THEJOURNALOFBIOLOGICALCHEMISTRY Vol.280,No.1,IssueofJanuary7,pp.585–595,2005 ©2005byTheAmericanSocietyforBiochemistryandMolecularBiology,Inc. PrintedinU.S.A. Identification of AcnR, a TetR-type Repressor of the Aconitase Gene acn in Corynebacterium glutamicum* Receivedforpublication,July21,2004,andinrevisedform,October5,2004 Published,JBCPapersinPress,October19,2004,DOI10.1074/jbc.M408271200 AndreasKrug,VolkerF.Wendisch,andMichaelBott‡ FromtheInstitutfu¨rBiotechnologie1,ForschungszentrumJu¨lich,D-52425Ju¨lich,Germany InCorynebacteriumglutamicum,theactivityofacon- theaspartateandglutamatefamily.Thus,itisnotsurprising itase is 2.5–4-fold higher on propionate, citrate, or ace- thatseveraltricarboxylicacidcycleenzymesofC.glutamicum tatethanonglucose.Hereweshowthatthisvariationis havebeenstudiedbiochemicallyand/orgeneticallyinthepast, caused by transcriptional regulation. In search for pu- i.e. citrate synthase (gltA, Ref. 7), isocitrate dehydrogenase tative regulators, a gene (acnR) encoding a TetR-type (icd,Ref.8),2-oxoglutaratedehydrogenase(9),malate:quinone transcriptional regulator was found to be encoded im- oxidoreductase (mqo, Ref. 10), and malate dehydrogenase mediately downstream of the aconitase gene (acn) in (mdh, Ref. 11). However, no information is available hitherto C.glutamicum.DeletionoftheacnRgeneledtoa5-fold on the genetic regulation of this pathway in C. glutamicum, increased acn-mRNA level and a 5-fold increased acon- althoughthereisevidencethatitdiffersfromthatofthemodel itaseactivity,suggestingthatAcnRfunctionsasrepres- bacteria Escherichia coli and Bacillus subtilis, since e.g. sor of acn expression. DNA microarray analyses indi- glucose and acetate are consumed in parallel rather than catedthatacnistheprimarytargetgeneofAcnRinthe successively(12). C.glutamicumgenome.PurifiedAcnRwasshowntobe No studies have been performed yet in C. glutamicum on a homodimer, which binds to the acn promoter in the region from (cid:1)11 to (cid:1)28 relative to the transcription aconitase (EC 4.2.1.3), which catalyzes the stereospecific and reversibleisomerizationofcitratetoisocitrateviacis-aconitate start. It thus presumably acts by interfering with the inthetricarboxylicacidcycleandintheglyoxylatecycle.Itis bindingofRNApolymerase.Theacn-acnRorganization is conserved in all corynebacteria and mycobacteria anunusualenzymeinthatitcontainsa[4Fe-4S]cluster,which withknowngenomesequenceandaputativeAcnRcon- isnotinvolvedinelectrontransfer,butinbindingofthesub- sensusbindingmotif(CAGNACnnncGTACTG)wasiden- strate (13). Besides their catalytic function, a certain class of tifiedinthecorrespondingacnupstreamregions.Muta- aconitases can also have a regulatory function by binding to tionswithinthismotifinhibitedAcnRbinding.Because certain mRNAs and inhibiting or increasing their translation theactivitiesofcitratesynthaseandisocitratedehydro- intoprotein(14–18).Thisregulatoryfunctioniscarriedoutby genase were previously reported not to be increased acatalyticallyinactiveformofaconitase,whichisformedun- duringgrowthonacetate,ourdataindicatethataconi- derconditionsofironstarvationoroxidativestress,whenthe taseisamajorcontrolpointoftricarboxylicacidcycle iron-sulfur cluster is disassembled and the apoprotein is activityinC.glutamicum,andtheyidentifyAcnRasthe formed. first transcriptional regulator of a tricarboxylic acid In many bacteria, expression of the aconitase genes is con- cyclegeneintheCorynebacterianeae. trolled by transcriptional regulators (see “Discussion”). Here, we provide evidence that this is also the case for the C. glu- tamicumaconitasegene(acn)1anddescribetheidentification Corynebacterium glutamicum is a non-pathogenic, aerobic andcharacterizationoftheTetR-typerepressorproteinAcnR. Gram-positivesoilbacteriumthatwasdescribedin1957(1)as anL-glutamate-excretingbacterium.Ithasgainedconsiderable EXPERIMENTALPROCEDURES interest because of its use in the large scale biotechnological BacterialStrainsandCultureConditions—Allstrainsandplasmids plyrsoidnuect(i(cid:2)on0.6ofmLi-lglliuontamtoantsep(e(cid:1)r1ymeairll)io(n2–t5o)nasnpderbeyceaaurs)eaonfditLs- AusTeCdC1in303th2iswawsourksedaraeslwisitldedtyipne iTnabthleisIs.tuCd.y.gSlutrtaaminic(cid:3)uamcnRstriasina derivativecontaininganin-framedeletionoftheacnRgene.Forculti- emergingroleasamodelorganismfortheCorynebacterineae,a vationofC.glutamicuminliquidmedia,5mlofCGIIImedium(19)or suborder of the actinomycetes, which also includes the genus brain heart infusion (BHI) medium (Difco Laboratories, Detroit, MI), Mycobacterium(6). bothsupplementedwith2%(w/v)glucose,wereinoculatedwithcolonies The tricarboxylic acid cycle is of central importance for the fromafreshLuria-Bertani(LB)agarplate(20)andincubatedovernight metabolism of C. glutamicum because it provides energy and at30°Cand170rpm.Thisfirstpreculturewasusedtoinoculate60ml ofCGXIIminimalmedium(21)ina500-mlshakeflaskwithtwobaffles. biosynthetic precursors and therefore the flux through this Thesecondpreculturewasincubatedovernightat30°Cand120rpm cycleisanimportantaspectfortheproductionofaminoacidsof andthenusedtoinoculatethemainculture,forwhichthesamecon- ditionswereappliedasforthesecondpreculture.TheCGXIIminimal mediumcontainedasacarbonsourceeither222mMglucose,244mM *ThisworkwassupportedbytheEuropeanUnionwithintheframe- sodiumacetate,50mMsodiumcitrate,or104mMsodiumpropionate. workoftheVALPANproject(QLK3-2000-00497).Thecostsofpubli- When citrate was used as carbon source, the medium contained in cation of this article were defrayed in part by the payment of page addition 100 mM MgCl2. When appropriate, the medium was supple- charges.Thisarticlemustthereforebeherebymarked“advertisement” mentedwith25(cid:1)gofkanamycin/ml.C.glutamicumstrainscarrying inaccordancewith18U.S.C.Section1734solelytoindicatethisfact. plasmidpEKEx2andderivativesthereofwerecultivatedinthepres- ThisarticleisdedicatedtoProf.RudolfK.Thauerontheoccasionof his65thbirthday. ‡Towhomcorrespondenceshouldbeaddressed:Institutfu¨rBiotech- 1Theabbreviationsusedare:acn, C.glutamicumaconitasegene; nologie1,ForschungszentrumJu¨lich,D-52425Ju¨lich,Germany.Tel.: RT-PCR, reverse transcriptase-PCR; AcnR, TetR-type repressor 49-2461-61-5515;Fax:49-2461-61-2710;E-mail:[email protected]. protein. Thispaperisavailableonlineathttp://www.jbc.org 585 This is an Open Access article under the CC BY license. 586 AcnR, a Repressor of the Aconitase Gene in Corynebacterium TABLE I Bacterialstrainsandplasmidsusedinthisstudy Strainsorplasmids Relevantcharacteristics SourceorRef. Strains C.glutamicum ATCC13032 Biotin-auxotrophicwildtype (1) 13032(cid:3)acnR In-framedeletionoftheacnRgene Thiswork E.coli DH5(cid:3) supE44(cid:3)lacU169((cid:1)80lacZ(cid:3)M15)hsdR17recA1endA1gyrA96thi-1relA1 Invitrogen BL21(DE3) ompThsdS (r (cid:4)m (cid:4))galdcm(DE3) (22)Novagen B B B Plasmids pK19mobsacB KanR;vectorforallelicexchangeinC.glutamicum;(pK18oriV ,sacB,lacZ(cid:3)) (27) pK19mobsacB-(cid:3)acnR KanR;pK19mobsacBderivativecontainingacrossoverPCRproEd.cu.ctcoveringtheup- Thiswork anddownstreamregionsofacnR pET24b KanR;vectorforoverexpressionofgenesinE.coli,addingaC-terminal Novagen hexahistidineaffinitytagtothesynthesizedprotein(pBR322oriV ,P ,lacI) E.c. T7 pET24b-Streptag KanR;pET24bderivativeaddingaC-terminalStrepTag-IItothesynthesizedprotein MeyerandBotta pET24b-acnR-C KanR;pET24b-Streptagderivativeforover-productionofAcnRwithaC-terminal Thisstudy StrepTag-II pET28a KanR;vectorforoverexpressionofgenesinE.coli,addinganN-terminaloraC- Novagen terminalhexahistidinetagtothesynthesizedprotein(pBR322oriV ,P ,lacI) E.c. T7 pET28a-Streptag KanR;pET28aderivativeaddinganN-terminalStrepTag-IItothesynthesized (29) protein pET28a-acnR-N KanR;pET28a-Streptagderivativeforover-productionofAcnRwithanN-terminal Thisstudy StrepTag-II pEKEx2 KanR;C.glutamicum/E.colishuttlevectorforregulatedgeneexpression(P ,lacIQ, (63) tac pBL1oriV ,pUC18oriV ) C.g. E.c. pEKEx2-acnR KanR;pEKEx2derivativecontainingtheacnRgenefromC.glutamicumunderthe Thisstudy controlofthetacpromoter pEKEx2-acnR60 KanR;pEKEx2derivativecontainingashortenedversionoftheacnRgene(first180 Thisstudy bp)fromC.glutamicumunderthecontrolofthetacpromoter pEKEx2-acnR89 KanR;pEKEx2derivativecontainingashortenedversionoftheacnRgene(first267 Thisstudy bp)fromC.glutamicumunderthecontrolofthetacpromoter pEKEx2-acnR-C-Strep KanR;pEKEx2derivativecontainingtheacnRgenewithaC-terminalStrepTag-II Thisstudy fromC.glutamicumunderthecontrolofthetacpromoter aUnpublisheddata. enceof1mMisopropyl-1-thio-(cid:2)-D-galactopyranoside.Forcloningpur- productof(cid:2)1kbwasdigestedwithEcoRIandHindIIIandclonedinto poses,E.coliDH5(cid:3)(InvitrogenLifeTechnologies,Inc.)wasusedand pK19mobsacB(27)cutwiththesameenzymes.DNAsequenceanalysis grownat37°CinLBmedium(20).E.coliBL21(DE3)(22)wasusedfor confirmedthattheclonedPCRproductdidnotcontainspuriousmuta- overproduction of the C. glutamicum AcnR protein with expression tions. Transfer of the resulting plasmid pK19mobsacB-(cid:3)acnR into plasmidsbasedonpET24orpET28(Novagen,Madison,WI). C. glutamicum and screening for the first and second recombination Determination of Aconitase Activity—For the determination of the eventwasperformedasdescribedpreviously(26).Thegenomicstruc- aconitase activity, cells from the CGXII main culture ((cid:2)25 ml) were tureofthemutantwasfirstcheckedbyPCRanalysisofchromosomal harvestedwith(cid:2)25gofcrushedice(precooledto(cid:4)20°C)bycentrifu- DNA with the primer pair tetR-amp-for/tetR-amp-rev (Table II). The gationat4,000(cid:5)gfor5min.Thecellpelletwasresuspendedin900(cid:1)l PCRproductsobtainedwithwild-typeDNA(1.6kb)and(cid:3)acnRmutant ofTris-HCl(90mM;pH8.0),andthecellsweremechanicallydisrupted DNA (1.1 kb) had the expected sizes. Furthermore, the mutant was by3(cid:5)20sbeadbeatingwith1gofzirconia-silicabeads(diameter0.1mm; controlled by Southern blot analysis (26) using EcoRI-digested DNA Roth, Karlsruhe, Germany) using a Silamat S5 (Vivadent, Ellwangen, andadigoxigenin-labeledPCRproductcoveringtheacnRgeneandthe Germany).Aftercentrifugation(5min;18,320(cid:5)g;4°C),thesupernatant 500-bpup-anddownstreamDNAasprobe.Theexpectedfragmentsizes wasusedimmediatelyfortheenzymeassay.Aconitaseactivitywasas- were obtained for wild type (1.8 kb) and the (cid:3)acnR mutant (1.3 kb), sayedbyfollowingtheformationofcis-aconitatefromisocitrate(23)at confirmingthesuccessfulacnRdeletion(datanotshown). 20°C.Theassaymixturecontained950–995(cid:1)lof90mMTris-HClpH8.0 ForthepurificationofAcnRwithaC-terminalStrepTag-II(28),the containing20mMDL-trisodiumisocitrate.Thereactionwasstartedbythe acnR coding region was amplified using the Expand High Fidelity additionof5–50(cid:1)lofcellextract,andcis-aconitateformationwasdeter- polymerase mix (Roche Diagnostics) and oligonucleotides that intro- minedbymeasuringtheabsorbanceincreaseat240nmusingaJasco ducedanNdeIrestrictionsiteoverlappingthestartcodon(acnR-FP-for) V560spectrophotometer.Anextinctioncoefficientforcis-aconitateof3.6 andanXhoIrestrictionsiteprecedingthestopcodon(acnR-FP-24rev). mM(cid:4)1cm(cid:4)1at240nmwasused.Oneunitofactivitycorrespondsto1 The purified PCR product was cloned into the expression vector (cid:1)molofisocitrateconvertedtocis-aconitatepermin. pET24b-StreptagcutwithNdeIandXhoI.TheAcnRproteinencodedby RecombinantDNAWork—TheenzymesforrecombinantDNAwork the pET24 derivative (AcnR-C) contains ten additional amino acid wereobtainedfromRocheDiagnostics(Mannheim,Germany)orNew residues (LEWSHPQFEK) at the C terminus. For the purification of England Biolabs (Frankfurt, Germany). The oligonucleotides used in AcnR with an N-terminal StrepTag-II, the acnR coding region was thisstudywereobtainedfromMWGBiotech(Ebersberg,Germany)and amplified with the primers acnR-FP-for and acnR-FP-28rev, and the arelistedinTableII.RoutinemethodslikePCR,restriction,orligation PCRproductwasclonedintopET28a-Streptag(29)cutwithNdeIand were carried out according to standard protocols (20). Chromosomal XhoI. The AcnR protein encoded by the pET28 derivative (AcnR-N) DNAfromC.glutamicumwaspreparedasdescribed(7).Plasmidsfrom contains14additionalaminoacidresidues(MASWSHPQFEKGAH)at E. coli were isolated with the QIAprep spin miniprep kit (Qiagen, theNterminus.DNAsequenceanalysisconfirmedthattheAcnRcod- Hilden,Germany).E.coliwastransformedbytheRbClmethod(24), ing sequence of the resulting plasmids pET24b-acnR-C and pET28a- C.glutamicumbyelectroporation(25).DNAsequencingwasperformed acnR-Ndidnotcontainspuriousmutations.Fortheoverproductionof with a Licor 4200 sequencer (Licor Inc., Lincoln, NB). Sequencing thestreptaggedAcnRderivatives,theplasmidsweretransferredinto reactions were carried out with the Thermo Sequenase Primer Cycle E.coliBL21(DE3). SequencingKit(AmershamBiosciences,Freiburg,Germany). In order to construct plasmids pEKEx2-acnR, pEKEx2-acnR60, Anin-frameacnRdeletionmutantofC.glutamicumwasconstructed pEKEx2-acnR89,andpEKEx2-acnR-C-Strep,theacnRfragmentswere viaatwo-stephomologousrecombinationprocedureasdescribedpre- amplified with oligonucleotide acnR-for as forward primer and acnR- viously (26). The acnR up- and downstream regions ((cid:2)500 bp each) rev, acnR-rev-60, acnR-rev-89, or acnR-strep-rev, respectively, as re- were amplified using the oligonucleotide pairs tetR-A-for/tetR-B-rev verseprimers.AfterdigestionwithBamHIandEcoRI,thepurifiedPCR and tetR-C-for/tetR-D-rev, respectively, followed by a crossover PCR products were cloned into the vector pEKEx2 cut with the same en- with oligonucleotides tetR-A-for and tetR-D-rev. The resulting PCR zymes.AllPCR-derivedpartsoftheresultingplasmidswerecheckedby AcnR, a Repressor of the Aconitase Gene in Corynebacterium 587 TABLE II Oligonucleotidesusedinthisstudy Oligonucleotide Sequence(5(cid:6)33(cid:6))andpropertiesa tetR-A-for TAT ATA GAA TTC TGC AGT TCC CTG CAG GCG AAT C (EcoRI) tetR-B-rev CCC ATC CAC TAA ACT TAA ACA GCC TGC CGC TAC GGA CAC AAT G tetR-C-for TGT TTA AGT TTA GTG GAT GGG GAT CTG GTC GAG GGA ACT GTC CG tetR-D-rev TAT ATA AAG CTT GTT AGC AAC ACT GTG GTG GCG CC (HindIII) tetR-amp-for CTA AGG GCA CTA ACC TGC TCG G tetR-amp-rev TTG CCA ACA CCA CGT GTC CAG G acnR-FP-for TAT ATA CAT ATG TCC GTA GCG GCA GGC GAC AAA C (NdeI) acnR-FP28-rev TAT ATA CTC GAG TTA GTC GCG TTT ACG GAC AGT TC (XhoI) acnR-FP24-rev TAT ATA CTC GAG GTC GCG TTT ACG GAC AGT TC (XhoI) acn-PEK-for CCT TCA TTA GTG TCG GGC TCA CG acn-PEK-rev GGA TTT CGA TGC TTG GAT CGG AAG acn-PE1* IRD800-GGG TGC TCT TAG CAT TGA AGG AG acn-PE3* IRD800-GTG AGA TTT CGC GAC GGC GTC TG acn-FP1* IRD800-GAA AGT CAC ATC ACG CAC GTA CC RT-1-for CAG GCG ACA AAC CAA CAA ATA GCC RT-1-rev CTC GAC CAG ATC CAA TAC TTC GG RT-2-for CGA GAC TCC TAA GAC TGT CAA GG RT-2-rev GTT GCT TCT TCC AGT CGG CGT AC RT-3-for CAG AAC CAG CTG GTT GAC ATC GC RT-3-rev CAT CTG ACG CAG CAC GTA CTG C acnR-for TAT ATA GGA TCC AAG GAG ATA TAG ATG TGT CCG TAG CGG CAG GCG AC (BamHI) acnR-rev TAT ATA GAA TTC GTC ACG TCG CTC AGC TGC GGC (EcoRI) acnR-strep-rev TAT ATA GAA TTC TTA CTT CTC GAA CTG CGG GTG GCT CCA CTC GAG GTC GCG TTT ACG GAC AGT TCC (EcoRI) acnR-rev-60 TAT ATA GAA TTC TAG GAA CAG GTT TTC TTT GTC ACC G (EcoRI) acnR-rev-89 TAT ATA GAA TTC ATC TTC CAG CAT TCC TCG CAT C (EcoRI) RT-dnaE-fw TGC CCT TCC GGC GAT GTG CAA RT-dnaE-rv CTG GAA CCA TGT CGT CCC AGA G BS-1-for TCC GAC AAA ACC GCT GCC TAG G BS-1-rev GGC GTC TGC TTC GGC TGA GCC BS-2-for AGA CGT AGG GTC CTT TTC CAC AG BS-2-rev TCA TTA TCC TAA CAG TAC AAG CGT T BS-3-for CAA CTT TCC CGC CAG AAC GCT TG BS-3-rev GGG TTC TTG GCG CGT CAA TAA CG BS-4*-for CAA CTT TCC CGC CAG ATG GCT TCA ACT GTT AGG A BS-5*-for CAA CTT TCC CGC GTG AAC GCT TGT ACA CTT AGG ATA AT BS-6*-for CAA CTT TCG GGC CAG AAC GCT TGT ACT GTT TCG ATA ATG AAG BS-7*-for CAA CTT TCC CGC CAG AAC CGA AGT ACT GTT AG aIn some cases oligonucleotides were designed to introduce recognition sites for restriction endonucleases (recognition sites underlined, restrictionendonucleasesindicatedinparentheses)orcomplementary21mersequencesforgeneratingcrossoverPCRproducts(printedinitalics). TABLE III Influenceofthecarbonsourceontheaconitaseactivityof C.glutamicumwildtypeandthe(cid:3)acnRmutantstrain C.glutamicumwildtypeand(cid:3)acnRmutantweregrowninCGXII minimal medium containing either 222 mM glucose, 50 mM sodium citrate((cid:7)100mMMgCl2),244mMsodiumacetate,or104mMsodium propionate as carbon source. In the exponential growth phase at an OD ofabout5,cellswereharvested,washed,anddisruptedbybead bea6t0in0g.Aftercentrifugationat15,000(cid:5)g,thesupernatant(cellex- tract)wasimmediatelyusedfortheaconitaseassay.Aconitaseactivity wasdeterminedwithDL-trisodiumisocitrateassubstratebymeasuring theformationofcis-aconitateat240nm. Aconitaseactivity Carbonsource 13032wildtype 13032(cid:3)acnR units/mgofprotein Glucose 0.20(cid:8)0.05 1.04(cid:8)0.06 Citrate 0.53(cid:8)0.08 1.78(cid:8)0.40 Acetate 0.82(cid:8)0.08 1.54(cid:8)0.08 Propionate 0.48(cid:8)0.13 2.38(cid:8)0.21 DNAsequenceanalysisinordertoexcludeunwantedmutations. FIG.1.GenomiclocusofacnfromC.glutamicumandother PreparationofTotalRNA—Culturesofthewildtypeandthe(cid:3)acnR species of the suborder Corynebacterineae. In all cases except Mycobacterium leprae, a gene encoding a transcriptional repressor mutant were grown in CGXII minimal medium containing 4% (w/v) was identified downstream of acn. This gene (shown in dark gray) glucose.IntheexponentialgrowthphaseatanOD600of5–6,25mlof wasnamedacnR.InthecaseofRhodococcussp.,onlythe3(cid:6)-terminal thecultureswereusedforthepreparationoftotalRNAasdescribed partoftheacngenewasavailable.Othergeneswerenumberedand previously(30,31).IsolatedRNAsampleswereanalyzedforquantity annotatedasfollows:1,invasin;2,3,4,and8,hypotheticalproteins; and quality by UV spectrophotometry and denaturing formaldehyde 5, hypothetical cytosolic protein; 6, putative GMP synthase-gluta- agarose gel electrophoresis (20), respectively, and stored at (cid:4)70°C mine amidotransferase domain; 7, ABC transporter, ATP-binding untiluse. protein; 9, putative NAD(cid:7)-dependent dehydrogenase. Data were DNA Microarray Analyses—The generation of whole genome DNA taken from the National Center for Biotechnology Information microarrays (32), synthesis of fluorescent-labeled cDNA from total (NCBI) and the bioinformatics software ERGO (Integrated RNA,microarrayhybridization,washing,anddataanalysiswereper- Genomics). 588 AcnR, a Repressor of the Aconitase Gene in Corynebacterium FIG.2.SequencealignmentofAcnRproteinsfromdifferentCorynebacterineaespecies.Aminoacidsidenticalinallsequencesare shadedinblack,otherconservedaminoacidsingray.TheN-terminalregionoftheAcnRproteins(aminoacids16–62)showsclearsimilarityto theN-terminalpartoftheTetRfamilyofbacterialregulatoryproteins(TetR-N;PFAM00440).TheconsensussequenceofTetR-Nandtheamino acidsidenticaltotheconsensusintheAcnRproteinsareshownabovethealignment. formed as described previously (33–35). Genes that exhibited signifi- toapparenthomogeneity.Thesameprocedureasdescribedabovewas cantlychangedmRNAlevels(p(cid:9)0.05inaStudent’sttest)byatleast used for the isolation of AcnR with an N-terminal StrepTag-II using a factor of three were determined in four series of DNA microarray E.coliBL21(DE3)/pET28a-acnR-N. experiments:(i)10comparisonsofthewildtypeandthe(cid:3)acnRmutant Size Exclusion Chromatography—The size of purified AcnR-C and cultivated in regular CGXII minimal medium with 4% (w/v) glucose AcnR-NwasestimatedbysizeexclusionchromatographyusingaHi- (contains36(cid:1)Mironbeforeautoclavingand(cid:2)8(cid:1)Mironafterautoclav- Load26/60Superdex200prepgradecolumn(AmershamBiosciences) ing); (ii) four comparisons of the wild type and the (cid:3)acnR mutant integratedintoanA¨ktaExplorersystem(AmershamBiosciences).The cultivatedinCGXII-glucosemediumwithanelevatedironconcentra- columnwasequilibratedwith20mMHEPES-bufferpH8.0containing tion (addition of 100 or 500 (cid:1)M FeSO4 after autoclaving); (iii) three 300mMNaCland1mMdithiothreitol.Afterapplicationof0.5–1mgof comparisonsofthewildtypegrownwith(cid:2)8(cid:1)Mironandwith508(cid:1)M purified protein, elution was performed at 4°C with a flow rate of 2 iron; (iv) three comparisons of the(cid:3)acnR mutant grown with(cid:2)8 (cid:1)M ml/min.Thecolumnwascalibratedwithapremixedproteinmolecular iron and with 508 (cid:1)M iron. The 34 genes that were differentially massmarker(MWGF-200,Sigma). expressedinoneormoreoftheseseriesofexperimentsweresubjected DNase I Footprinting Assays—The binding site of purified AcnR toahierarchicalclusteranalysis(36)asdescribedpreviously(33,35). proteinattheacnpromoterwasanalyzedbyDNaseIfootprintingas PrimerExtensionAnalysis—Non-radioactiveprimerextensionanal- described previously (29). PCR products covering the acn promotor ysis was performed using the IRD800-labeled oligonucleotides acn- region from position (cid:4)346 to (cid:7)52 or from position (cid:4)268 to (cid:7)241 PE1* and acn-PE3* (Table II) and 15 (cid:1)g of total RNA as described relativetotheproposedTTGstartcodonwereobtainedwiththeprimer previously(29).Thelengthoftheprimerextensionproductswasdeter- pairs acn-PEK-for/acn-PE1* (labeled non-template strand) and acn- minedbyrunningthefourlanesofaDNAsequencingreactionsetup FP1*/acn-PEK-rev(labeledtemplatestrand)respectively.Theprimers withthesameoligonucleotideasusedforprimerextensionalongside with an asterisk were IRD800-labeled at the 5(cid:6)-end. The DNA-AcnR theprimerextensionproductsonthedenaturingpolyacrylamidegel.A mixturesweretreatedwithDNaseI,andthereactionproductswere PCRproductobtainedwiththeprimerpairacn-PEK-fw/acn-PEK-rev separated by denaturing PAGE. The regions, which were protected wasusedastemplatefortheDNAsequencingreaction. fromDNaseIdigestion,werelocalizedbyrunningbesidesthefootprint- Overproduction and Purification of Streptagged AcnR—E. coli ingreactionsthefourlanesofaDNAsequencingreactionsetupwith BL21(DE3) carrying pET24b-acnR-C was cultivated in 100 ml of LB theoligonucleotideacn-PE1*oracn-FP1*andaPCRproductobtained mediumcontaining50(cid:1)g/mlkanamycinina500-mlErlenmeyerflask withtheprimerpairacn-PEK-for/acn-PEK-revastemplate. at30°CuntiltheOD600reachedavaluebetween0.3and0.5.Synthesis GelShiftAssays—PurifiedAcnR-C(500nM)wasmixedwith(cid:2)50nM oftheAcnR-Cwasinducedbyadditionofisopropyl-1-thio-(cid:2)-D-galacto- DNAfragments(80–300bp)coveringtheacnpromoterregioninatotal pyranosidetoafinalconcentrationof1mM,andtheculturewasincu- volumeof20(cid:1)l.Thebuffercontained10mMTris-HClpH7.5,0.5mM bated for another 3 h. Cells (final OD600 (cid:2)1) were washed once and EDTA,5%(v/v)glycerol,0.5mMdithiothreitol,0.005%(v/v)TritonX-100, resuspended in 10 ml of buffer W (100 mM Tris-HCl, pH 8.0, 1 mM 50mMNaCl,5mMMgCl2,and2.5mMCaCl2.Afterincubationfor20min EDTA). After addition of 1 mM diisopropylfluorophosphate and 1 mM atroomtemperature,thesampleswereseparatedbyagarosegelelectro- phenylmethylsulfonyl fluoride, the cell suspension was passed three phoresiswithTrisacetate/EDTAbuffer(20)at4°Cand75V.Thegelwas timesthroughaFrenchpressurecell(SLMAminco,SpectronicInstru- subsequentlystainedwithethidiumbromideandphotographed. ments,Rochester)at207MPa.Intactcellsandcelldebriswereremoved bycentrifugation(20min,5,000(cid:5)g,4°C).Thecell-freeextractwas RESULTS subjectedtoultracentrifugation(1h,150,000(cid:5)g,4°C)andthesuper- Influence of the Carbon Source on Aconitase Activity of natantappliedtoaStrepTactinSepharosecolumnwithabedvolumeof C. glutamicum—Previous studies revealed that in C. glutami- 1ml(IBA,Go¨ttingen,Germany).Thecolumnwaswashedwith15mlof bufferWandstreptaggedAcnRwaselutedwith10(cid:5)1mlbufferW cum the carbon flux through the tricarboxylic acid cycle varies containing15mMdesthiobiotin(Sigma-Aldrich).Fractionscontaining with the carbon source (12). In cells growing on acetate, the AcnR-Cwerepooled,andtheelutionbufferwasexchangedagainst40 tricarboxylicacidcyclefluxwasabout0.4(cid:1)molmin(cid:4)1 mgpro- mMTris-HClbuffer,pH7.5,containing10%(v/v)glycerolbygelfiltra- tein(cid:4)1 and thus 4-fold higher than in cells growing on glucose. tionwithSephadexG-25(PD-10column,AmershamBiosciences).Pro- Remarkably,theactivitiesofcitratesynthase(0.5–0.8units(mg tein concentrations were determined with the BCA protein assay kit ofprotein)(cid:4)1;Ref.7)andisocitratedehydrogenase(0.9–1.1units (Pierce) using bovine serum albumin as standard. The purity of the (mg of protein)(cid:4)1; Ref. 8) as measured in cell extracts were protein preparation was assessed by SDS-polyacrylamide gel electro- phoresis(37)andsubsequentproteindetectionwithGelCodebluestain reportedtobesimilaringlucose-andacetate-growncellsandare reagent(Pierce).Usingthisprotocol,about1mgofAcnR-Cwaspurified sufficient to allow the maximally measured carbon fluxes. We AcnR, a Repressor of the Aconitase Gene in Corynebacterium 589 FIG.3.Transciptionalorganizationoftheacn-acnRlocusinC.glutamicumanalyzedbyRT-PCR.A,schemeshowingtheacn-acnR intergenicregioncontainingtwoputativestemloopstructures.BelowtheRT-PCR,reactionsusedtodetermineco-transcriptionofacnandacnR areshownschematically.RNAfromC.glutamicumwildtypewastranscribedintocDNAwiththreedifferentprimersinthereversetranscriptase reactionsA–C.AfterwardthesecDNAswereusedastemplatesforthePCRreactionslabeled1–5.B,resultsfromtheRT-PCRanalysesdescribed above.ThelowerDNAfragmentvisibleinlanes1–5representsdnaE,andRT-PCRofdnaEservedaspositivecontrolinallreactions.Theupper bandscorrespondtotheproductsofthePCRreactions1–5indicatedinA.Reactions6–10representcontrolsconfirmingtheabsenceofDNAinthe RNA preparation. The reactions were identical to the PCR reactions as shown in lanes 1–5 except that reverse transcriptase was omitted in reactions(A–C). thereforebecameinterestedtodeterminewhethertheactivityof dratase(PrpD)andaconitase(AcnB)(40).Thiscouldexplainthe aconitasedoesordoesnotvarywithdifferentcarbonsourcesand increasedaconitaseactivityinC.glutamicumduringgrowthon measured its activity in extracts of cells cultivated on glucose, propionate. citrate,acetate,orpropionate.AsshowninTableIII,theaconi- Identification of a Transcriptional Repressor Gene Down- taseactivityofglucose-growncellswas0.2units/mgofprotein, streamoftheAconitaseGene—SincepreviousDNAmicroarray whereas the activity of citrate-, acetate-, and propionate-grown experiments had shown that the mRNA level of acn is 4-fold cellswas0.5,0.8,and0.5units/mgprotein,respectively,i.e.upto higher in acetate-grown cells (41), we assumed that the acn 4-fold higher. Thus, aconitase activity is regulated and might geneistranscriptionallyregulated.Asinbacteriagenesencod- representarate-limitingstepinthetricarboxylicacidcycleflux. ingtranscriptionalregulatorsareoftenlocatedinthevicinity The increased activity on acetate correlates with the increased oftheirtargetgenes,weinspectedtheC.glutamicumgenome tricarboxylic acid cycle flux on this carbon source (12), which region encoding aconitase. In contrast to e.g. E. coli, C. glu- might also occur with citrate. Propionate is metabolized in C. tamicumcontainsonlyasingleaconitasegene(42)encodinga glutamicum via the methylcitrate cycle (38), in the course of proteinof943aminoacidresidueswithacalculatedmolecular whichmethylcitrateisconvertedtomethylisocitrate.InE.coli, mass of 102,168 Da (43). It shows 58.8% sequence identity to whichalsodegradespropionateviathemethylcitratecycle(39), AcnAofE.coli(44)(45)butlessthan20%identitytoAcnBof this conversion requires two enzymes, i.e. methylcitrate dehy- E. coli (46) and thus belongs to the bacterial AcnA group of 590 AcnR, a Repressor of the Aconitase Gene in Corynebacterium (13032(cid:3)acnR)inwhichcodons7–177ofacnRwerereplacedby a21-bpsequencetag.Thegenomicstructureofthemutantwas confirmedbyPCRandSouthernblotanalysis(51;see“Exper- imental Procedures”). In a first set of experiments, the influ- enceoftheacnRdeletionontheaconitaseactivitywasdeter- mined. Cells were cultivated in CGXII minimal medium with different carbon sources and used in the early exponential growth phase (OD (cid:2)6) for the determination of enzyme 600 activity. As shown in Table III, the aconitase acitivity in glu- cose-growncellswasabout1unit/mgproteinandthus5.3-fold higherthaninthewildtype.Thisresultclearlysupportedthe proposed function of AcnR as repressor of acn expression. In (cid:3)acnR mutant cells grown on citrate, acetate, or propionate, theaconitaseactivitywas3.4-fold,1.9-fold,and5.0-foldhigher FIG.4. Growth of C. glutamicum wild type (circles) and the thaninwild-typecellsgrownwiththesamecarbonsourcesand (cid:2)acnR mutant (triangles) on glucose or acetate minimal me- dium. The strains were cultivated at 30°C and 120 rpm in CGXII 1.7-fold,1.5-fold,and2.3-foldhigherthanin(cid:3)acnRcellsgrown minimalmediumcontainingeither222mMglucose(opensymbols)or onglucose.Thisindicatesthattheincreasedaconitaseactivity 244mMsodiumacetate(filledsymbols)ascarbonsource. of wild-type cells grown on acetate is partially because of a lower repression by AcnR and that an additional transcrip- tional regulator besides AcnR or another regulatory mecha- aconitases, which are homologous to the iron-responsive pro- nismforaconitasemightexist. teins(IRPs)ofeukaryotes(47). Inthecultivationsforthedeterminationofaconitaseactivity AsshowninFig.1,immediatelydownstreamofacn,agene it was observed that in most cases the (cid:3)acnR mutant grew encodingaputativetranscriptionalregulatorof188aminoacid somewhat faster than the wild type on glucose and acetate residues (21,184 Da) was identified, which we named acnR. minimalmedium,sometimesalsoincitrateminimalmedium. Interestingly,thesamegeneorganizationwasalsofoundinC. Inglucosemedium,forexample,thegrowthrateofthe(cid:3)acnR efficiens, Corynebacterium diphtheriae, Mycobacterium tuber- mutantwas0.40(cid:8)0.02h(cid:4)1andthatofthewildtype0.36(cid:8) culosis,M.bovis,M.marinum,andRhodococcusstrainIG124 0.01h(cid:4)1(valuesfromsevenreplicates).Thisbehaviorwasalso (Fig.1).InM.leprae,theacnRgeneisdisruptedbyframeshifts evidentwhenthecellswereallowedtogrowtostationaryphase and stop codons, as found for many other genes of this orga- (Fig.4)andmightbecausedbyanincreasedtricarboxylicacid nism (48). An amino acid sequence alignment of the AcnR cycleactivityinthemutant. homologs (Fig. 2) revealed that the primary sequences are Transcriptome Analyses—To determine the effect of the highly conserved, particularly in the N-terminal part from acnR deletion on global gene expression and in particular on position 16 to 62, where nearly 75% of the amino acids are acn expression, the transcriptomes of the (cid:3)acnR mutant and identical. In silico analysis revealed that this conserved N- thewildtypewereanalyzedbyDNAmicroarrayanalyses.RNA terminalpartoftheAcnRproteinsbelongstotheTetRfamily was isolated from cells growing exponentially in CGXII mini- of bacterial regulatory proteins (PFAM family PF00440; (49). malmediumwith4%(w/v)glucose(OD (cid:2)6).Intencompar- Members of this family contain a multihelical DNA binding 600 isons with RNA from five independent cultivations (experi- domainattheirN-terminalendandahighlydivergentCter- mentsA01–A10,Fig.5)theacnmRNAlevelwasalwayshigher minus,whichisinvolvedinthebindingofaninducermolecule in the (cid:3)acnR mutant than in the wild type (4.2-fold (cid:8)2.3), (50). confirmingthattheincreasedaconitaseactivityofthemutant Operon Structure of the acn-acnR Genes—The transcrip- is caused by increased acn expression. Besides acn, several tional organization of the acn-acnR locus was analyzed by othergenesshowedmRNAlevelsthatwereonaverage(cid:4)3-fold RT-PCR (see Fig. 3 and “Experimental Procedures”). Total increasedinthe(cid:3)acnRmutant,mostofwhicharepresumably RNA isolated from C. glutamicum wild type was transcribed into cDNA using three different primers (RT-1-rev, RT-2-rev, involvedintheuptakeofhemeandironsiderophores(Fig.5). andRT-3-rev)inthereversetranscriptasereactionsA,B,and This indicates that the (cid:3)acnR mutant faces iron limitation, a C.TheresultingproductswerethenusedforthePCRtestsno. situation which might be due to the increased production of 1–5(Fig.3A).AsshowninFig.3B,evidencewasobtainedthat aconitase,a[4Fe-4S]protein.Indeed,aftersupplementationof acnandacnRareco-transcribed,sinceacDNAcreatedwitha themediumwith100(cid:1)Mor500(cid:1)MFeSO4thesegenesshowed primerannealingatthe3(cid:6)-endofacnR(RTreactionA)allowed no longer an increased mRNA level in the (cid:3)acnR mutant, notonlytheamplificationofanacnRfragment(no.1),butalso whereastheacnmRNAratiowasstillraised(5.8-fold(cid:8)0.6)in of an acn fragment (no. 2). As an internal control in the RT- themutant(experimentsB01–B04,Fig.5).Thesedataindicate PCR assays we used dnaE, which encodes a subunit of DNA that acn is the only gene whose mRNA level is significantly polymerase.Besidesthecontrolreactionno.3,wherenoacnR increasedinthe(cid:3)acnRmutantofC.glutamicum. productcouldbeobtainedwithacDNAcoveringonlyacn,five Further microarray experiments, in which the influence of additional control reactions (no. 6–10) were performed which different iron concentrations (508 (cid:1)M versus 8 (cid:1)M) on global were identical to reactions no. 1–5, respectively, except that gene expression was analyzed separately for the wild type reverse transcriptase was omitted from the initial reactions (experiments C01–C03, Fig. 5) and the (cid:3)acnR mutant (experi- A-C. The fact that no PCR products were obtained in these mentsD01–D03,Fig.5),revealedthattheacnmRNAlevelwas reactionsconfirmedthattheRNAwasnotcontaminatedwith increased under iron excess, both in the wild type (3.0-fold chromosomalDNA. (cid:8)1.0)andinthe(cid:3)acnRmutant(4.8-fold(cid:8)0.7).Thus,AcnRis Aconitase Activity and Growth of a (cid:3)acnR Mutant—Since not directly involved in iron regulation. Besides acn, several AcnR was found to be a member of the TetR family, we sug- othergenesencodingiron-containingproteins(52)showedin- gested that it functions as transcriptional repressor of the creased mRNA levels under iron excess, indicating that the neighboringaconitasegene.Inordertotestthishypothesis,an synthesis of these iron-containing proteins is to some extent in-frame deletion mutant of C. glutamicum was constructed controlledbytheavailabilityofironinC.glutamicum. AcnR, a Repressor of the Aconitase Gene in Corynebacterium 591 FIG.5. Hierarchical cluster analysis of gene expression changes observed in four series of DNA microarray experiments. The clusterincludesthosegenes,whoseaveragemRNAlevelwaschanged(cid:4)3-foldor(cid:5)3-foldinatleastoneoffourseriesofmicroarrayexperiments (totally20).Thefollowingseriesofexperimentswereperformed:A01–A10,(cid:3)acnRversuswildtypecultivatedinCGXII-glucosemediumwith(cid:2)8 (cid:1)Miron;B01–B04,(cid:3)acnRversuswildtypecultivatedinCGXII-glucosemediumwith108(cid:1)Miron(B01,B02)or508(cid:1)Miron(B03,B04);C01–C03, wildtypewith508(cid:1)Mironversuswildtypewith8(cid:1)Miron;D01–D03,(cid:3)acnRwith508(cid:1)Mironversus(cid:3)acnRmutantwith8(cid:1)Miron.Thescalebar indicatesthecolorcodingoftherelativeRNAratios. FIG.6.DeterminationofthetranscriptionalstartsitesoftheC.glutamicumacngeneandexpressionanalysis.12.5(cid:1)g(AandB) or15(cid:1)g(C)oftotalRNAisolatedfromcellsofC.glutamicumwildtypeandstrain(cid:3)acnRcultivatedinCGXIIminimalmediumwithdifferent carbonsourceswasusedforprimerextensionanalysiswiththeoligonucleotidesacn-PE1*(AandC)andacn-PE3*(B).Thetranscriptionalstart sitesareindicatedbyasterisks.ThesequencingreactionsweregeneratedwithaPCRproductcoveringthecorrespondingDNAregionastemplate andthesameIRD-800-labeledoligonucleotideasintheprimerextensionreaction. PrimerExtensionAnalysisoftheacnPromoter—Inorderto addition,aweakertranscriptionalstartpointwasobserved113 confirm the results of the DNA microarray experiments with bp upstream of the TTG start codon. The intensity of the analternativemethodandtolocatetheacnpromoter,primer primerextensionproductswasstrongerinthe(cid:3)acnRmutant extensionwasperformedusingtotalRNAsamplesofwildtype thaninthewildtype,inaccordancewiththeDNAmicroarray and (cid:3)acnR mutant, reverse transcriptase and two different data (Fig. 6B). This was true not only for RNA isolated from primers, acn-PE1* (Fig. 6, A and C) and acn-PE3* (Fig. 6B). glucose-growncells,butalsoforRNAisolatedfromcitrate-and Withbothprimers,themajortranscriptionalstartpointofacn acetate-grown cells (Fig. 6C), which qualitatively agrees with waslocalized110bpupstreamoftheproposedstartcodon.In theaconitaseactivitymeasurements(TableIII). 592 AcnR, a Repressor of the Aconitase Gene in Corynebacterium FIG.7.DeterminationofthenativemolecularmassofAcnRby size exclusion chromatography. Purified AcnR protein containing eitheraC-terminaloranN-terminalStrepTag-IIwasseparatedona HiLoad26/60Superdex200prepgradecolumnusing20mMHEPES buffer (pH 8.0) containing 300 mM NaCl, and 1 mM dithiothreitol for elution. For calibration, a premixed protein molecular mass marker containing the following proteins was used: cytochrome c (12.4 kDa), carbonicanhydrase(29kDa),albumin(66kDa),alcoholdehydrogenase (150kDa),(cid:2)-amylase(200kDa).V wasdeterminedwithbluedextran FIG.8.DNaseIfootprintinganalysiswithAcnR-Candtheacn 0 (2,000kDa). promoter region. 0.95 nM labeled acn template strand (panel A) or 0.75nMlabeledacnnon-templatestrand(panelB)wereincubatedwith TABLE IV increasingconcentrationsofAcnR-C: lane0,noprotein;lane1,5nM AconitaseactivityindifferentC.glutamicumstrains monomericAcnR;lane2,10nM;lane3,25nM;lane4,50nM;lane5,100 All strains were cultivated under the same conditions in CGXII nM;lane6,250nM;lane7,500nM(notinpanelA);lane8,1.0(cid:1)M;lane mediumwith222mMglucose.ForstrainsharboringpEKEx2orderiv- 9,2.5(cid:1)M;lane10,5(cid:1)M.RegionsprotectedfromdigestionbyDNaseI ativesthemediumcontainedinaddition50(cid:1)g/mlkanamycinand1mM areindicatedbyablackbar.TheDNAsequencingreactionsweresetup isopropyl-1-thio-(cid:2)-D-galactopyranoside. withtheIRD-800-labeledoligonucleotidesusedforgeneratingthela- beledPCRfragmentsforfootprinting.UnlabeledPCRfragments,iden- C.glutamicumstrain Aconitaseactivity tical in sequence to the footprinting probes, were used as template DNA. units/mgofprotein 13032(wildtype) 0.20(cid:8)0.05 13032/pEKEx2 0.24(cid:8)0.01 from position (cid:4)11 to (cid:4)28 relative to the first transcription 13032/pEKEx2-acnR 0.09(cid:8)0.01 start site (Fig. 8A), whereas on the non-template strand, pro- 13032/pEKEx2-acnRC-Strep 0.08(cid:8)0.02 tectionwasobservedonlyintheregion(cid:4)18to(cid:4)20.Inspection 13032/pEKEx2-acnR60 0.24(cid:8)0.02 13032/pEKEx2-acnR89 0.25(cid:8)0.01 of the upstream regions of the acn genes in C. diphtheriae, (cid:3)acnR 1.04(cid:8)0.06 C.efficiens,andfourMycobacteriumspeciesrevealedthatthey (cid:3)acnR/pEKEx2 1.17(cid:8)0.21 all contained sequence motifs similar to the one protected by (cid:3)acnR/pEKEx2-acnR 0.16(cid:8)0.13 AcnRinC.glutamicum.Accordingtothealignmentshownin Fig. 9, a putative AcnR consensus sequence could be derived, PurificationofAcnRandDeterminationofItsNativeMass— whichcontainsanimperfectinvertedrepeatseparatedbyfour The increased level of acn mRNA and of aconitase activity in nucleotides: CAGNACaagcGTACTG. A binding motif of this the (cid:3)acnR mutant indicated that AcnR represses acn tran- typeandthissizeistypicalforTetR-typetranscriptionalreg- scription. In order to identify the operator region, the AcnR ulators like TetR or CamR, although larger motifs have also protein containing either an N-terminal or a C-terminal beenfound,e.g.forQacR(56)orEthR(55). StrepTag-IIwasoverproducedinE.coliandpurifiedbyStrep- InordertoconfirmthefootprintdataandtheproposedAcnR Tactin affinity chromatography to apparent homogeneity as consensus sequence, gel shift assays were performed. Experi- described under “Experimental Procedures.” The apparent mentswithavaryingAcnR/DNAratiorevealedthata4–6-fold massonanSDSgelcorrespondedtothecalculatedmassof22.5 molarexcessofAcnRissufficientforashift(datanotshown). kDa. Similar results were obtained for AcnR-N (data not IntheexperimentshowninFig.10,theshiftofninedifferent shown). The native molecular mass of the purified AcnR pro- DNA fragments was analyzed, in each case with a 10-fold teins was determined by size exclusion chromatography. excessofAcnR.Theresultsobtainedwithfragments1–5con- AcnR-C(1mg)orAcnR-N(0.5mg)werechromatographedona firmed that the binding site is located within a 40-bp region, Superdex200column(AmershamBiosciences)calibratedwith which includes the binding site proposed from the footprints. five proteins. As shown in Fig. 7, both AcnR proteins were Fragmentscontainingthisregion(nos.1,2,and5)werecom- found to have a molecular mass of 44 kDa, indicating a ho- pletelyshifted,whereasthoselackingthisregion(nos.3and4) modimericstructure,whichwasalsofoundforothermembers werenotshiftedatall.Fragments6–9representderivativesof of the TetR family, e.g. TetR (53), CamR (50), QacR (54), or fragment 5 with mutations within or outside the proposed EthR (55). Complementation studies with the streptagged binding motif. Exchange of the two inner (fragment 6) or the AcnRshowedthatthistagdidnotinterferewiththerepressing two outer (fragment 7) bases of the imperfect inverted repeat activityofAcnR(TableIV). completely inhibited the shift, as did an exchange of the four Identification of the AcnR Binding Site within the acn Pro- basesseparatingtheinvertedrepeat(fragment9).Incontrast, moter Region—The binding site of AcnR at the acn promoter exchangeoffourbasesoutsidetheproposedbindingsite(frag- was determined with DNase I footprint assays. As shown in ment 8) did not prevent the shift. These data provide strong Fig. 8, the protected region on the template strand extended supportfortheAcnRconsensusbindingsiteproposedabove. AcnR, a Repressor of the Aconitase Gene in Corynebacterium 593 FIG.9.SequenceoftheacnpromoterregionofC.glutamicumalignedtoputativeacnpromoterregionsfromotherCoryne- bacterium and Mycobacterium species. Indicated are the start of the acn coding region (start codons bold and underlined), the transcriptionalstartsites(*)oftheC.glutamicumacngene,putative(cid:4)10(underlinedandbold)and(cid:4)35regions(bold),andtheAcnRbinding siteasdeterminedbyDNaseIfootprints(shadedingray)fortheC.glutamicumacngene.Asshownbythealignment,alsotheotherspecies possessputativeAcnRbindingsitesintheacnupstreamregion.Thebindingsiterepresentsanimperfectinvertedrepeatwiththeconsensus sequenceCAGNACnnncGTACTG. FIG.10.Gelshiftexperimentswith purified AcnR-C. A, DNA fragments usedforgelshiftanalysis(1–9)areindi- catedbythewhitenumbersinblackcir- cles. The gray bar indicates the region requiredforashiftandtheblackbarin- dicatestheproposedpositionoftheAcnR binding site. Fragments 6–9 are deriva- tivesoffragment5containingmutations thatwereintroducedwiththeprimers4*- for, 5*-for, 6*-for, and 7*-for. The 24-bp sequence shown beside these fragments includes the proposed AcnR consensus binding site (bold and underlined) and fourbasepairsup-anddownstream.The mutatedbasesareindicatedinboldand double underlined. B, approximately 50 nM DNA fragments nos. 1–9 were incu- bated either without AcnR-C (lanes la- beled with (cid:4)) or with 500 nM AcnR-C (laneslabeledwith(cid:7))for20minatroom temperature. Subsequently, the samples wereseparatedona2.5%agarosegelat 4°C and 75 V in 1(cid:5) Tris acetate/EDTA buffer, and the gel was stained with ethidium bromide. The lanes labeled M containaDNAsizestandard(50-bplad- der,Fermentas,St.Leon-Rot,Germany). EffectofOverexpressionofacnRandDerivativesonAconitase DISCUSSION Activity—Since deletion of acnR had caused derepression of Inthisstudythefirstregulatorofatricarboxylicacidcycle acn, overexpression of acnR was supposed to lead to an en- gene in C. glutamicum was identified. The acnR gene located hancedacnrepression.AsshowninTableIV,overexpressionof downstream of the aconitase gene acn of C. glutamicum was the unmodified acnR gene by the expression plasmid pEKEx- showntoencodearepressorofacnexpression.DeletionofacnR acnRcausedan(cid:2)2-folddecreasedaconitaseactivity.Acompa- led to a 5-fold increased acn mRNA level and to a 5-fold in- rable decrease was observed upon overexpression of an acnR creasedaconitaseactivity.Repressionismostlikelycausedby derivative encoding an AcnR protein with a C-terminal bindingofthedimericAcnRproteintotheacnpromoterinthe StrepTag-II. Therefore, the tag does not interfere with the regionlocated14to29bpupstreamofthetranscriptionalstart repressing activity of AcnR. If two shortened derivatives of point,whereitinterfereswiththebindingofRNApolymerase. acnRwereoverexpressed,whichcontainedonlytheN-terminal By comparing the experimentally determined AcnR binding 60 or 89 amino acid residues of AcnR, there was no effect on sitewithintheC.glutamicumacnpromoter(CAGAACGCTT- aconitaseactivity.Thus,theN-terminalDNAbindingregionof TGTACTG)withtheacnupstreamregionsofotherCorynebac- AcnR is not sufficient for its repressing activity, but requires terium and Mycobacterium species, a putative consensus se- the C-terminal effector binding region. Most likely, the C- quence CAGNACnnnnGTACTG containing an imperfect terminal domain is essential for the dimerization of AcnR, as inverted repeat was found. Analysis of the C. glutamicum shownforTetR(53)andQacR(56).WhenunmodifiedacnRwas genome sequence revealed that this motif occurs only three overexpressedinthe(cid:3)acnRmutant,wild-typelevelsofaconi- timesintheentiregenome,oncewithintheacnpromoter,once taseactivitywereobtained(TableIV). within the coding region for the ribosomal protein L31, and 594 AcnR, a Repressor of the Aconitase Gene in Corynebacterium once within the coding region of a gene of unknown function. REFERENCES ThissuggeststhatacnistheonlytargetgeneofAcnR.Further 1. Kinoshita,S.,Udaka,S.,andShimono,M.(1957)J.Gen.Appl.Microbiol.3, 193–205 support for this assumption was obtained by comparing the 2. Eggeling,L.,andSahm,H.(1999)Appl.Microbiol.Biotechnol.52,146–153 transcriptomes of the (cid:3)acnR mutant and the wild type with 3. Kimura,E.(2003)inMicrobialProductionofL-AminoAcids(Faurie,R.,and wholegenomeDNAmicroarrays.Inthesestudies,onlytheacn Thommel,J.,eds)Vol.79,pp.37–57,Springer,Heidelberg 4. Pfefferle,W.,Mo¨ckel,B.,Bathe,B.,andMarx,A.(2003)inMicrobialProduc- gene showed reproducibly a (cid:4)3-fold increased mRNA level in tionofL-AminoAcids(Faurie,R.,andThommel,J.,eds)Vol.79,pp.59–112, the(cid:3)acnRmutant.Experimentswithdifferentironconcentra- Springer,Heidelberg 5. Hermann,T.(2003)J.Biotechnol.104,155–172 tions revealed that the acn mRNA level is higher under iron 6. Stackebrandt,E.,Rainey,F.A.,andWardRainey,N.L.(1997)Int.J.Syst. sufficiency than under iron deficiency. A regulation of the ac- Bacteriol.47,479–491 7. Eikmanns,B.J.,Thum-Schmitz,N.,Eggeling,L.,Lu¨dtke,K.U.,andSahm,H. onitase level by the iron availability was previously also re- (1994)Microbiology140,1817–1828 portedforM.tuberculosis(57). 8. Eikmanns,B.J.,Rittmann,D.,andSahm,H.(1995)J.Bacteriol.177,774–782 9. Usuda, Y., Tujimoto, N., Abe, C., Asakura, Y., Kimura, E., Kawahara, Y., OverexpressionoftheacnRgenebyaplasmid-encodedcopy Kurahashi,O.,andMatsui,H.(1996)Microbiology142,3347–3354 underthecontrolofthetacpromotercauseda2-folddecrease 10. Molenaar,D.,vanderRest,M.E.,andPetrovic,S.(1998)Eur.J.Biochem.254, 395–403 of the aconitase activity in glucose-grown wild-type cell ex- 11. Molenaar,D.,vanderRest,M.E.,Drysch,A.,andYu¨cel,R.(2000)J.Bacteriol. tracts.Previousexperiencewithothergenesthatwerecloned 182,6884–6891 12. Wendisch,V.F.,deGraaf,A.A.,Sahm,H.,andEikmanns,B.J.(2000)J. intothesamevector(pEKEx2)andcultivatedunderthesame Bacteriol.182,3088–3096 growthconditionsusedforacnRoverexpressionindicatesthat 13. Beinert,H.,Kennedy,M.C.,andStout,C.D.(1996)Chem.Rev.96,2335–2374 atleast10-foldhigherAcnRlevelsshouldbeobtained.There- 14. Alen, C., and Sonenshein, A. L. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 10412–10417 fore,thequestionariseswhythereisonlya2-foldreductionof 15. Beinert,H.,andKiley,P.J.(1999)Curr.Opin.Chem.Biol.3,152–157 aconitaseactivity.Besidesotherexplanationsoneobviousrea- 16. Tang,Y.,andGuest,J.R.(1999)Microbiology145,3069–3079 17. Tang,Y.,Quail,M.A.,Artymiuk,P.J.,Guest,J.R.,andGreen,J.(2002) soncouldbethatincreasedacnrepressionleadstoanincrease Microbiology148,1027–1037 of the concentration of a metabolite, which binds to AcnR, 18. Tang,Y.,Guest,J.R.,Artymiuk,P.J.,Read,R.C.,andGreen,J.(2004)Mol. Microbiol.51,1817–1826 triggers the dissociation of the AcnR-operator complex and 19. Menkel,E.,Thierbach,G.,Eggeling,L.,andSahm,H.(1989)Appl.Environ. thuscounteractstheincreasedrepression.Suchamechanism Microbiol.55,684–688 20. Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989) Molecular Cloning. A would ensure that aconitase expression is never completely Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring repressedbyAcnR,whichwouldbeharmfultothecell.Inorder Harbor,NY 21. Keilhauer,C.,Eggeling,L.,andSahm,H.(1993)J.Bacteriol.175,5595–5603 toidentifytheproposedmetabolitewetestedavarietyofme- 22. Studier,F.W.,andMoffatt,B.A.(1986)J.Mol.Biol.189,113–130 tabolites of central carbon metabolism with respect to their 23. Henson,C.P.,andCleland,W.W.(1967)J.Biol.Chem.242,3833–3838 effectsonAcnRbindingtotheacnpromoterusingthegelshift 24. Hanahan,D.(1985)inDNACloning(Glover,D.M.,ed)Vol.1,pp.109–135, IRL-Press,Oxford/WashingtonD.C. assay.However,wecouldnotyetfindametabolitethatinhibits 25. van der Rest, M. E., Lange, C., and Molenaar, D. (1999) Appl. Microbiol. bindingofAcnRtoitsoperator.Thus,thequestionoftheligand Biotechnol.52,541–545 26. Niebisch,A.,andBott,M.(2001)Arch.Microbiol.175,282–294 recognizedbyAcnRisstillopen. 27. Scha¨fer,A.,Tauch,A.,Ja¨ger,W.,Kalinowski,J.,Thierbach,G.,andPu¨hler,A. Regulation of aconitase gene expression is widespread in (1994)Gene(Amst.)145,69–73 28. Skerra,A.,andSchmidt,T.G.(2000)MethodsEnzymol.326,271–304 bacteria. As mentioned before, E. coli contains two distinct 29. Engels,S.,Schweitzer,J.E.,Ludwig,C.,Bott,M.,andSchaffer,S.(2004)Mol. aconitases (46), AcnB, which is the major citric acid cycle en- Microbiol.52,285–302 30. Wendisch,V.F.,Zimmer,D.P.,Khodursky,A.,Peter,B.,Cozzarelli,N.,and zyme and AcnA, an aerobic stationary phase enzyme induced Kustu,S.(2001)Anal.Biochem.290,205–213 by iron and redox stress. The acnB gene is activated by CRP 31. Mo¨ker,N.,Brocker,M.,Schaffer,S.,Kra¨mer,R.,Morbach,S.,andBott,M. (2004)Mol.Microbiol.54,420–438 and repressed by ArcA, FruR and Fis and acnA expression is 32. Wendisch,V.F.(2003)J.Biotechnol.104,273–285 activateddirectlyorindirectlybyCRP,FruR,Fur,andSoxRS 33. Polen,T.,Rittmann,D.,Wendisch,V.F.,andSahm,H.(2003)Appl.Environ. Microbiol.69,1759–1774 andrepressedbyArcAandFNR(58).InB.subtilis,expression 34. Lange,C.,Rittmann,D.,Wendisch,V.F.,Bott,M.,andSahm,H.(2003)Appl. oftheaconitasegenecitBissubjecttorepressionbytheLysR- Environ.Microbiol.69,2521–2532 typeregulatorCcpCandrepressioncanberelievedbycitrate 35. Ishige, T., Krause, M., Bott, M., Wendisch, V. F., and Sahm, H. (2003) J. Bacteriol.185,4519–4529 (59, 60). Besides CcpC, also CodY and AbrB were reported to 36. Eisen,M.B.,Spellman,P.T.,Brown,P.O.,andBotstein,D.(1998)Proc.Natl. be involved in citB expression (61). Similar to E. coli and Acad.Sci.U.S.A.95,14863–14868 37. Laemmli,U.K.(1970)Nature227,680–685 B. subtilis, we also obtained evidence that acn expression in 38. Claes, W. A., Pu¨hler, A., and Kalinowski, J. (2002) J. Bacteriol. 184, C.glutamicummightbecontrolledbymorethanoneregulator. 2728–2739 As shown in Table III, the aconitase activity of the (cid:3)acnR 39. TexDto.,ra,nSd.,BWuecnkdeils,cWh,.V(1.9F9.,7D)AerGchra.aMf,icAr.oAbi.o,lM.1u¨6ll8e,r4,2U8.,–L4i3n6der,M.I.,Linder, mutantwas1.5–2.3-foldhigheronacetate,citrate,andpropi- 40. Brock,M.,Maerker,C.,Schutz,A.,Volker,U.,andBuckel,W.(2002)Eur. J.Biochem.269,6184–6194 onate compared with glucose. Regulators other than AcnR or 41. Gerstmeir,R.,Wendisch,V.F.,Schnicke,S.,Ruan,H.,Farwick,M.,Reinsc- other regulatory mechanisms might be responsible for this heid,D.,andEikmanns,B.J.(2003)J.Biotechnol.104,99–122 42. Kalinowski,J.,Bathe,B.,Bartels,D.,Bischoff,N.,Bott,M.,Burkovski,A., increase. Recently, RamB was identified as a negative tran- Dusch, N., Eggeling, L., Eikmanns, B. J., Gaigalat, L., Goesmann, A., scriptionalregulatorofgenesinvolvedinacetatemetabolismof Hartmann,M.,Huthmacher,K.,Kra¨mer,R.,Linke,B.,McHardy,A.C., C.glutamicum(62).Theacngenebelongstotheacetatestimu- Meyer,F.,Mo¨ckel,B.,Pfefferle,W.,Pu¨hler,A.,Rey,D.A.,Ru¨ckert,C., Rupp,O.,Sahm,H.,Wendisch,V.F.,Wiegrabe,I.,andTauch,A.(2003) lon(41)andtwoputativeRamBbindingsiteswereidentifiedat J.Biotechnol.104,5–25 positions(cid:4)492to(cid:4)480((cid:7)strand)and(cid:4)456to(cid:4)444((cid:4)strand) 43. Schaffer,S.,Weil,B.,Nguyen,V.D.,Dongmann,G.,Gunther,K.,Nickolaus, M.,Hermann,T.,andBott,M.(2001)Electrophoresis22,4404–4422 upstream of the proposed acn start codon (62). Thus, RamB 44. Prodromou,C.,Haynes,M.J.,andGuest,J.R.(1991)J.Gen.Microbiol.137, might represent a second regulator of acn expression besides 2505–2515 45. Prodromou,C.,Artymiuk,P.J.,andGuest,J.R.(1992)Eur.J.Biochem.204, AcnR.Ourfuturestudieswillfocusonthesearchforadditional 599–609 regulators of acn expression, for the inducer molecule recog- 46. Gruer,M.J.,andGuest,J.R.(1994)Microbiology140,2531–2541 47. Gruer,M.J.,Artymiuk,P.J.,andGuest,J.R.(1997)TrendsBiochem.Sci.22, nizedbyAcnR,andfortheanswertothequestionwhetherthe 3–6 C.glutamicumaconitasealsohasaregulatoryfunction. 48. Cole,S.T.,Eiglmeier,K.,Parkhill,J.,James,K.D.,Thomson,N.R.,Wheeler, P. R., Honore, N., Garnier, T., Churcher, C., Harris, D., Mungall, K., Basham,D.,Brown,D.,Chillingworth,T.,Connor,R.,Davies,R.M.,Dev- Acknowledgments—WethankC.LangeandT.Polenforhelpwith lin, K., Duthoy, S., Feltwell, T., Fraser, A., Hamlin, N., Holroyd, S., DNAmicroarraysanddataanalysisandS.Engelsforassistancewith Hornsby,T.,Jagels,K.,Lacroix,C.,Maclean,J.,Moule,S.,Murphy,L., DNaseIfootprintassays. Oliver,K.,Quail,M.A.,Rajandream,M.A.,Rutherford,K.M.,Rutter,S.,
Description: