ebook img

IdCaux Premiers de I'Alg&bre Enveloppante d'une Algebre de Lie Nilpotente PDF

23 Pages·2003·1.13 MB·French
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview IdCaux Premiers de I'Alg&bre Enveloppante d'une Algebre de Lie Nilpotente

View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector LAXRUOJ FO ARBEGLA 6, 99-77 )7691( xuaCdI sreimerP ed erb&glA’I etnappolevnE enu’d erbeglA ed eiL etnetopliN .Y ?IZAUOX TE .‘-I LEIRBAG tnemetra+D ed ,euqitz&htaM reilleptnoM te t&i&tI ed ehcrehceR ,euqitan&htaM gruobsartS ,devieceR lirpA 1966 snaD tuot ec iuq ,tius g engiskd enu erbegla ed eiL ,etnetopiin ed noisnemid ,einif rus nu sproc k ed euqitsiretcarac 0 te )g(V tse nos erbegla etnappolevne .ellesrevinu suoN snoluov rertnom tnemmoc nu tnemugra ed etilairotcnof temrep erdnete’d a suot sel xuaedi sreimerp ed )g(U sel statluser sunetbo rap reimxiD ]5.[ rus scl xuaedi xuamixam ”.slennoitar“ ruoP er& ,stelpmoc suon snoleppar tnemeveirb scuqleuq stnemennosiar ed .reimxiD .0 ,SNOITINIFED ,SNOITATON SESEHTOPYH .1.0 seL .uaenna &redisnoc tnos sfitaicossa tc tno nu tnemelC .etinu seL xuaedi tnos sCsoppus .serdalib nU laedi I nu’d uaenna A tse tid reimerp li’s tse tcnitsid ed A te ,is sleuq euq tneios sel xuaedi ] te K non sunetnoc snad ,I .J K tse’n sap unetnoc snad I. .2.0 tnememrofnoC a ,]5.[ suon snoton ,)K(,A uo tncmelpmis ,A al erbegla-k eerdncgne rap xued s.tnemCl6 p te 4 seil rap al noitaler ,p[ ]q = qp - pq = .1 suoK snoton )k(,A uo ,A al erbegla-k eerdnegne rap n2 stnemele ip , (i, j = ,...,l )lf seil rap sel snoitaler ,ipL ]iq = 1 te jq anO.j#iisO=]jq,~q[=]j$~iP[==]jq,ip[ lA@-@,A@,A==,,A n( )sruetcaf k k k nO esop ed m&me )k(,A = ,A = .k erbegla’L ,A a ruop esab rus k sel semonom ;jqip suon snoton ,A,,F el ecapse-suos ed ,A erdnegne rap sel semonom ed erged latot < n (i + j < n) srolA ,A tse nu uaenna ertlif tnod el &darg eicossa tse erbegla’l sed -6nylop mes ne 2 .selbairav raP ,tneuqesnoc ,A tse neirehteon a( ehcuag te P ;etiord ,]2[ .pahc ,III noitceS ,2 .rac 1 ed al .porp .)21 77 78 TE:iZAUON .LEIRBAG 0.3. suoN snoton 3 el ertnec ed erbegla’l ed eiL g te )g(Z el ertnec ed ,)g(U suoN idcntifions g a enu citrap ed .)g(U iS I tse un laedi ed ,)g(U Z(Z) engised el ertnec ed Z/)g(G te )I(K ’I uaenna latot sed snoitcarf ed Z(Z). 0.4. suoN snoresilitu tnevuos sel sesehtopyh te snoitaton setnavius : g tneitnoc sed stnemele ,X y te z slet euq : (i) lr,x[ = 2; (ii) ;3Ez )iii( ruetalunna’l ’g ed y snad ,g erid-B-tsc’c el ccapsc-suos ed g form6 sed t slet cuq [f, r] = 0, tse ed noisnemidoc 1 snad .g eD slet ,x ,y a tnetsixe euqsrol al noisnemid a[ : ]k d e z sur K tuav 1 risiohc( a. te y snad sel reimerp te emeixued semret ed al etius elartnec etnadnecsa ed .)g 0.5. suoN snoton )g(S erbtgla’l euqirtemys ed ,g 1. AL EL~LMROF ED ROLYAT 1.1. tioS k un sproc ed euqitsiretcarac 0. enU erbdgla-k elleitne+if$d arengised ici enu erbegla-k -4 einum enu’d noitavired D ellet li’uq ,etsixe ruop tout a E ,A un reitne n tnaifirev anD = 0. iS q tsc enu cenimretedni te B enu ,erbtgla-R suon snorinum ]q[k ko B ed al erutcurts erbegla’d diffcren- elleit ellet euq W(q) 0 4 = )q(’p 0 ;b rap elpmexe ”q(D @ )b = ’-”qn @ .b ErvunEL ED .ROLYAT tneioS A wru erbkgla-k elIeitner@d te J,T un tnem& du ertnec ed A let euq & = I. II y a srola un emsihpromoit ser%tgla’d -ne+@d sedit x : A z 0194 (-$-) let euq is a E A te is ,,x ez&s!td al essalc eludom 7A ed .r E .A 11 tse rialc ne effet euq a(x * 6) = )a(x * ,)b(x enod euq x tse un homo- emsihprom .scrbegla’d eD ,emem on tiniltd un emsihpromomoh ’x : ]q[k kO )77A/4.( + A a edia’l sed selumrof q($, 8 1) = 7 te .***+)aSD($--)a2D($+)aD(7-a=),,a@l(’x I1 etser A reifirev euq x’x = )A(dI te ’xx = ]q[k(dZ ,la .))?A/A( 97 SERBkGLA ED EIL SETWETOPLIN .2.1 tneioS p enu eenimrettdni te lpck .o A el tiudorp ”,udrot“ -a-tse’c erid erbbgla’l etrdnegne rap A te rap nu tnemelC p simuos xua snoitaler ap - pu = aD is a E .A iS ]q[K tse erbegla’l sed semonylop einum ed al noitavired ,elleutibah ]@I .o ]q[k eifitnedi’s a ,A , ed etros euq x tiudni nu emsihpromosi sed stiudorp sudrot stnadnopserroc : PY$ 0 )1 = P 0 1 te l(# ,i )a = 1 I@ ,a + q B ,)aD( + $ @ ,)%D( f a** . raP ,elpmexe ceva sel snoitaton ud .rgarap ,0 snonerp ruop A erbegla’l L’3w , eunetbo I? ritrap ed erbegla’l etnappolevne )’g(U rap noitasilacol tnemevitaler a tnemClC’1 lartnec z : tse’c enod erbegla’l eemrof rap sel snoitcarf ,”z/u ho u E .)’g(U snonerP ruop 7 al noitcarf ,z/y ruop D al noitavired einifed :xrap D $- $x= -+ .,)g(U ( ) snaD ec ,sac ]plA ,&$‘ A tse’n ertua euq ,)g(U te 7A/A edicnioc ceva z)yk/’g(U no( esiiacol tnemevitaler 2 al essalc 0x ed z oludom .)yk nO evuort isnia : .E&RO%IHT cevA al snoitaton du purug~. 0, li y a un emsihpromosi ed -@u-k serb let euq )x(* = p @ ,1 )y(# = q @ z te sulp tnemelurG5.g ,...+O)f~(~~~+,)tPD(~,~+,)tD(~q+,t~l=)t(~ is t E ,)’lm 3 is u,, tse al essulc eludom y ed II E ,)’g(U te is uD = ux - .xu noitacilppa’L l-$ eiovne p @ 1 rus ,x q @ 1 rus z/y te 1 @ 0U rus .3.1 .euqrameR euqsroL A tse enu erbegla ,evitatummoc el emmel ed rolyaT a enu noitacifingis euqirtemoeg elpmis : snosop ne teffe X = cepS .A 08 hZAUON TE LEIRBAG aL e&nod ed D tuaviuqC srola a al eennod enu’d noitarepo ud epuorg -egla euqirb fitidda ,G rus .X aL e&nod ed 77 tuaviuqe a al e&nod nu’d emsihprom p : X + ,G iuq tse elbitapmoc ceva sel snoitarepo ed ,G rus X te rus ,G rap( .)snoitalsnart eL emmel ed rolyaT tse srola ciler a ecnoneP lareneg te( )tnedive tnavius : tneios & enu cirogetac ceva stiudorp ,brbif G nu epuorg ed ,5( X nu tejbo-G erid-a-tse’c( nu objet inum enu’d noitarepo ed )G te p : X + G nu emsihprom cd .stejbo-G iS (l-p )1 engised egami’I euqorpicer snad X ed al noitces etinu ed ,G el tejbo-G X tse ehpromosi a G x !)I(‘-L, .2 XJIX$DI SREIMERP ED RRBBGLA’L ETNAPPOLWE ED g .1.2 tioS P = 1 a,#qj nu tnemelC non lun ed ,A . tuoT laedi I tnanetnoc P tneitnoc ,p[ ]P = Pp - pP te ,Q[ .]’I seD selumrof ,p[ p”qj] = l-jqipj te ,q[ ]@ip = - jql+$i no erit enod tnemelicaf euq I tneitnoc enu etnatsnoc non ellun ,,ACkEa erid-a-tse’c euq I = .,A eL memc tnemennosiar ertnom euq el ertnec ed ,A tse tiuder a k. 6redisnoC comme ,eludomib-,A erid-a-tse’c comme eludom rus ,A A@ ,”r ,A tse enod elpmis te ed -ummoc tnat .K ruoP tuot ecapse leirotcev V rus ,K sel ,A @ seludom-suos-O,A ed ,A @ Y tnos enod ed al emrof ,A @ U ,]3[( noitces ,1 .rac ,3 .roeht .)1 nE ,reilucitrap is B tse enu ,erbegla-K tuot laCdi ed ,A @ B tsc ed al emrof ,A @ ,J ho J tse nu laedi ed .B euqsroL B = ,-,A , icec ertnom rap -rucer ecner rus n euq ,,A a’n sertua’d xuaedi euq 0 te .,A .2.2 snosiD nu’uq laedi I ed )g(U tse lennoitar is )l((x es tiudtr ua sproc sed serialacs .K EM~RO~HT .)reimxiD( iS I tse nu 1a?& ed ,)g(U sel snoitressa setnavius tnos setnelaviuqft : )i( I tse .lemoitar )ii( 1/)g(U tse ehpromsi ir A,(k) ruop nu niatrec .n )ii( j )i( : etluser ed ;1.2 )i( 5 )ii( : es ertnomed rap ecnerrucer rus g[ : k]. iS os = I n 3 # ,0 no tsc enemar a reidute )g(U/l(/),j/g(U .)os ,noniS 3 tse ed noisnemid 1 te no’I a nu emsihpromosi ).2.1( iS tseJ let euq JI(# = ,A @ zJ , no a noitressa’I ne ,etlustr yk/’g tna& ed noisnemid sulp etitep euq .g SERbJGLA ED SETNETOPLISEIL 18 .3.2 Comme )01 tse nu laedi lamixam ed ,)k(,A .2.2 ertnom @WI la’edi lennoitar tse .lamixam snoredisnoC sulp tnemelareneg nu laedi reimerp I ed .)g(U srolA )I(Z tse ergdni te )l(k tse nu .sproc .ERIALLOROC ruoP tout Za6di reimerp I ed ,)g(U k(I) )rc.&$ )I/)g(U( tse eilprwnosi ic ))I(k& p YUO un niatrec n. nE ,reilucitrap 0 tse el lues ruwivid ed 0 ed .I/,)QC snoifitnedI ne teffe )I(k ok )g(U a )l(k(U Ok )g te tios ] el uayon ed emsihpromomoh’l fitcejrus )g(U h : )I(k @ )g(U +- )I(k @ 7 k )f(Z let euq ito 2 = x mod .I Comme )I(k tse talp rus )1(Z te cuq 1/)g(U tse eerdnegne rap nu erbmon inif ,stnemele’d )I(k tse el ertnec ed k(1) )r(~~$ .)l/)g(U( raP tneuqesnoc / tse lennoitar rus( k(I)!) te li tiffus reuqilppa’d .2.2 h erbegla’I ed eiL )I(K ok. g rus .)I(K Comme 1/)g(U tse unetnoc snad )I(K ),(z@ )Il)g(U( ne( teffe ec reinred uaenna tse unetbo ne tnasilacol 1/)g(U rap troppar xua stnemele t non slun ed ;)I(Z comme )0( tse nu laedi reimerp ed ,I!)g(U t en esivid sap )0 te cuq ))I(k(,A tse snas ruesivid ed ,0 li ne av ed meme ruop .I/)g(U ,4.2 eL tnemennosiar euq suon snonev ed eriaf ertnom ne C&&r nu uep sulp : tios Z nu laedi let euq )I(Z tios .ergetni srolA k(1) )~zo )I/)g(U tse ehpromosi a ,))l(z/(& enod tse .ergetni raP ,tneuqesnoc .el uapon ed noitacilppa’l cuqinonac ed 1/)g(U snad )I(k zm )r( ,)I/)g(U( erid-k-tsc’c elbmesne’l sed lt E 1/)g(U tnalunna nu tnemelC non lun ed ,)I(Z tse nu laedi .reimerp nE ,reilucitrap is Z(I) tse ergGtni te i-s 0 tse el lues rueitid ed o&z o!.e )I(Z snad U(g)!I, I tse .reimerp nO euqilppa icec snad el .ERIALLOROC ruoP tout 1aLdi I ed ,)g(U sel snoitressa sefnavius tnos -iuqb setneiav : )i( I tse .lamixam )ii( eL ertnec ed 1/)g(U tse un .spvoc )iii( I tse reimerp te k(I) tse enu noisnetxe euqirhgla e’a gnar iniJ ed .k )i( =z )iii( : erid euq I tse ,lamixam tse’c erid euq 1/)g(U tse nu -omib-)g(U elud ;elpmis el tnatumnroc nu’d let eludom ,elpmis erid-a-tse’c el ertnec 6-1/6i184 28 LEIRBAGTEi?ZAUON )Z(Z ed ,l/)g(U tse srola nu ;sproc enod )I(Z = )I(k te no’l a nu emsihpromosi v : 1/)g(U N .))Z(k(,A iS 1x ,..., ,X tse enu esab ed g rus k, no a ec iuq ertnom euq egami’l ed v tse unetnoc snad ,)R(,A ho R tse al erbegla-K eerdnegne rap sel stnemele ~S,.v.,,8.,~a . nO tiov enod euq k(I) = R tse enu erbegla ed epyt inif rus ,k enod tse euqirbegla“ ed noisnemid einif rus k. )iii( P= )ii( : tse ,rialc euq-ecrap etuot erbegla-suos enu’d noisnetxe -egla euqirb tse nu .sproc )ii( * )i( : ,rac is )I(Z = k(I), I tse reimerp brpa’d ec iuq edecerp te 1/)g(U tse ehpromosi Q A,(k(Z)), iuq a )0( te A,(k(I)) ruop slues .x&di .5.2 tioS M nu eludom-)g(U a ehcuag fitcejni .elbasopmocedni tioS I laedi’l reimerp eicossa a M; no a enod I = puS nnA( ,)TA uo N truocrap sel seludom-suos non slun ed .M ruetalunna’L )I(M ed I snad M tse srola nu eludom fitcejni elbasopmocedni rus 1/)g(U iuq a 0 ruop laedi reimerp .eicossa ,tnemeuqorpiceR M tse eppolevne’I evitcejni ed M(I), 6redisnoc comme .eludom-)g(U nO tneitbo isnia enu noitcejib ertne elbmesne’l sed sepyt ed seludom-)g(U sfitcejni selbasopmocedni seicossa Q I te iulec sed -Q/)g(U( seludom sfitcejni selbasopmocedni sticossa a laedi’l .)0( iS t tse nu tnemelC non lun ed ,)I(Z t elunna’n nucua eludom-suos ed ,)I(M ed etros euq -omoh’I eiteht ed M(I) ed troppar t tse ,evitcejni enod ;evitcejib rap tneuqesnoc M(I) tse nu eludom rus uaenna’l &ilacol k(Z) )I(z@ .)Ij)g(U( Comme )0( tse el lues laedi erporp ed tec ,uaenna no a : .ERIALLOROC ruoP tout la&di reimerp Z ed )g(U te tout emsihpromosi ))l(k(,,A 3: k(Z) $$‘ y , Z(I) noitacilppa’l M I--+ M(I) tS&d enu noitcejib ed elbmesne’l sed sepyt ed -)g(U seludom fitcejni selbasopmo?tdni s’eicossa h I SW iulec sed sepyt ed A,(k(I))- seludom fitcejni .selbasopn&edni .6.2 aL noitacifissalc sed seludom sfitcejni selbasopmocedni rus )g(U es esopmoced isnia ne ellec sed xuatdi sreimerp ed )g(U noitces( )4 te ellec sed sfitcejni selbasopmoctdni rus sel xuaenna A,(k(f)). nO tias euq ettec -red e&n tse eeiler a al noisnemid ed llurK ed A,(k(I)) : ed nocaf ,esicerp is iO engised al cirogetac sed A,,(k(Z))- mo d u 1 se a ehcuag tnod al noisnemid ed llurK tse < ,i te is a tse al cirogetac ed suot sel ,seludom sel sepyt sfitcejni’d sERBkGLA EILED SETNETOPLIN 38 selbasopmocedni ed K tnednopserroc tnemeuqovinuib xua sepyt stejbo’d selpmis scd sctnereffid seirogetac Q/6 ,A[( VI te .)V ruoP ettec ,nosiar li tiares tnasseretni ed resicerp sel statluskr sleitrap stnavius : .NOITISOPORP nO a midK ,A = 1 te 1 < midK l.+,A - midK ,,A < 2. nE ,r&c&ap n < midK ,A < 2n - 1 is n > ,1 te ,A tse’n sap ehpromosi d: ,,A ruop m # n. nE ,telfe no euqramer tuot droba’d nucua’uq eludom-,A non lun lli tse’n ed noisnemid einif rus k. raC CtilagC’1 sed stcart rT )qp( = rT )pq( te qp - pq = 1 tneiarcniartne euq 0 z= rT )1( = M[ : k]! tioS enod a nu laedi a ehcuag non lun ed ,A te ,A = ,a 1 ,a 1 2a **a enu etius tnemetcirts etnassiorced xuaedi’d a ehcuag tnanetnoc .a tnassaP ua &darg eicossa noitces( ,).2.0 no ne tiuded enu etius tnemetcirts etnassiorced xuaedi’d s?tudarg ,X[k ]Y N rG ),A( 3 rG )la( 3 rG Ja( 3 *** 3 rG )a( # 0 ellet euq sel stneitouq rG rGJa( )i+a( tneios ed noisnemid einifni rus k. Comme ,rG ,rG/),A( )a( tse ed noisnemid etnatsnoc rus k ruop s zessa ,dnarg al etius sed rG )ia( tse ,einif ed m&me euq al etius sed ia . suoN snova enod ertnom ,euq ruop tout labdi d! ehcuag a # 0, a/lA tse ed .einifrueugh Comme ,A tse’n sap ed rueugnol einif em&m-iul reredisnoc( al etius sed suaedi & ehcuag ,)iq,A no a midK ,A -1 1. snoredisnoC tnanetniam A l+n , iuq tse crdnegne rap ,,A te sed stnemele ,p q tnatumnroc ceva ,,A te slet euq qp - pq = .1 seL stnemele ed ,,,A tnevirce’s ed c&nam euqinu suos al emrof C ,Bq”p+,a oh +,a E ,,A . iS suon snortlif linA a edia’l ud erged latot ne ,p ,q el &darg eicossa rG )*,,A( tse uaenna’l eudarg ,X[,A ]Y sed semonylop ne 2 seenimretedni a stneiciffeoc snad ,A . aL noisnemid ed llurK ed tec uaenna &darg tse midK ,A + 2 ,a[( .)V brpa’D .tol ,.tic no a enod midK ,,,,A <, midK ,A + 2. snoredisnoC ertua’d trap el eludom-,A q,A/,A iuq tse elpmis te a K ruop .tnatumnroc skrpa’D [j] .tol ,.tic sel ,A @ seludom-suos-,A ed ,A @ )qlA/IA( tnos ed al emrof M @ ,)q,A/,A( ho Z& tse nu laedi a ehcuag ed ,,A . Comme al noisnemid ed llurK dneped tnemelues ud silliert sed seludom-suos no a A midK ,,A = midK ,,A @ --L & raP ,tneuqesnoc al etius einifni ...~3plA0,A)r2qlA0,A~qlA0,A~lA0,A~,i,A a ruop stneitouq sed -ItnA seludom tnod al noisnemid ed llurK tuav midK ,A . iceC ertnom euq midK 1+,A > midK ,A + .1 84 TE&WON LEIRBAG ertoN erialloroc eifingis ne reilucitrap euq sel sfitcejni selbasopmockdni rus ,A tnos sel seppolevne sevitcejni sed seludom selpmis ed ,A cttec( erkinred eppolevne tnadicn’ioc ceva cl sproc sed snoitcarf ed .),A nO arehcorppar issua erton erialloroc sed sCtilagCni seud A traheniR ,]OI[ te tnanrecnoc al noisnemid euqigolomoh : n < dhL4, < 2n - 1 is n > .1 .7.2 no’uqsroL tiannoc sel seludom sfitcejni M rus ,I/,)g(U li etser 6 eriurtsnoc sel seppolevne sevitcejni ed sec M ne tnat euq seludom rus .)g(U i?L ,erocne no a nu tatluskr lcitrap : .NOITISOPORP iS M tse Llunna rap laftdi’l I ed ,)g(U eppolevne’l evitcejni ed M tse noinu&r ed seludom-wos &lunna rap sel xua’edi ,*I n > 0. aL noitartsnomtd eiuppa’s rus nu tatluser ed llennoCcM ]8[ tnarussa euq 1 a enu etius cd sruetarCnCg 1r , 2r ,..., Y,, slet euq lY E ,)g(Z py( mod ))g(i(uly E ,...,))g(U,y(Z ny( mod J-4 E ,)L(Z ,Z tnangiskd 1aCdi’l :irdnegne rap ,..., is( ;$ ,0 li y a nu s let euq lr ,,,Y t da(( s)g # 0 te da( ’+S)g = ;0 erdnerp srola snad I te snad da( s)g t t t ,Y ;t ed mCme, is 4 ,11 li y a nu s let cuq da( s>g f ,I te da( 1La)g E ;1I erdnerp t t t t snad I te 2r snad da( R)g 11 ti&s sruellia’d ed resoppus M neirkhteon .)...,t te ed rertnom euq etuot noisnetxe elleitncsse enneirkhteon N ed M tse eklunna rap ciru ecnassiup ed I ,A[( .pahc )11 : tioS eitkhtomoh’l ed N ed troppar . ruoP s ,dnarg no a CtilagC’1 ed Nr lr gnittiF mI sNy n reK = ,0 enod mI SN = 0 euqsiup reK M te euq N JY 3SNr tse noisnetxe elleitnesse ed M. tioS el sulp titep s let euq = ;0 suon -nosiar t SNy snon rap ecnerruckr rus eitChtomoh’L tinifCd,r enu noitcejni ,rreK/,Ned .ntet snad reK li tiffus enod no’uq tia ”I * reK( = ”I * reK( = 0 sruop ;‘:7 )‘-,”Y ),eY .dnarg rO reK tse nu eludom rus ,I/)g(U , ed etros euq al ecnerruckr rus ,Y n ;ennoitcnof ruop reK l--‘ , al ecnerruckr rus ennoitcnof ,*I t no( areuqramer euq al noitisoporp tuav euqahc fti wq I a enu etius ed sruetarknkg tnz&rkv sel %%tiw/orp ;setned’ktrp riov ]S[ te ]9[ ruop sulp ed .)slia&d .8.2 .ERIALLOROC iS CM N tnes sed seludom ,sneikht?ton al eigolopot euqida-I ed M tse etiudni rap al eigolopot euqida-I ed .N refnoC ,lf[ ,V noitces 5 : ruop tuot ,s tios ’N C N let euq ’N n M = MP te euq ’M tios lamixam ruop ettec .CtCirporp srolA N/W tse noisnetxe -nesse elleit ed ,MP/M enod tse 6lunna rap It, ruop t dnarg : M n NtI C .MP nO ne tiudCd nu tatlustr ed llennoCcM ]8[ : tios wI = ,n .SI aL eigolopot etiudni snad P rap al eigolopot euqida-I ed )g(U tae ;e&ssorg enod I * wI = .P aL mCme esohc tuav ruop tuot ;eludom-suos enod is x E ,aI )x)g(U(.Iano = )x)g(’C(.IExtex)g(U l(xcnodano;x*I= )JJ- ,0= .O=sI,)r:O=Xito'd~EyhO SERBkGLA ED EIL SETSETOPLIN 85 3. ~B?~G.IA EUQIR~IMYS ED g snaD ec iuq ,tius no areton h ,X g el tiudorp tcerid-imes enud erbegla ed eiL g rap enu erbegla ed eiL evitatummoc ,$ tnemevitaler a enu eniatrec noitarepo ed g rus JI iuq en ares sap sruojuot e&ticilpxe ,A[( noitces ,1 rn .)8 .1.3 tneioS g enu erbegla ed ,eiL g el tiudorp g x g te snovircC 1x te zy ua ueil ed ,x( )0 te ,0( .)y nO tinum ecapse’l leirotcev g enu’d erutcurts erbegla’d ed eiL ua ncyom sed selumrof 1x[ , ]ry = ,0 1x[ , J,y = ,CC[ r]y te as[ , J;y = ;21y,x[ erbegla’l if tse enod nu tiudorp tcerid-imes ed g rap crbegla’l ed eiL evitatummoc Rg iuq a mCme ecapse leirotcev tnecaj-suos cuq *lc snonerpeR ruop g sel snoitaton te sesbhtopyh ed 0.4. nO a enod sx[ , Jy = rz , ,z tneitrappa ua crtnec ed Q te ruetalunna’l rg - ”g ,X ’g ed ry edtse -idoc noisnem 1 snad .g hrpa’D ,.2.1 no a nu emsihpromosi ertua’D ,trap sel segami ,f , ay tc ,Z ed 1x , ay te rz snad ryK/rg tnes sellct euq : &[ , j$J = ;,f ruetalunna’I )lykiA’g( x ~ ’g ed jj2 tse ed noisnemidoc 1 strad ,yk/,g te nos tneitouq rap ,YK tse’n ertua euq @$g = A)yk/’g( ,X .)yz//’g( skrpa’D ,.2.1 no a nu emsihpromosi iS no’l esopmoc zc o ,A( @ )3/ ceva emsihpromotua’l ed ,A @ &&~~g(U iuq ,peiovne , zp rus - 2q , zp te iuq tiudni etitnedi’l rus ,A @ k @ ,,)yk/’g(U on tneitbo tmtttelunij un emsihpromosi ser&gla’d let euq )IP& = aX 9 dI& 3$= =),p(pc ,$y+$- )h!d = % 3 68 TEbZAUON LEIRBAG + v da( n)2z. )2r( ”)+( + a.* -k v da( l+n)2z )ri( ”)$( + )**e izo t tse egami’l snad yk/’g nu’d tnenUt t E .’g .2.3 tioS )Q(S erbegla’I euqirtemys ed ecapse’I leirotcev ,g euq suon snoifitnedi a erbegla’l etnappolevne )”Q(U te a al erbegla-suos ed )S(U eerdnegne rap sel stncmelC ,t , t E .g noitarepo’L ,s( )t j-+ ,s[ ]t ed g rus ”g es egnolorp nc enu noitarepo ed Q rus ,)g(S iuq eicossa a LI E g enu noitavired ,D ed .)g(S etteC noitarepo es egnolorp ne enu noitarepo ed g snad )g(S C )g(U : ,s( )t * P = ,s . P 7 P,t - ,tP = 1s * P j isP,D ,s( )t E if te P E .)g(S tnemertuA ,tid )g(S tse inum tnemelierutan enu’d erutcurts ed .efudon+(U nU eludom-suos ed )g(S tse nu laedi ,rnuiraoni erid-a-tse’c nu laedi elbats ruop sel snoitavired ,D . snonerpeR tnanetniam sel sesehtopyh ed .4.0 eC iuq edecerp euqilppa’s B erbegla’l euqirtemys ed ,yk/’g no’uq eifitnedi a enu erbegla-suos ed )J&Q te iuq tse einum tnemellerutan enu’d erutcurts ed eludom rus .)&’g(U iS k[q, , Jq tse al erbegla-suos ed ,A eerdnegne rap 1q te 2q te( ehpromosi a erbegla’l sed semonylop k[f, 17 ne xued seenimretedni 5 te ,)v li tse rialc euq emsihpromosi’l q ed .1.3 tiudni nu emsihpromosi ed k[q, 324, 0 %bld(S rus ;Ls(S ho’d el .EMBROZIHT suoS sel sesshtopyh setiuf ne ,.4.0 li y a nu emsihpromosi ed ser%tgIa-k 0 : &[k 1~ 9 S &j-( - s(Q)z let euq )t(8 = ,z/y )T(O = ,x te +...+&D(-t=)@f k$ $)t$D( + . . . do i et$it& egutti’l snud ,)yk/’g(S nu’d tnemU t ed ,)’g(S , te lto ,D tse al nbtavitd ed )g(S itj& rap .x eD ,sulp 6 tse elbitapmoc ceva em-sihprwnwi’l ~q

Description:
permet d'etendre a tous les ideaux premiers de U(g) les resultats obtenus L'algebre A, a pour base sur k les monomes piqj; nous notons F,,A, le.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.