ebook img

Identification of Continuous-Time Systems-Linear and Robust Parameter Estimation PDF

143 Pages·2019·7.518 MB·\143
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Identification of Continuous-Time Systems-Linear and Robust Parameter Estimation

Identification of Continuous-Time Systems ENGINEERING SYSTEMS AND SUSTAINABILITY SERIES Series Editor: Ganti Prasada Rao Co-Editors: D. Subbaram Naidu, Hugues Garnier, and Zidong Wang Published Titles Identification of Continuous-Time Systems: Linear and Robust Parameter Estimation Allamaraju Subrahmanyam and Ganti Prasada Rao Nonlinear Stochastic Control and Filtering with Engineering-Oriented Complexities Guoliang Wei, Zidong Wang, and Wei Qian Multi-Stage Flash Desalination: Modeling, Simulation, and Adaptive Control Abraha Woldai ENGINEERING SYSTEMS AND SUSTAINABILITY SERIES Identification Series Editor: Ganti Prasada Rao Co-Editors: D. Subbaram Naidu, Hugues Garnier, and Zidong Wang of Continuous-Time Systems Published Titles Linear and Robust Identification of Continuous-Time Systems: Linear and Robust Parameter Estimation Parameter Estimation Allamaraju Subrahmanyam and Ganti Prasada Rao Nonlinear Stochastic Control and Filtering with Engineering-Oriented Complexities Guoliang Wei, Zidong Wang, and Wei Qian Multi-Stage Flash Desalination: Modeling, Simulation, and Adaptive Control Abraha Woldai Allamaraju Subrahmanyam Ganti Prasada Rao CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2020 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed on acid-free paper International Standard Book Number-13: 978-0-367-37143-2 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit- ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright. com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging‑in‑Publication Data Names: Allamaraju, Subrahmanyam, author. | Prasada Rao, Ganti, 1942- author. Title: Identification of continuous-time systems : linear and robust parameter estimation / Allamaraju Subrahmanyam and Ganti Prasada Rao. Description: First edition. | New York, N.Y. : CRC Press/Taylor & Francis Group, 2020. | Series: Engineering systems and sustainability | Includes bibliographical references and index. Identifiers: LCCN 2019032828 (print) | LCCN 2019032829 (ebook) | ISBN 9780367371432 (hardback) | ISBN 9780429352850 (ebook) Subjects: LCSH: Automatic control--Mathematical models. | Linear time invariant systems. | System identification. | Parameter estimation. Classification: LCC TJ212.2 .A44 2020 (print) | LCC TJ212.2 (ebook) | DDC 629.8/95--dc23 LC record available at https://lccn.loc.gov/2019032828 LC ebook record available at https://lccn.loc.gov/2019032829 Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Contents CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2020 by Taylor & Francis Group, LLC List of Figures .......................................................................................................vii CRC Press is an imprint of Taylor & Francis Group, an Informa business List of Tables ...........................................................................................................ix No claim to original U.S. Government works Preface ......................................................................................................................xi Printed on acid-free paper Acknowledgments ................................................................................................xv Authors ................................................................................................................xvii International Standard Book Number-13: 978-0-367-37143-2 (Hardback) List of Abbreviations ..........................................................................................xxi 978-0-367-37145-6 (Paperback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts 1. Introduction and Overview ..........................................................................1 have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers 1.1 Background .............................................................................................1 have attempted to trace the copyright holders of all material reproduced in this publication and apologize 1.2 Introduction .............................................................................................3 to copyright holders if permission to publish in this form has not been obtained. If any copyright material 1.3 Role of Model Parameterizations in System Identification...............4 has not been acknowledged please write and let us know so we may rectify in any future reprint. 1.3.1 Poisson Moment Functional Approach ...................................6 Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit- 1.3.2 Integral Equation Approach......................................................6 ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, 1.3.3 Biased Estimation .......................................................................8 including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. 1.3.4 Reducible Models (for Multivariable Systems) .......................8 1.3.5 Distribution of Estimation Errors .............................................9 For permission to photocopy or use material electronically from this work, please access www.copyright. 1.4 Error Quantification: An Engineering Necessity .............................13 com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the 2. Markov Parameter Models .........................................................................17 CCC, a separate system of payment has been arranged. 2.1 Introduction ...........................................................................................17 Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are 2.2 Markov Parameter Models ..................................................................18 used only for identification and explanation without intent to infringe. 2.2.1 Generalizations .........................................................................19 2.2.2 Choice of λ .................................................................................20 Library of Congress Cataloging‑in‑Publication Data 2.2.3 Markov Parameter Estimation ................................................23 Names: Allamaraju, Subrahmanyam, author. | Prasada Rao, Ganti, 1942- 2.2.4 Identification of Structure .......................................................24 author. 2.3 Finitization of the Markov Parameter Sequence ..............................25 Title: Identification of continuous-time systems : linear and robust parameter estimation / Allamaraju Subrahmanyam and Ganti Prasada Rao. 2.3.1 Controller Form Realization ...................................................25 Description: First edition. | New York, N.Y. : CRC Press/Taylor & Francis 2.4 Identifiability Conditions ....................................................................28 Group, 2020. | Series: Engineering systems and sustainability | Includes 2.5 Convergence Analysis of the Algorithm ...........................................32 bibliographical references and index. Identifiers: LCCN 2019032828 (print) | LCCN 2019032829 (ebook) | ISBN 2.6 Illustrative Examples ............................................................................36 9780367371432 (hardback) | ISBN 9780429352850 (ebook) 2.7 Summary and Conclusions .................................................................41 Subjects: LCSH: Automatic control--Mathematical models. | Linear time invariant systems. | System identification. | Parameter estimation. Classification: LCC TJ212.2 .A44 2020 (print) | LCC TJ212.2 (ebook) | DDC 3. Time Moment Models ..................................................................................43 629.8/95--dc23 3.1 Introduction ...........................................................................................43 LC record available at https://lccn.loc.gov/2019032828 3.2 Time Moment Models ..........................................................................44 LC ebook record available at https://lccn.loc.gov/2019032829 3.3 Finitization of Time-Moment Sequence ............................................47 3.3.1 Implementation Issues .............................................................48 Visit the Taylor & Francis Web site at 3.4 Illustrative Examples ............................................................................51 http://www.taylorandfrancis.com 3.5 Choice of Basis of Parameterization ...................................................54 and the CRC Press Web site at 3.6 Summary and Conclusions .................................................................61 http://www.crcpress.com v vi Contents 4. Robust Parameter Estimation .....................................................................63 4.1 Introduction ...........................................................................................63 4.2 Problem Description ............................................................................64 4.3 Solution to the Suboptimal Problem ..................................................67 4.4 Bounds on Parameter Errors ...............................................................76 4.5 Summary and Conclusions .................................................................78 5. Error Quantification .....................................................................................81 5.1 Introduction ..........................................................................................81 5.1.1 Role of Priors .............................................................................83 5.1.2 A Plausible Philosophy ............................................................85 5.1.3 Chapter Layout ..........................................................................86 5.2 Robust Parameter Estimation .............................................................86 5.3 Quantification of Parameter Errors ....................................................87 5.4 Illustrative Examples ............................................................................90 5.5 Conclusions ...........................................................................................92 6. Conclusions ....................................................................................................95 6.1 Linear Model Parameterizations for System Identification ............95 6.2 Robust Estimation ................................................................................96 6.3 Error Quantification .............................................................................97 Bibliography ..........................................................................................................99 Subject Index ......................................................................................................113 Author Index .......................................................................................................117 List of Figures Figure 1.1 Indirect identification of CT parameters via DT parameters .....7 Figure 1.2 Direct identification of CT parameters via DT parameters ........8 Figure 1.3 Poisson filter chain ............................................................................8 Figure 2.1 Expansion of the complex plane: (I) Actual ZOC, (II) Expanded ZOC. (a) λ<0 for real and heavily damped poles; and (b) λ>0 for lightly damped and imaginary pole .........................................................................21 Figure 2.2 Pattern of MP convergence (Example 2.1) ....................................37 Figure 2.3 Pattern of MP convergence—Subsystem 1 (Example 2.2) .........38 Figure 2.4 Pattern of MP convergence—Subsystem 2 (Example 2.2) .........38 Figure 3.1 Pattern of parameter convergence—Noise: 10% white (Example 3.1) ....................................................................................52 Figure 3.2 Pattern of parameter convergence—Noise: 10% colored (Example 3.1) ....................................................................................52 Figure 3.3 Results of restricted complexity model estimation using basis  (Example 3.3) ...................................................................57 PF Figure 3.4 Results of restricted complexity model estimation using basis  (Example 3.3) .................................................................58 SVF Figure 3.5 Results of restricted complexity model estimation using basis  (Example 3.3).................................................................59 LAG Figure 3.6 Comparison of approximations (Example 3.3). Basis-1:  , Basis-2:  , Basis-3:  .....................................................60 MP SVF LAG Figure 3.7 Results of restricted complexity model estimation using basis  (Example 3.4) .................................................................61 SVF Figure 4.1 Patterns of parameter convergence ..............................................73 Figure 4.2 Decay of determinants ...................................................................74 Figure 4.3 Response to a sudden change in steady-state gain of the system ...............................................................................................74 Figure 5.1 Frequency domain error bounds (Example 5.1) ..........................91 Figure 5.2 Frequency domain error bounds (Example 2.2) .........................92 vii List of Tables Table 2.1 Parameter estimates (Example 2.1) .................................................37 Table 2.2 Parameter estimates—Subsystem 1 (Example 2.2) .......................39 Table 2.3 Parameter estimates—Subsystem 2 (Example 2.2) .......................39 Table 2.4 Results of Monte Carlo experiments with MP approach (Example 2.3) ......................................................................................39 Table 2.5 Comparison of percentage REN (Example 2.3) ............................40 Table 3.1 Parameter estimates—Noise: 10% white (Example 3.1) ...............51 Table 3.2 Parameter estimates—Noise: 10% colored (Example 3.1) ............51 Table 3.3 Parameter estimates—Noise: 10% white (Example 3.2) ...............53 Table 3.4 Parameter estimates—Noise: 10% colored (Example 3.2) ............53 Table 3.5 Results of Monte Carlo simulation experiments—Noise: white (Example 3.2) ...........................................................................53 Table 3.6 Results of Monte Carlo simulation experiments—Noise: colored (Example 3.2) ........................................................................54 Table 3.7 Parameter estimates (Example 3.3) .................................................56 Table 3.8 Comparison of condition numbers (Example 3.3) ........................60 Table 3.9 Parameter estimates (Example 3.4) .................................................60 ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.