ebook img

Identification and Activity-Dependent Labeling of Peripheral Sensory Structures on a Spionid Polychaete PDF

2004·6 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Identification and Activity-Dependent Labeling of Peripheral Sensory Structures on a Spionid Polychaete

Reference:Biol.Bull.206:65-77.(April20041 2004MarineBiologicalLaboratory Identification and Activity-Dependent Labeling of Peripheral Sensory Structures on a Spionid Polychaete SARA M. LINDSAY*. TIMOTHY J. RIORDAN. JR.. AND D. FOREST SchoolofMarine Sciences, 575J MurrayHall, UniversityofMaine, Orono, Maine 04469 Abstract. In marine sedimentary habitats, chemorecep- Introduction tion is thought to coordinate feeding in many deposit- feedinginvertebratessuchaspolychaetes.snails,andclams. In marine sedimentary habitats, deposit-feeding inverte- Relativelylittleisknown,however,aboutthechemosensory brates such as polychaetes, bivalves, gastropods, crusta- structures and mechanism ofsignal transduction in deposit ceans,holothurians,andhemichordatesare abundantmem- feeders.Usingelectronmicroscopy,confocallaserscanning bers of the tnacrofauna. These organisms ingest large microscopy(CLSM),andimmunohistochemistry,weinves- volumes of sediment with typically low food value, often tigatedthestructureandfunctionofputativechemosensory processingoneormorebodyweightsofsedimenteachday cells on the feeding appendages of a deposit-feeding (reviewedinLopezandLevinton, 1987). They alsodisturb polychaete species. Dipolydora quadrilobata. Tufts ofpu- thesedimentastheyburroworbuildtubes.Asbioturbators. tative sensory cilia were distributed over the prostomium depositfeedershaveaprofoundinfluenceonthebiological, and feeding palps and typically occurred next to pores. chemical, geological, and even physical properties oftheir dmEmuixilcauarmrmoisncacaelnotldpisyopnbarelenopvefseaattwlhheeedrtsehemeuslriptemoigircileiaoslrn.i,saTtdehwidiestpchlsealelyntsisrnoawgrniystamhnicesalasdlibjsouanncoedfneatlpnercgcoelstatrnooo--nf lht11aar99byi89ib23teu;;atttia.AollSn.lh,Deue(rl1pe,l.9og,9s.10,i9;t29N04Gif)0rt,e1teo)srd.seoesrudmsesiaremandefainfanmtendecdtmnitScRstreeeoigdrcbeinhiobmaaecerlrhndgettc,m,oitmsr11mat99unr89sny11pi;;otr(iPtSMleuaasacrnnhit(dnaeFenildaenlinkdisd.-,- apical mitochondria and relatively short ciliary rootlets. Mayer, 1994), nutrient cycling (Widbom and Frithsen, eStxaaimniinnegdwibtyhCaLnStiMs,eruamndagraeivnesatleadceatxyolnaateldprao-ctuebsusleisnfwraosm (1M99a5y;erCehtriasl.t.en1s9e9n6;eWtesalt..on20ct00a)l.,, 2a0n0d0).fatSeedoifmepnotllduitsatnutrs- putative sensorytuftson thepalpsurfacetopalpnerves,as bance by deposit feeders mediates competitive interactions well as many free nerve endings. Activity-dependent cell (e.g.. Rhoads and Young. 1970; Woodin. 1976; Wilson, labeling experiments were used to test the sensitivity of 1981; Brenchley, 1981). and influences animal distribution putativesensorycellsonthepalpstoanaminoacidmixture patternsanddispersal (Wilson, 1981; Gunther, 1992; Brey. thatelicited feeding inpreviousbehavioral experiments. In 1991),aswellasrecruitment(Williams, 1980;Posey, 1986: static exposures, the number of lateral and abfrontal cells Luckenbach, 1987; Mines et al.. 1989; Olafsson. 1989: labeled in response to the amino acid mixture was signifi- Flach, 1992). In addition, deposit feeders can influence cantly greater than in the controls. Ultrastructural. posi- recruitmentdirectlyby ingesting larvaeandjuveniles(Wil- tional, and now physiological evidence strongly suggests son. 1980; Tamaki. 1985; Miliekovsky. 1974: Elmgren et that spionid feeding palps are equipped with sensory cells, nl.. 1986; Albertsson and Leonardsson. 2001). at least some ofwhich function as chemoreceptors. Ratesofsedimentmobilizationbydepositfeedersdepend on food supply. In the last twodecades, behavioral, physi- ological,andmathematical modelingapproacheshavebeen applied to the question of what makes some sediments better food than others (e.i;.. review by Jumars, 1993). Received 17September2002;accepted4February2004. Largely absent from this body of research, however, are *To whom correspondence should be addressed. E-mail: slmdsay(s> studies that investigate the cues that initiate ingestion and rnaiue.edu modulate feeding rates in deposit feeders. Jumars (1993) 66 S. M. LINDSAY ETAL suggested several stimuli that could operate to regulate they may also be involved in osmoregulation (Fewou and ingestion rate: smell, taste, distension ofthegut, and inter- Dhainaut-Courtois. 1995). Nuchal organs typically are nal detection ofthe absorbed products in body fluids. The pairedepidermal structures found on the dorsal side ofthe physiologicalandmolecularmechanismsfordetectingthese prostomiumorperistomium (/.<., the anteriorpresegmental stimuli remain poorly understood for mostdepositfeeders. region). Somespionidpolychaetes(notDipolydorat/iuidri- Chemoreceptionisimplicatedinthecoordinationoffeed- lohatii) alsohave metameric nuchal organs on theirbodies ingbyavarietyofdepositfeeders.Forexample,freshfecal (Jelsing, 2002). Cephalic nuchal organs are typically com- material depresses feeding rate in the snail Hvdrohiti tnin- posed ofciliated supporting cells, bipolar primary sensory cata (Forbes and Lopez. 1986) and the spionid polychaete cells with cilia, unmodified epidermal cells, and retractor Pseudopolydorakempijaponica(MillerandJumars, 1986). musclecellsinthosespeciesinwhichnuchalorganscanbe Phagostimulants are implicated as well. When given a retracted (reviewed by Purschke, 1997). choice,thecommondeposit-feedingpolychaeteStreblospio Other presumed chemosensory structures have been de- benedicti fed preferentially on organically enriched sedi- scribed from polychaetes, including epidermal papillae of ments rather than on unaltered sediments (Kihslinger and thedeposit-feedinglugwormArenicohinuirinti(Jouincttil.. Woodin,2000).Feedingrateinadeposit-feedinghemichor- 1985).compoundsensoryorgansontheprostomialcirriand date was strongly correlated with sediment chlorophyll n palpsofNereisdiversicolor(Dorsett and Hyde. 1969). and concentrations (Karrh and Miller. 1994). Robertson et <//. the parapodial cirri ofnereidid polychaetes (Boilly-Marer. (1980) found that fiddler crabs, Ucu pii^ilutor, fed selec- 1972). InPlan-nereisdinner!ii. thereceptorsoftheparapo- tively in diatom-enriched patches of sediment and could dial cirri function in perception of sexual pheromones resolve patches at the millimeter scale by probing with (Boilly-Marer. 1968. 1974). Peripheral sensory structures sensorysetaeontheirlegs. Fiddlercrabshavealsobeenthe have also been observed on the feeding palps, prostomia. focus ofseveral studies that explicitly tested the effects of and peristomia of several spionid polychaete species chemicalcompoundsondepositfeeders.Avarietyofamino (Dauer. 1984. 1987. 1991. 1997: Worsaee, 2001). With the acids, peptides, and sugars appear to stimulate feeding exception of the nereidid pheromone receptors, studies (Robertson et ai, 1981; Rittschof and Buswell, 1989; demonstrating functions of these putative polychaete che- Weissburg and Zimmer-Faust, 1991; Weissburg. 1993). moreceptorsarelargelyabsent.Thegoalsofthisstudywere Similarly, Ferner and Jumars (1999) found that dissolved to(1)describethedistribution and ultrastructureofperiph- cues (amino acids and complex mixtures) influenced the eral sensory cells of the spionid polychaete Dipolydont cpafeoemnleitdynlicoynhgaeaectxbietedhesDanivdpaieunodldryitshohuifigsraasrewqsvoueraridaknlrfiltlusooepnbicaosenthiaodfw(eRepidotoilhnryagtdcahanipenatarenttsdhi.ecLliWesn-pedbisooaunrynie,dd- 2bitqou0uerr0alae2dels)rd.irbcleeyoslblpausotsnaris,enesgsapnoaidnnnd(iiD2n.)mgmauqstunosaoicdghhrnieisamltoiofbcucaanhtlceatmciiuo(necRasaillotrrhdaoaatlpenperltaooicnatidchtheeLdsietbnhesadtthsraaulvyca-.-- 2002). Although chemical mediation of deposit feeding seems likely, relatively little is known about the chemosensory Materials and Methods fseterduecrtsu.resOannedemxeccehpatinoinsmisoftisdidglnearl tcrraabnss.ducWteiiosnsbinurdgepoasnidt Collection andmaintenance ofanimals colleagues have identified gender-specific differences in Individuals of Dipolydoru t/iuulrilohtitit (Jacobi 1883) tiddlercrab feeding behaviorin response tochemical cues, were sieved (0.5 mm) out of cores collected from the and these are linked to differences in the number and mudflats of Lowe's Cove at the University of Maine's sensitivity of chemoreceptor neurons (Weissburg, 1993. DarlingMarineLaboratory(Walpole. ME.USA)onseveral 1999; WeisshurgandDerby. 1995; Weissburgi-tai. 1996). days in SeptemberandOctoberof2000. and March. April, Recent work (Weissburg. 2001) suggests the adenylate- and May of 2001. Animals and natural sediments were cyclase-cAMPsecond messengercascade mediates inhibi- transported to the University of Maine in Orono and tionofchemosensory neurons, andthatgender-specificdif- maintainedinaquaria insideanenvironmentalchamber(14 ferences inthispathwaycontributetothephysiologicaland C:10 C, 12 h light:dark cycle). Individual worms that behavioral differences in fiddlercrabchemosensitivity. measured 10-20 mm in length and showed no signs of Among the polychaetes, nuchal organs are presumed to gametogenesis. loss of segments, or other bodily damage he involved in Chemoreception basedon histological. ultra- were used in the experiments. structural, and positional criteria (Storch and Schlotzer- Schrehardt. 19X8; Purschke. 1997). Several authors have Electron microscopy speculated that nuchal organs may be involved in food selection (Rullier. 1951; Rhode. 1940; No/ais </til.. 1997) For scanning electron microscopy (SEM). intact worms or reproduction (Schlot/er-Schrehaidt. 19X7). although were relaxed in chilled 37'i magnesium chloride, fixed in SPIONID PERIPHERAL SENSORY CELLS 67 3% glutaraldehyde in 0.1 M phosphate buffer with 10% bolicallyactivecells(Dwyerel<//.. 1980:PiccoandMenini. sucrose, post-fixed in 1% osmium tetroxide inO.I A7phos- 1993).Theseanalogsenteractive neurons through nonspe- phate buffer, and dehydrated in an ethanol series. Samples cificcationchannelsactivatedandopenedbythebindingof were thencritical-point-dried with liquidCO:, mounted on a ligand with its receptor protein. Sequestration of the stubs, and coated with gold palladium in a Conductavac I analogs in these cells allows for the activity-dependent (SpeeVac. Inc.) sputter coaler. Samples were viewed with labeling ofindividual receptorneurons. an AMRay AMR1000A scanning electron microscope op- For example, the guanidinium analog, l-amino-4-gua- eratingat5 kV. Negativeswerescannedat800dpi withan nidobutane (= agmatine), has been shown to enter into HP ScanJet 7400C flatbed scanner equipped with an HP receptor neurons through such open cation channels (Yo- ScanJet XPA attachment, and the images were saved as shikami, 1981).Whencoupledwithknownstimulatorycues TIFFfiles. in solution and perfused over olfactory organs, agmatine For transmission electron microscopy (TEM), worms accumulates in activated odorant receptor neurons (Michel were relaxed in chilled 37% magnesium chloride, fixed in ftnI.. 1999:Steulletettil., 2000).Cellsstimulatedbyacue p3o%st-gfliuxteadrailndeh1y%deoisnmpihuomsphtaettreoxbiudfefeirnw0i.t1h M10%phsouscprhoastee, aacgcmuamtuilnaeteIgaGgmaanttiinbeodayndfoclalnowbeed ibdyentsiifliveedr uisnitenngsiafnicaatnitoin- buffer, dehydrated in an acetone series, and embedded in labeling (Marc. 1995, 1999a. b). We presented agmatine Spurr's resin. Ultrathin sections were collected onto slot plus a mixture of amino acids known to elicit behavioral garciedtsa,te.thSeanmpstlaeisnewderweithvi0ew.e5d%wlietahdaciPthrialtleipasndCM2%10utrraannysl- rbieistpuoninsebsottho ifnldoiwv-itdhuraolugshpeacnidmesntsatiocfeDxippeorliymdenotrsa.c/uadrilo- missionelectron microscopeoperatingat 80kV. Negatives wscearnenesrcaenqnueidppated80w0itdhpiawHiPthSacnanHJePtSXcPanAJetat7ta4c0h0mCenftl,atabnedd sFelaowwatterrial(s.ASIWnd,iviindumalM:wo4r2m3sNwaeCrle.i9mmKeCr1.sed13inCaaCrtUif,ici2a3l the images were saved asTIFFfiles. MgCU, 26 MgSO4 (Cavanaugh, 1975) pH adjusted to 7.2) insideasmall coverslipperfusionchamber(WarnerInstru- Confocal laserscanning microscopy ments,Model#RC21B).Odorantstimuliwereaddedtothe thFtAehyaSredtWnWnehao,tofrimiiomxnswnesaodlCar.rwromtyeviBssrfeatierclawnitlraieilegrmSlheoeatsrxaeeseaa,otdMwaaa4MiktrneDeid)arCn.e3f(io7nArMA%fiSat5xWeM.sr,hoglMtCuiah3tnKrr2ieoi%aenscnob,eol1lfu0oEpt-cn4inHktio%ieinnrn7gpff.roo4rris.irsonm5elsaFsuelmostdiriIentoni-,yn-n Tc6Awr0ouhaS-nbesrtbWnrelAobrlypSslteyeuWrrgdbfiriunbanasgvygineiodstsanytnctodofhfplneecuaneoiedodcm,cdkatoinnreaviadanf5nldo-tvtlsoedfss.tp;lthuoieFlfwmllsupuueleirisidradtfefesufvlsosleoliorwuo(wyt0nwi.fo56acrn0shoscamtsmmwubterfheornserreeds6t'yh)o0hrenrilwomndeauigrngneie.dhsn cact6AmAFoh-olfcoSne1tnbutne1jsuWsarpBumeie-griacn1aainii)ntnaffn,siedni(gnetdcBadiawlS-Ip0gaAagpsio.s)cenlGa5e.ri)tt%iedAyeTdidlsahlSiaTnuloeotrtWtuvfeiietedpt-deArrdmoaniSonnim1u-1-gdW:atsX:h1ru1et0yibr00uni10(salnc0aesinwui0benctnibosoita,u0nbah(tt.donwSe5addido0%1yrg'.r8ymf05m(aoTh.%1s,r)ra"5.inw%tt5TASSoietrbpn.bri)hboete,odXcoLivnow-mmieiuioom1snitXneu0esho-nn0;(csItS/FslOeiAcIeowgOdlSTnremoWauCroani.lm-ne:en osmaA(trAfuliteeGlSofarnmfnnetBbWoaiasptynvt,eeempear,eel(nilnmurodeAtsotedc,Ghsd.rtarieBernedAlolm)uonaiaSn=ixxliiVceWntnaCdAeu5l-A.rGlwb6eySwyaB)vos..aoWaprcfllpmtiWSae(asnitcocrevm)iio.far.imnnutuntgmestrlFodseaotioudlhlpar,wceilioieinnomnvnredcecw.seihlri=nun(tatvdgaIh4hnaeeelddfmtnwvrhweeoMeg2ioserl0mzr6myee(mmc0sraWemi-s)carn(mhMres-fia)noe2onnredfd0ari5sgnpi2tmrnImiC0oanAimfl)stumrintSilenrfnaesuMWote-.-hor gsaloLcaiseasitcesasl,iTdeBCsiSrinmSiFPnl2guhocaormno,fmoocAuaLnl)t.l-aGPsre(erSpsoacuraatnthineoirnnnsgBwmieiorctereocishcmnoaoplgeoe.gdyNweAigst--h p(1h01a%tmeipnabrupafrffieoorrrmtwaoiltfdihexhiny1gd0.e%.Whs2ou%lcreogswleuotr(awmr/asvl)dw,eehrpyeHdepl7ia.n2c)e0d.f2irnoMmfixpoahvtoeisrv--e ativecontrolstotestforthespecificityofprimaryantibodies night to several days. werepreparedbytreatingspecimensasdescribed,butomit- tleiansgtth1e01woArbm.sRewpeeraeteudseidnctuobatetsitonfsorwererperopdeurcfiobirlmietdy,.andat Nm10oMmflAtwGABS(sWtiantiiAncs)SitdWreiaa(lscs.omnaItlrnlodli,pveintdrui=aldi6swhow,roamrnmsdsw)1e0orrmel4i0omfmmeeMirtsheAerdG4Bi0n plusthe mixture ofaminoacids inASW(treatment,n = 6 Activity-dependentcell labeling worms)wasslowlyaddedbypipette.Wormswereexposed labWeleaacdtaipvatteeddthoelfmacettohroydnuesuerdonbsyiMniczheeblrafeitsthil.a(n1d99s9p)intyo troelatthievetlryeaqtumieenstcsenftorin60thmeindi,shdeusr,inigmmwehriscehdtiinmefrtehsehyAwSerWe dloibnsiteurms.anTahliosgsmettoheondteerxpilnotiotssttihmeulabaitleidtynoefurcoantsionaincdgmueatnai-- tfohrem5 imnianftroeerzeemro(v-e20resCid)uaflorA1GBm,inanpdriroreltaoxefidxibnyg.pWlhacoilneg 68 S. M. LINDSAY ETAL. gwlourtmarsalwdeerheydpelaince0d.2inMfipxhaotsipveha(t1e%bupfafrearfwoirtmhal1d0eh%ydseu,cr2os%e pprreosceenstseisnttyhpeicsalalmyewpelraenenaost tchoepllaanbaerledincemlolrbeodtyh;anthoensee (w/v), pH 7.2) from overnight to several days. adjacentsection. Second,the locationsoflabeledcells ina single section were compared to labeled cells in adjacent Tissueprocessing, immunolabeling, and visualization sections toavoid counting the samecell twice. Labeled cells were grouped by type according to their Fixed worms were rinsed in a phosphate buffer (PB: location within the sections (Fig. 1). Abfrontal cells were 1.76 g NaH2PO4 H:O + 7.67 g Na:HPO4 in 1 1 of locatedbehindastraight linedrawnacrossthesectionsand deionized water), dehydrated through a graded series of tangent to the back ofthe food groove. Lateral cells were absoluteethanol andacetone,embeddedinEpon 812resin, foundbetweenthefoodgrooveandtheabfrontalcilia.Cells cured, and sectioned using a microtome and glass knives. immediately adjacent to the frontal ciliated food groove An average of 156 sections were processed for each indi- werecalled laterofrontalcells. Andcellslocatedwithin the vidual. Semi-thick sections (2 jum) were placed in 7-mm frontal ciliated food groove were called frontal cells. Be- wellsofaTeflon-coatedspotslide(ErieScientific),deplas- causedifferent numbersofsectionswereanalyzedforeach ticized in a 1:5 v/v solution ofmature sodium ethoxide in worm, we calculated the number of labeled cells per 100 anhydrous ethanol. and subsequently washed in three /j.m palp length, based on the total number of sections changes of anhydrous ethanol. The slides were rinsed in analyzed perindividual. The resulting datawere compared deionized water, air-dried, and then incubated overnight in among treatments using a nonparametric Kruskal-Wallis a 1:100dilution ofapolyclonal rabbit anti-AGB IgG anti- analysis of variance (SAS version 9, SAS Institute, Inc.). body (Signature Immunologies and courtesy of R. Marc. Data from flow experiments and static experiments were tUhneinverrsiintsyedoifnUPtBa.h wSacshohoeldoifn M\e7dticgionaet).seTrhuem silnidPesBwpelrues anaTloyzeesdtismeaptaerattehley.total number of each cell type in any 0.05%thimerosal(1%GSPBT)for 10min.andincubatedin lengthofpalp, serial sections madefromthepalps (middle aant1i:b5o0ddyilfuotrio6n0omfina.1A-fntemrgaolfdinaclonPjBugwaatesdhaanntdi-araibrb-idtryiInggG. pstoaritni.onT)oloufidfeounrewboluremsstawienrseacsitdaiicnecdelwlitpahrtast(oi.leu.i,dnenueclbeluuse) labeled cells were visualized using silver intensification and allows the different types ofcells to be identified and (Marc, 1999a, b). The silver nitrate solution for silver in- counted. Individualcellsweretracedthroughthesectionsto tohienfyndss6riooflimquctluaiitonionoofnnAedwe(aii1nso1n14pi5rzmeempgdlarcoweiaftdtrdeiberci)ya.ocnmiiiIdzxeim+dnlgw3ao4ttf2ehrrse)ioe,nlgaustnosildooudnt1iioumBnmls:(co0if5.tr51amt%lge taaivbsoosiuudted5woa%usblosefe-ctcthoieuonnatevidenrgfa.ogreOenlaecanhvgetohrfagotefh,etshaeebwopuoatrlmp1ss2,1ofr/euDpn.rieiso/efmnuptlairlnipg- aqueoussilvernitrate. Followingadipin5% acetic acidto lobaia. stop the intensification reaction, the slides were washed in deionized water for 10 min. air-dried, and mounted in Results Permount (Fisher) for viewing on a light microscope. Distribution ofperipheralsensory cells digitization andanalysis JavIemlaingeJsEo1f2tHhMeVsevcitdieonoscwaemreeracampotuunrteedddiognitaalnlyOlusyimnpgusa cirrSic,a\ncnnixniigeWloercstaroane,mi2c0r0o1s)codpiystrreivbeuatlededotnufttsheofpcaillipas(/a'.n'.d, fBrXa6m0e glirgahbtbemricrboosacrodpe(.ScVioindeoLGsig3n)alsinweareDelplassOepdtiptloexa ppurtoasttiovmeiisiemnsoofryDifci>loila\dwnerrueqmfiodurnidloobnataall(Fisgu.rf2a)c.esTuofftsthoef GX110 computer. The images were analyzed using the prostomium (Fig. 2B) and were typically adjacent to pores Scion ImagePC software. Beta ver. 4.02 (Scion Corpora- (Fig. 2B). The ciliaofthe prostomial tufts were nonmotile tion, Frederick, MD). Cells labeled with agmatine were and relatively short; they numbered about 13-20 cilia per identified byquantifying the pixel intensity inside acell ol tuft (Fig. 2C). On the palps, we observed motile cilia interest inthedigiti/ed imagesandcomparing ittothepixel arra\ed in a row immediately adjacent to each side ofthe intensity of an unlaheled region adjacent to the cell d'.v,. foodgroove (laterofrontal, Fig. 3A, B), and tufts ofmotile Micheletal.. 1999).Themeanandstandarddeviationofthe cilia arrayed in a second lateral row and on the abfrontal pixel intensity inside cells ofinterest wasused to calculate surface (Fig. 3A, B). Laterofrontal, lateral, and abfrontal a95% confidence interval; cells werecounted as labeled if ciliaoccurredwithsimilarfrequencyalongthelengthofthe the lower limit of this interval was higher than the upper palp (Fig. 3C). The putative sensory tufts of cilia on the limit ofthe unlabeled region. Two strategies were used to abfrontal surface seemed regularly dispersed; and. interest- avoid double-counting of labeled cells. First, cells were ingly, we observed fewer adjacent pores than on the pros- counted only if the distal processes and apical cilia were tomium.Theciliaoftheabfrontalsurfaceswerelongerthan SPIONID PERIPHERAL SENSORY CELLS 69 Singlecross-section(2jam) throughthepalp , B AbfrontalCell Location Lateral Cell Location Latero- FrontalCell Location FrontalCiliaand FrontalCellLocation Figure 1. (A) Gross palp morphology and section placement for cell labeling studies in Dipohdora quadrilobata.(B)Celltypelocationwithinsections.Cellsalongthefoodgrooveandwithinthefrontalciliawere designatedfrontalcells.Cellsimmediatelyadjacenttothefrontalciliaweredesignatedlaterofrontalcells.Cells behindalinedrawnacrossthebackendofthefoodgrooveweredesignatedabfrontalcells.Cellsinfrontofthat lineandlateraltothefrontalsurfaceweredesignatedlateralcells. thoseoftheprostomium,andtherewerefewerciliapertuft the muscle layers below, and cell bodies often projected (7-14) (Fig. 3C. inset). laterally (Fig. 5). Ciliary rootlets ofboth palp and prosto- mial cells, whenobserved,wereshortrelativetothe length Season'cell ultrastructure ofthecellbody(Fig.5A).Allciliawerereadilydistinguish- Palp and prostomial sensory cells shared similar ultra- able from the mic9roXvi2llarcuticle (Figs. 4, 5) anddisplayed structural characteristics. All were multiciliated and con- a characteristic + 2 microtubular arrangement in tained many apical mitochondria(Figs. 4, 5). Laterofrontal cross-section. cells on the palp were typically adjacent to glandularcells (Fig. 4) associated with pores on the surface. Gland cells Confocal laserscanning microscopy contained either globules of very electron-dense material (Fig. 4C) orlessdense material that appeared tobe mucus Theantibodyforacetylateda-tubulintargetsnerveaxons (not shown). Abfrontal cells ofthe palp were restricted by and cilia axoneme microtubules. Cilia ofthe food groove. 70 S. M. LINDSAY ETAL. sensory tufts to the palp nerves (Fig. 6B). There are also manynerveswithapparentfreeendingsonthepalpsurface (i.e., not associated with ciliated cells). A more detailed mwfif^^^^ &fSJNP ?TS v-;syXj V c"**S v J*r.'-."^ '^s^L^^sr-'.,- i*.i? /" -.it.^t.*i '>*/!fldBMl3Ht^Hp' ~'^ jd^^H^^l Figure2. Peripheral sensoiy cellson iheprostomiimiofl)i/>i>lydoru i/utulrilohiitu. (A) Anterior prolilc. shiming pulps (pa) and piosionmini (pro);scale 10(1/.nil Inselslum'sentireworm.(HiCiliatedstrueluresarc ilislnhuteil on theentiresurfaceoftheprostoniium (anowsi; palps wcic ieino\cd. leavingascaripsi; scale 1(10/mi. (Cl I'oiesipo)arefound i^A.- '?>'" .o ud|accnllothesensory sliueluresontheprosiominm;scale = 10/Mill Inset 3. Peripheralsensoiy cellsonIhepalpofDi/'olyilni'iii/utulri- showsthesensoryciliaofthepiostomium; insetscale - 2.5juin. lohulii. (A)Lateralviewofthemiddleportionofafeedingpalp,showing fsrconnstoarl\fcoiloida(gsrllooovnet(hIe'gll.alcliaalleraonlidonalhallrocnillailas(n11r1t.acaensdoflutllhsepoaflpn;onscmaolleil=e lateral and abl'ronlul surfaces of palp, as well as (he main so/mi. (Hi Middleportionofthe feedingpalpshowinglaterolrontal(II) cpeanltpranlernveervaonudssesvyesrtaelmsmsahlolweredpalapeentyelravleesdprao-jteucbtuilnigntroeatch-e cssiehlniosawoiatndvjgalctuehlneltsltoiousidiih.geisfocroaol\nectalilgflo.IoId)lagl/erjroMoo.lvieo(nCl(iafgl)H.(i1sa1l1saclwiellipalo,raatsinodlnatseeornfasllofyreyeddi(isltnifrgtisbpuisatlle)dp; tivity(Fig.6A).Ourinitialobservationsclearlyshow axons scale = 10/jiii. Inset palpsensoiy tuftsappeartohesimilarlothoseon that project from the cilia of putative lateral and ahfrontal thepiosioiiiiuni;insetscale = I jim. SPIONID PERIPHERAL SENSORY CELLS 71 Figure 4. Ultrastructure ofDipolydora quadrilobata palp laterofrontal cells. (A) Semi-oblique section throughpalpfoodgrooveshowingdensefieldoffrontalcilia(fc)andadjacentlaterofrontalcell(If);scale=2 /jm.(B)Samelaterofrontalcellshowingnumerouscilia(c)andmanyapicalmitochondria(mt);scale=2fj,m; thebasalportionofthecellprojectsoutoftheplaneofsection.(C)Anothersemi-obliquesectionofthepalp revealsthelaterofrontalcellandadjacentglandularcell(gc)withpore(po);scale = 2/j,m. examination ofthe innervation ofthese peripheral sensory pared to controls in all cell types pooled (Kruskal-Wallis, cells, as well as their reactivity to anti-serotonin and anti- X2 = 9.88,d.f. = 1,P = 0.002, n = 36). Weobservedthe FMRFamide, is in progress. greatest amount of labeling in lateral and abfrontal cells (Fig. 8B). Activity-dependentlabeling Based on counts from the serial sections stained with toluidine blue, frontal cells and laterofrontal cells occurat Four types of putative sensory cells were labeled by aboutthesamefrequency,averaging27frontalcellsand28 eafprrxmoopincotnesaoslisnaecgceslitledhsxetm(iepFxinagtdl.uiprsn7eg):o.tfTfhDrhr.oeonustqgaeulha,fdtorhluaeirtleecorpeboliafldtreoatrnytmptaioelss,atgalolmalattethhrieaanlvs,eeuracafnenalddcleuatlboha-erf cc2leea.llt5lle5ssroompfcermcronutr1fa0ollr0ecsDe/s.lulrfsnrqeupoqaefudrerpnia1tll0lopy0b.,ajtGaaatim,vaeoacnfnopdmaanblapisa.nsveLuedamrtiaeagnrvegaelrpnaaaoglnepdchrlaaaebtnnfeggroeotfnhst1aoilnf1 tshuerfpaaclepo(fFigt.he7),pamlap.nyFrwointthalvisainbdlelcaitliearoefxrtonetnadlincgelflrsomwetrhee daipsptrroixbiutmiaotnelaylo6n8g8thferolnetnagltchelolfs,th7e14pallpa,tewroefrcoanntatlhceenllesx,paencdt generally found as groups of several cells close to one atotalof280lateralandabfrontalcellstooccuronasingle oafnotthheesreacteltlhsewpeerriephlearbyeloedf.thIenfcooontdragsrto,ovlea,bealnedd olaftteernalmoasndt pinalspt.atBiacsteridalosnontlhye,owcecucrornesnecrevaotfivlaebleyliensgtitmhaattewtehatob1s4er%veodf abfrontal cells were always found in isolation. the total number of lateral and abfrontal cells, 47c of the The occurrence oflabeledcells in the flow-through per- total number of laterofrontal cells, and 3% of the total fusionexperimentwasquite variable(Fig. 8A). Poolingall number of frontal cells were labeled by agmatine in the c(eclule)tyopnesc,eltlhelraebelwiansg (nKorussikganlif-iWcaalnltisefffect=o0f.7a4m,idn.of.a=cid1s, presence ofamino acids. P = 0.39, n = 27). There was a non-significant trend Discussion towardgreaterlabelinginthecontrolsforlaterofrontal and frontal cells (e.g., Kruskal-Wallis test of the difference The diversity of chemosensory organs among marine betweenthe numberoffrontalcellslabeledinthepresence organisms is great, from crustacean aesthetasc sensilla to ofaminoacidscomparedtocontrols:x2 = 2.7655,d.f. = 1, molluscan osphradium, rhinophores. and oral tentacles, to P = 0.09, n = 9). Relativelyfewercells were labeled in polychaete nuchal organs (Laverack, 1968; Emery, 1992). thestaticexperiments(Fig. 8B,noteaxisscale).Incontrast Despite this diversity, the transduction of externally de- to the flow experiment, however, addition ofamino acids tected signals to the brain follows a similar pathway, be- significantly increased cell labeling with agmatine com- ginning with the activation of a chemoreceptor cell that 72 S. M. LINDSAY ETAL. leadstothecentral nervoussystem.Thestructuralcommon denominator for all chemosensory cells is the presence of ciliary or microvillarextensions into theenvironment. The peripheralcellsofthespionidpalpsandprostomiumclearly meet this requirement (Figs. 2, 3). Dauer (1984, 1987. 1991, 1997) and Worsaee (2001) observednonmotileciliaonpalpsandprostomiaofseveral spionid species, including Dipolydora quadrilobata, and classifiedthemassensoryonthebasisofscanningelectron microscopy data and positional criteria. Our initial TEM observations (Figs. 4, 5) support these classifications, and suggest that these peripheral sensory cells have features similar to the caudal chemoreceptors that Jouin el ai. (1985) described in Arenicola marina namely an abun- dance of apical mitochondria and short ciliary rootlets. Confocal laser scanning microscopy furtherreveals axonal processes to palp nerves from the lateral and abfrontal sensory tufts (Fig. 6), as well as many free nerve endings projectingtothelateral andabfrontal surfacesofthepalps. Assigning function tocells based solely on morphologi- cal criteria can be difficult, however. For example, it ap- pears that no single morphological character defines che- moreceptor cilia: on the crustacean aesthetasc, olfactory ciliacan have "significant" ciliary rootlets and motile cilia (Griinert and Ache, 1988). Weusedthe activity-dependent labelingexperimentstoexplorethepossiblefunctionofthe palpsensorycells.Althoughwedesignedtheexperimentto assayforcellactivityinthepresenceorabsenceofchemical cues (aminoacids), it is important to note that this method of labeling active sensory cells does not discriminate be- tweentypesofreceptors. It simply identifiescellsthathave accumulated agmatine, regardless of the stimulus source. Thus,thelabeledcellsmayincludeavarietyofsensorycell types. The initial stimulation of a mechanoreceptor (i.e.. stretching orbendingofthe cell membraneoraprotruding cilium) in at least one invertebrate (the crayfish) opens a stretch-activatedionchannelthatappearstobepermeableto divalent cations (Edwards et ai. 1981). Chemoreceptor transductionproceedssimilarly,withthebindingofaligand tothe receptorin the membranecausing the activation and opening ofionchannels. In bothcases, suchcation-perme- able channels should be permeable toagmatine, andthere- fore both mechanoreceptors and chemoreceptors could be labeled using this technique. Spionid palps are probably equipped with mechanosen- .. 5. Ultrastructure ofDipolyJuni iimulriluhiitii palp abfrontal cellandprostomialsensorycells.(A)Constrainedbyamusclelayerbelow. Ihis ahtrontal palp sensory cell projects laterally. Cilia (c) are readily distinguished fromthemicrovilli(mv)ofthecuticle;ciliaryrootlets(cr) appearrelativelyshort;scale=0.5/J.m.(B)Prostomialsensorycellshave asimilarstructure, withcilia(c)projectingthroughthemicrovillar(mv) cuticle,numerousmitochondria(nit),andabilobednucleus(nu);scale= _ /urn. (C) Highermagnification ofthe samecell, showingapical mito- chondria(nit);scale = 0.7/im. SPIONID PERIPHERAL SENSORY CELLS 73 *, Figure 6. Fluorescence of anti-acetylated a-tubulin in Dipol\dora qiiadrilnhata palps examined with confocallaserscanningmicroscopyreveals(A)palpnerves(pn),andciliaofthefrontalfoodgroove(scalebar 40juin)aswellas(B)ciliaoftheabfrontalputativesensorytufts(st),theiraxons(ax),andtheirproximityto thepalpnerves(pn);scale = 25/AMI). sory cells. Many spionids (including D. i/uculrilobatd; T. cells. There was virtually no labeling in the agmatine con- Riordan, pers. obs.)switchfromdepositfeedingtosuspen- trols. These results suggest that the lateral and abfrontal sionfeedinginthepresenceofhigherflowrates(Taghonet cellsarechemosensory,althoughitispossiblethatthecells al., 1980; Dauer et al. 1981). This switch is probably were stimulated by a response triggered elsewhere on the mediated by mechanosensory detection of flow rates. In body. We believe that body movement was an unlikely addition, when suspension feeding, spionids collect sus- stimulus, however, because the worms werequiescentdur- pendedparticlesthatdirectlyinterceptthepalps.Cilialining ing the static trials. theedgeofthe frontal foodgroove (i.e., laterofrontal cilia) Ifweacceptthatthelateralandabfrontalciliatedtuftsare and inside the food groove (i.e., frontal cilia) move such chemosensory. then the question arises whether the cells particlestowardthe mouth(Dauer. 1984. 1985, 1987). and functionasdistanceorcontactchemoreceptors.Whenspio- may be mechanosensitive. For example, the laterofrontal nidpolychaetesaredepositfeeding,theytypicallyprobethe cwetsmmivhueehleugcciTersgahhh,neaaeswtnonthficeoeieocsxnnaotpegctlnrenaaeearsncnsinotdtmmsoerieepttdymcniouothwlfbmnsaaauyiantrndwkiodc,oaeetsniiePnocsnaacanousrnsrnsoaeyfdpraopauersyrccnefiottddaionhceennecltdfdoalolspburudaepspeillaiaindirpfooctnfnenigessopcceotloitnnefnaisennbotxaag(ohrpctDueltyucatii,elvucclaiieelatttlrbyell,e.lrsypaa.ootbfis1erHss9looooi8inlnb5ntwall)gat-ye.;le eDtmaswtoc.eaeidtancdlie(ot.smr,/nuebtpaa1anornd9ctrodrt8nbi1seiltusn;ohrucgebLfgu,aiaaestncreawedswdshiawia(eminsyRnetc,inrhmopetpiretarndrhsseisaeues.nmrdedfanoiaalbstacstncee.aotdd.l)ri,vPLpwneruioioesnrtnfvitdheeinisxeogoaipdunysaist,trnhloetgeyfn2,i,ta0ct,b0lhwife2enewr)-cop.eblsnaoutlhuBcdaponeiolsdwncngse(caaudlDurmsuasfeitdueadhneeciaodre-at and frontal cells in the flow-through controls (Fig. 8A) is thatthepalpsmediatedtheresponse.Inaddition.Fernerand intriguing, and the possibility that these cells function as Jumars (1999) reported repeated "pore-water-sniffing" be- mechanoreceptors should be further examined using elec- haviorby Boccardiaproboscidea in which the palps were trophysiological approaches. It is also possible that the raised intothe watercolumn, sankpassivelyontothe sedi- increased labeling in controls was due to the presence of ment, and then quickly returned to an upright position. agmatine, whichitselfisapotentchemicalcueinzebrafish Again, it was the abfrontal palp surface that contacted the (Michel ettil.. 1999). Inthe static trials, significantly more sediment. Given such behaviors, we speculate thatthe ab- cells were labeled in the presence of amino acids and frontal cells act as contact chemoreceptors. Yet spionids agmatinethaninagmatinealone(Fig. 8B);increased label- alsousetheirpalpsto"monitor"thewatercolumn(Daueret ing was especially pronounced in the lateral and abfrontal til.. 1981; Ferner and Jumars, 1999), and the lateral and 74 S. M. LINDSAY ETAL Labeled Labeled laterofrontalcells lateralcell Labeled IV . \ frontalcell * . ,Vv *' ftn 25|Jtn B Labeled Y'#'" - abfrontalcell , :..- ' , "Unlabeled abfrontalcell ;* D Figure7. LabelingofDipolydnniqiuulrilobatapalpcellsbyagmatineinthepresenceandabsenceofthe aminoacid mixture. (A) Semi-thin section frompalpexposedto agmatine + aminoacids showing labeled laterofrontalandfrontalcells;scale=25ju,m.Insetshowsthesamecellsathighermagnification;scale=5/xm. (IBns)etSesmhio-twhsinthseecstaimonefcrelolmaptalhpigehxeprosmaegdnitofiacgamtaiotni;nesc+aleam=ino5a;cuimd.s(sCh)owSiemnig-tlahbienlesdecltaitoenralfrceolml;psaclapleex=po2s5efdj.ntio. agmatine + aminoacidsshowinglabeledabfrontalcell;scale = 25/xm.Insetshowsthesamecellathigher magnification; scale = 5 /xm. (D) Semi-thin section from palp exposed to agmatine without amino acids (control),showingunlabeledahfrontulcellanditsciliaprojectingfromthecuticle;scale=25fxm.Insetshows thesamecellathighermagnification;scale = 5/xm. abfrontal sensorycells mightalsofunction asdistanceche- (i.e., lackingcontact, this paper)andadsorbed (i.e., contact moreceptors. necessary. Riordan and Lindsay. 2002) cues. The initial Among invertebrates, preliminary studies suggest that ultrastructuralinformationrevealsnosignificantdifferences gustatory("taste."orcontactchemosensitive)andolfactory among the groups of palp sensory cells (laterofrontal, lat- ("smell,"ordistancechemosensitive)sensoryneuronsshow eral,andabfrontal).Characteri/ationoftheinnervationpat- aconsiderable amount ofstructural similarity (Dionne and ternsandimmunoreactivitytoserotoninandFMRFamideis Dubin, 1994). For example, two populations of sensory ongoing. cells are distributed on the sensory tentacles of the nudi- branch Plicstilla sihoi>(ie. The intraepithelial sensory cells Conclusion (contactorshort-distancechemoreceptors)andsubepithelial sensory cells (olfaction) have distinct spatial distributions, Previousresearchestablishedthatselectionofparticlesof axonal organizations, and sensitivity to chemical cues, yet certain sizes by spionid palps can he influenced by mucus haveverysimilarelectrophysiologicalandpharmacological adhesion strength and particle "stickiness" (Jumars et /.. characteristics (Boudko ct til.. 1997, 1999). Our experi- 19X2: Taghon. 19X2: Dauer. 1985). Qian and Chia (1997) mentswithD. c/UMirilo/xitiidemonstrateihat the lateraland havespeculatedaboutapossiblesensoryrolethepalpsmay abfrontalsensorycellsofthepalpsrecogni/ebothdissolved play in selective feeding, and putative sensory structures

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.