.72.02.0 cm EC − 1 ) 24.228.024.622.224.624.520.023.021.225.323.925.022.922.922.719.921.623.823.922.524.025.721.325.823.724.922.918.925.126.123.924.226.218.024.023.521.120.1 (C)◦ T 77777878777787887777778777787778778787 p .9.3.6.3.5.2.8.1.9.2.5.6.1.5.1.0.5.6.5.5.5.4.1.7.6.9.8.0.3.3.7.2.4.9.0.0.2.9 H 22243313121132223223224322112211111101 A .3.2.2.1.3.9.7.2.6.3.5.5.5.0.8.1.3.1.4.5.0.0.6.4.3.2.7.6.4.4.8.5.6.4.4.3.9.6 lk . 22222222211111111111111111111111111111 C 5.95.94.73.22.32.11.71.20.19.48.88.88.48.48.17.97.97.77.57.47.46.96.86.56.36.15.45.24.34.34.23.52.81.41.00.70.60.1 l− S 1 1111 1 O 39222181797799599989998888886685664235 42 .5.5.7.2.1.9.5.1.2.4.1.2.7.6.7.3.2.2.2.3.1.7.8.5.6.6.3.6.9.9.4.7.8.8.7.7.5.8 − 22.625.421.121.220.919.917.719.612.118.810.110.217.917.116.615.816.515.517.316.613.915.916.116.113.616.513.712.613.113.112.615.05.211.611.58.010.69.9 (mm Na+ o l 00111210203300011100200000010000120000 L K .6.6.7.5.2.1.2.9.6.4.4.4.3.5.5.6.0.1.4.6.0.3.8.7.7.7.2.6.4.4.7.3.9.3.2.7.1.7 − + 1 ) M 8.93.68.58.68.37.65.17.15.83.35.05.06.56.23.65.86.26.13.16.25.83.46.25.35.94.95.25.83.43.45.43.31.62.02.12.32.33.9 g2 + C 7.27.26.56.05.86.36.06.05.27.65.85.85.15.04.34.74.94.76.54.95.17.95.04.95.04.34.84.35.45.44.42.69.14.63.32.11.82.5 a2+ 0.03 0.03 0.03 0.03 0.03 Br− 7 4 3 3 4 Hydrol.EarthSyst.Sci.,21,1669–1691,2017 www.hydrol-earth-syst-sci.net/21/1669/2017/ R.Slimanietal.:IdentificationofdominanthydrogeochemicalprocessesforgroundwatersintheAlgerianSahara1677 ClusterIrepresentsthewatersfromCIandCTwhoseiso- − 35 37 topic composition is depleted in 18O (average value around Br 0.0 0.0 −8.2‰)(Fig.13).Theycorrespondtoanoldwaterrecharge (paleo-recharge),whoseage,estimatedbymeansof14C,ex- + 2Ca 8.08.07.17.77.76.16.16.59.7 ceeds15000yrBP(Guendouz,1985;GuendouzandMiche- lot, 2006). Thus, it is not a water body that is recharged by +2Mg 4.44.510.05.05.06.26.28.47.4 raencdenptarptrlyecoipfitpahtiroenat.icItwcoatnesrisstasnodfcCaInabnedaCscTribgerodutnodawnatueprs- ) wardleakagefavoredbytheextensionoffaultsnearAmguid +K −1L 0.60.61.70.50.51.21.20.91.1 ElBioddorsal. ol ClusterII,observedinSebkhetSafioune,canbeascribed m +Na (m 22.923.123.923.923.922.822.924.036.8 to the direct dissolution of surficial evaporitic deposits con- veyedbyevaporatedrainwater. −24 8.78.64.29.09.18.38.38.93.5 Evaporation alone cannot explain the distribution of data O 1 1 S that is observed (Fig. 13). Evidence for this is given in a semi-logarithmic plot (Fig. 14), as classically obtained ac- − 944998872 Cl 27.28.28.28.28.29.29.34.42. cording to the simple approximation of the Rayleigh equa- tion(cf.Appendix): k. 664227763 Al 2.2.2.2.2.1.1.1.2. δ18O≈1000×(1−α)log(cid:2)Cl−(cid:3)+k, H 006355247 p 7.8.7.7.7.7.7.7.7. ≈−(cid:15)log(cid:2)Cl−(cid:3)+k, (1) T ◦(C) 24.123.225.223.722.825.425.325.125.4 where α is the fractionation factor during evaporation, ) (cid:15)≡−1000×(1−α)istheenrichmentfactorandkisacon- 1 − C m 218994217 stant (Ma et al., 2010; Chkir et al., 2009). CI and CT wa- E c 4.3.3.3.2.4.6.5.3. S tersarebetterseparatedinthesemi-logarithmicplotbecause m ( they are differentiated by their chloride content. According Date Jan20131992Jan2013Jan20131992Feb2013199219921992 tiionseEFqiqug.a.(l11t4)o,).s−iTm7h3pe.l5ev.aelvuaepoofra(cid:15)tiounsegdivisesthaesvtraaliugehtatli2n5e◦(sCo,liwdhliinche 25 2828 3 P115istheonlysamplethatappearsonthestraightevap- oration line (Fig. 14). It should be considered as an outlier Elev. 216198891568933233293224 sincetherestofthesamplesareallwellalignedontheloga- rithmicfitderivedfromthemixinglineofFig.13. ng. 919979042799042837837381521 The phreatic waters that are close to cluster I (Fig. 13) Lo m) 211817161732322323 correspond to groundwaters occurring in the edges of the ( 777777777 basin (Hassi Miloud, piezometer P433) (Fig. 14). They are 162220036 lowmineralizedandacquiretheirsalinityviatwoprocesses, 559297745 at. 046211881154544816 namely dissolution of evaporites along their underground L 455554434 353535353535353535 transit up to Sebkhet Safioune and dilution through upward leakage by the less-mineralized waters of the CI and CT uifer MSMMMMMMS aquifers (for example, Hedeb I for CI and D7F4 for CT) Aq (Fig.14)(Guendouz,1985;GuendouzandMoulla,1996). The rates of the mixing that are due to upward leakage Site D6F69D6F51D1F138D6F49D1F138D3F8D3F8D3F26D5F80 onianaquifer. fbinryogmmtheCeaInδstvooaClfuTaesmtooawfseasarbdcashlatfhnraecceptiheorqneuatahttiaicotaniqs.uIintifvoeonrllvcyaerndeibqneutichraeelscmkuinlxaoitwnedg- n hott =Se process. c S Theδvalueofthemixtureisgivenby able2.Continued. Locality OumerRanebN’GoussaElHouH.MiloudBenyazaAïnLarbaâH.MiloudBenyazaRouissatRouissatAïnElArchStationdePompage =Mio-Plioceneaquifer; owδmfhitexhre=eCffTi×sanδthd1e+δ1fr,(a1δc2−tiaofrne)ot×hfetδhr2ee,sCpeIcatiqvueifiesro,to1p−efconthteenftrsa.cti(o2n) T M www.hydrol-earth-syst-sci.net/21/1669/2017/ Hydrol.EarthSyst.Sci.,21,1669–1691,2017 1678R.Slimanietal.:IdentificationofdominanthydrogeochemicalprocessesforgroundwatersintheAlgerianSahara T RRBPHDHSRRDERRGRHPMRRHHRFSBGFMOHEM HAHBB L a outeAïnMoussaouteAïnMoussaourElHaïchaarcSONACOMôpitalirectiondesServicassiDebichetationd’épurationouteElGoléaouteElGoléairectiondesServiccoleParamédicaleouteAïnMoussaouteElGoléaherbouzouteElGoléa.CheggaolycliniqueBelAbekhadmaouteElGoléaouteAïnMoussaassiMiloud.CheggaouteAïnBeïdaraneAnkDjemeltationd’épurationourElHaïchaherbouzraneElKoumaisondecultureglatLarbaâassiMiloudlBouraisondeculture assiNagaïnKheirassiMiloudouKhezanaouKhezana ocality Fieldandanble3. esA esA bès aly gric gric tical ole ole da s s ta fo PPPPLPPPPPPPPPPPPPPPPPPPPPPPPPPPPPLPPPPP S r 050540L2TPL141L31111L1L30511L111LXL1L0110505LXLX42L340L140L3430500L3TPLXL0054343 ite th 6688SN060670277564855784220851109613036933 ep 2 h re a 35353535353535353535353535353535353535353535353535353535353535353535 35 353535 tic 4443338333334333733344737343736463 8 499 L a 9946871821788172777387775847277747 4 777 a q 933933999077292055097398463435055478943435962463944270109586943329944323339398999962820988287216272988 761 216046046 t. uife r. 71717171727173727171717271717171717271717171717271727171717273717172 71 717171 (m L 7799090133907383418476448198900890 7 899 ) o 022022930558442746922404715298746170353298744715428119419060353520428063875404930744721114058358421114 604 358626626 ng. 1111111111111111111111111111111111 1 111 E 2213310311133131113432120313123262 2 211 le 8804246071413147197139179004249414 5 488 v . 2122222333122121131112212111222111121212 D 6Jan20139927Jan20131Jan20137Jan20138Jan20134Jan20131Jan2013Feb2013Feb20139921Jan20136Jan20139921Jan20139929921/01/20139929929927Jan20130Jan20139920Jan20139929929920Jan20138Jan20134Jan20139929929929920Jan20139927/01/20139920Jan2013 ate (m S c m 676665555565544544 253444522334232424222 − E .0.6.2.1.1.5.5.3.8.5.1.7.7.7.7.6.5.7 .6.3.7.1.7.1.5.4.5.4.7.5.8.0.5.1.9.0.1.0.1 )1 C 24.623.623.124.525.424.623.725.122.525.023.722.926.223.723.323.723.722.223.923.723.424.625.223.624.223.823.523.527.522.227.523.523.423.823.723.023.823.922.122.7 (C)◦ T 7788788787787787777778778777788778787889 p .6.9.1.1.8.4.8.8.1.7.7.2.6.7.2.6.6.9.8.6.7.1.6.2.4.4.8.7.5.2.3.8.9.1.1.1.5.2.9.2 H 2011120413122111111213324323243211521111 A .2.6.8.8.6.4.3.1.7.3.3.0.5.5.8.4.5.8.7.8.3.0.0.0.4.0.4.0.2.2.3.3.3.5.3.0.9.9.5.6 lk . 4443333333333333333222222222222211111111 C 2.52.12.09.89.78.88.68.46.35.45.03.63.52.82.41.91.51.20.98.88.27.76.25.75.34.34.23.53.32.62.10.89.08.98.27.74.23.02.02.0 l− 17.910.719.111.811.716.918.014.611.613.813.512.111.912.814.612.810.115.416.714.511.510.69.810.49.521.213.214.013.48.612.49.47.77.810.09.417.97.36.97.3 4SO2− 3123332223 22322222511212245222312211111 N 2.18.97.50.66.06.92.38.58.57.18.69.27.70.27.82.20.11.34.98.77.69.04.04.83.74.31.90.61.88.41.84.22.46.14.36.65.92.61.63.0 (mm a+ o 8.01.913.25.28.41.90.94.53.23.01.93.35.91.00.80.85.93.91.00.12.02.32.30.21.80.96.12.81.92.22.64.32.70.60.40.90.61.30.91.0 lL1− K+ ) M 111 1 1 1 11 1 2 1 g 2237594168966960715019594021848152150444 2 .5.6.4.1.1.1.8.6.8.4.4.4.0.2.8.6.5.2.7.8.5.1.0.3.2.2.3.0.3.0.6.4.3.1.4.8.6.4.4.3 + C 898869218857875108684056777200635053857322 a2 .1.3.1.5.0.2.3.1.4.7.2.2.6.7.8.0.5.4.5.7.8.6.5.4.9.2.8.3.3.2.5.9.3.0.1.0.5.4.9.8 + 0.030.03 0.02 0.03 0.03 0.02 Br− 33 5 2 1 4 Hydrol.EarthSyst.Sci.,21,1669–1691,2017 www.hydrol-earth-syst-sci.net/21/1669/2017/
Description: