Balázs Gulyás · Parasuraman Padmanabhan A. Lenin Fred · T. R. Santhosh Kumar Sundramurthy Kumar Editors ICTMI 2017 Proceedings of the International Conference on Translational Medicine and Imaging ICTMI 2017 á á Bal zs Guly s Parasuraman Padmanabhan (cid:129) A. Lenin Fred T. R. Santhosh Kumar (cid:129) Sundramurthy Kumar Editors ICTMI 2017 Proceedings of the International Conference on Translational Medicine and Imaging 123 Editors BalázsGulyás T. R.Santhosh Kumar Lee KongChianSchool ofMedicine Rajiv Gandhi Centrefor Biotechnology NanyangTechnological University Thiruvananthapuram, Kerala, India Singapore, Singapore SundramurthyKumar Parasuraman Padmanabhan Lee KongChianSchool ofMedicine Lee KongChianSchool ofMedicine NanyangTechnological University NanyangTechnological University Singapore, Singapore Singapore, Singapore A.LeninFred Mar Ephraem Collegeof Engineering andTechnology Kanyakumari,Tamil Nadu, India ISBN978-981-13-1476-6 ISBN978-981-13-1477-3 (eBook) https://doi.org/10.1007/978-981-13-1477-3 LibraryofCongressControlNumber:2018948591 ©SpringerNatureSingaporePteLtd.2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd. Theregisteredcompanyaddressis:152BeachRoad,#21-01/04GatewayEast,Singapore189721, Singapore Contents AnAutomatedFrameworkforPredictionofFallsinCardiomyopathy People. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Pasupuleti Megana Santhoshi and Mythili Thirugnanam Synthesis, Characterization, and MRI Properties of Cysteamine-Stabilized Cadmium Zinc Selenide (Cd(Zn)Se) Quantum Dots for Cancer Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 J. Joy Sebastian Prakash and Karunanithi Rajamanickam Measures of Diffusion Tensor Tractography of Regions Associated with Default Mode Network in Alzheimer’s Disease. . . . . . . . . . . . . . . . 29 J. Joy Sebastian Prakash, Karunanithi Rajamanickam and R. M. Arunnath Noninvasive Quantitative Tissue Biopsy Using Precise Optical Phantoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 V. Vijayaragavan and N. Sujatha BAT Optimization-Based Vector Quantization Algorithm for Compression of CT Medical Images. . . . . . . . . . . . . . . . . . . . . . . . . 53 S. N. Kumar, A. Lenin Fred, H. Ajay Kumar, P. Sebastin Varghese and Ashy V. Daniel Study of Polymorphic Ventricular Tachycardia in a 2D Cardiac Transmural Tissue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Ponnuraj Kirthi Priya and M. Ramasubba Reddy Finger Movement Pattern Recognition from Surface EMG Signals Using Machine Learning Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Shravan Krishnan, Ravi Akash, Dilip Kumar, Rishab Jain, Karthik Murali Madhavan Rathai and Shantanu Patil v vi Contents Parcellation Analysis of Language Areas of the Brain and Its Clinical Association in Children with Autism Spectrum Disorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Beena Koshy, T. Hannah Mary Thomas, Devarajan Chitra, Anna Varghese, Rachael Beulah and Sunithi Mani A Step to In Vivo Dosimetry Using Electronic Portal Imaging Device: Initial Experience. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Sangaraju Siva Kumar, Minu Boban, Kaliyaperumal Venkatesan, Jomon Raphael, Mathew Varghese, R. Murali and N. Arunai Nambi Raj Natural Lovastatin (NL) as an Anticancer Agent: Docking and Experimental Studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Ganesan Saibaba, Balraj Janani, Rajmohamed Mohamed Asik, Durairaj Rajesh, Ganesan Pugalenthi, Jayaraman Angayarkanni and Govindaraju Archunan Brain Tumor Detection and Classification of MRI Brain Images Using Morphological Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 Mavis Gezimati, Munyaradzi C. Rushambwa and J. B. Jeeva Significance of MTA1 Expression Status in Progesterone Responsiveness of Endometrial Cancer Cells . . . . . . . . . . . . . . . . . . . . . 151 J. S. Chithra and S. Asha Nair Probable Role of Non-exosomal Extracellular Vesicles in Colorectal Cancer Metastasis to Kidney: An In Vitro Cell Line Based Study and Image Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 Aviral Kumar, Reetoja Nag, Satyakam Mishra, Bandaru Ramakrishna, V. V. R. Sai and Debasish Mishra NIR Reflectance Imaging of Biological Tissue Using Multiple Sources and Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 J. B. Jeeva, Siddesh Raut, Ameena Yari and C. Jim Elliot Feature Extraction-Based Hyperspectral Unmixing . . . . . . . . . . . . . . . . 185 M. R. Vimala Devi and S. Kalaivani A View on Atlas-Based Neonatal Brain MRI Segmentation. . . . . . . . . . 199 Maryjo M. George and S. Kalaivani Challenges in the Diagnosis of Retinopathy of Prematurity—An Imaging and Instrumentation Perspective . . . . . . . . . . . . . . . . . . . . . . . 215 J. Mary Annie Sujitha, Priya Rani, E. R. Rajkumar and P. Arulmozhivarman An Automated Framework for Prediction of Falls in Cardiomyopathy People PasupuletiMeganaSanthoshiandMythiliThirugnanam Abstract Purpose In medical field, cardiomyopathy is one of the heart muscle diseases associated with blood pumping that causes heart complications like heart failures,cardiacarrest,andsuddendeath.AccordingtotheWHO,globallyatleast onein500issufferingfromcardiomyopathy.Itcanbeidentifiedbysymptomssuch aschestpain,dizziness,syncopewhichcausesfalling.Atpresent,inthecardiomy- opathy field, issues such as poor accuracy in detection of cardiomyopathy and no emphasis on classification of cardiomyopathy types are addressed. Especially, no workisconcentratedonpredictionoffallduetocardiomyopathy.Hence,thiswork aims to propose an automated framework for prediction of fall in cardiomyopathy patients.ProcedureandConclusionThisframeworkconsistsoffivephases,firstand secondfocusedonimprovingtheECGsignalqualitytoresolveaccuracyproblems. Thirdistodetectandclassifythecardiomyopathytypeaswellaspredictionoffall. Infourthandfifth,predictiondetailswillbetransmittedtoWebapplicationandthen topersonaldevices. · Keywords Pre-falldetection Cardiomyopathydetection · · Classificationofcardiomyopathy ECGdataanalysis Bodysensors Fallwithhealthabnormality 1 Introduction Cardiomyopathy is a type of heart muscle disease which causes heart valve sizes dilate and diminish. Because of this reason, heart will face difficulty to pump the blood,andsometimesitcausesheartfailurestoo.AsperWorldHealthOrganization statisticsofdeathsrelatedtoheartdiseases,in2012eightytwothousandpeoplewere gotmortalitywithcardiomyopathy.[1,2]stated22%womenand15%menwithin B P.MeganaSanthoshi( )·M.Thirugnanam SchoolofComputerScienceandEngineering,VITUniversity,Vellore, TamilNadu,India e-mail:[email protected] ©SpringerNatureSingaporePteLtd.2019 1 B.Gulyásetal.(eds.),ICTMI2017,https://doi.org/10.1007/978-981-13-1477-3_1 2 P.MeganaSanthoshiandM.Thirugnanam average age of 56 and 58 are suffering from cardiomyopathy in 714 participants. In UK and Australia, at least one person in 500 is suffering from cardiomyopathy disease [3, 4]. In USA, the third dominant cause of heart failure is cardiomyopa- thy[5].Cardiomyopathydiseaseisbroadlyclassifiedintofourtypeswhichinclude, i.e.,dilatedcardiomyopathy(DCM),hypertrophiccardiomyopathy(HCM),restric- tivecardiomyopathy(RCM),andarrhythmogenicrightventricularcardiomyopathy (ARVC).Alltypesofcardiomyopathyhappenwhenflowofbloodleadstothewhole body which causes major complications like heart failure, blood clot, valve disor- ders, cardiac arrest, and sudden death. These complications are notified with the symptomsoftiredness,swellingintheabdomenandankles,breathlessness,painin chest,palpitation,syncopeanddizzinessorfainting,etc.[6].Symptomswhichare discussedarethemainreasonforfallsoccurincardiomyopathypatients. According to the WHO, the second dominant cause of accidental death is fall. Itcausesmajorinjurieslikehipfractures,headfractures,andsometimesitleadsto deathalso.Globally,everyyearapproximately42,400peopledyingduetofalls[7]. Generally,somehouseholdenvironmentslikeslipperytiles,unarrangedfurniture’s, stairsarethereasonsforthefall.Thereisonemoreimportantreasontofalleventis abnormalityinhealth.Fallsrelatedtohealthproblemsmayhaveopportunitytoavoid byanalyzinghumanhealthstatus.Therearemanyreasonstocauseabnormalityin health. Cardiomyopathy is one of the health problems with dizziness and syncope symptomsthatcausefalls[8].CardiomyopathycanbediagnosedwithECG,ECHO, ultrasound,MRIScanning,andstresstest. Electrocardiogram (ECG) is a fast, safety, painless, and low-cost technique to detect the heart abnormalities. It is the process of recording the electrical activity oftheheartinonecardiaccycleviatheelectrodesplacedontheskin.Twelvecon- ventionalECGmachineshavetenelectrodeswhichareplacedondifferentpartsof humanbodylikelimbs,arms,andontopofchest.Theseelectrodesrecordcardiac electricalsignalsinwaveformwithtwodimensionsoffrequencyandtime.TheECG trace waveform representing the heart rhythm has four entities, i.e., P wave, QRS complex, T wave, and U wave. P wave indicates the atrium depolarization, QRS complex indicates the ventricular depolarization, T wave indicates the ventricular repolarization,andUwaveindicatesmusclerepolarization.Thesefourentitiesare importantinputsforrecognizingthecardiomyopathycondition. Thispaperbringstheconceptofcardiomyopathydetectionandclassification,pre- dictionoffallincardiomyopathypatientsandimplementsoptimalfeaturetechnique tomitigatetheimpactoffallswiththehelpofECGsignals.Thisworkalsoimproves thequalityofECGtoachievebetteraccuracyofdiseasedetectionbypre-processing techniques. Further,theworkelaboratedinthefollowingstructure.Literaturereviewsection focusedonreviewofcardiomyopathyandreviewoffalldetection.Andtheproposed framework and detailed discussionare carried outinproposed framework section. Andfinalsectionconcludesthepaperwithconclusionandfutureenhancement. AnAutomatedFrameworkforPrediction… 3 2 LiteratureReview Surveyexplanationhasbeengivenindividuallybelowondetectionofcardiomyopa- thyandpre-detectionofafalloccurringaspartofregularactivitiesofapersonlike walking, sitting, and standing and also occurring of falls due to person abnormal healthconditions. 2.1 ReviewonCardiomyopathy Cardiomyopathyisadiseaserelatedtoheart,somedicalstrategieslikeECG,ECHO, ultrasound videos, MRI images are used in detection of cardiomyopathy [9–25]. Some of the researchers have applied neural networks multilayer perceptron [9], feed-forward and static back-propagation algorithm [10], support vector machine [11,16,18,20,21]andfuzzydecisionfunctionalgorithms[11]thatareusedtoclas- sifytheECGsignalsfordifferentiatethenormalheartandcardiomyopathyaffected heart.Shukrietal.[14]haveachieved90%accuracyincardiomyopathydetection, and Mahmood and Syeda-Mahmood [16] achieved 77.8% accuracy in detection ofhypertrophiccardiomyopathythroughultrasoundimages.Balajietal.[20]have achieved92.07%accuracyindetectionofbothdilatedcardiomyopathyandhyper- trophiccardiomyopathybyapplyingimageprocessingtechniquesonECHOvideo images. Andreaoetal.[9]classifytheECGsignalsbywaveletclassificationeffectively. Jadhav et al. [10] proposed an automated classification system for arrhythmias by testedwith452patients’ECGbio-signalsandconcludedthatsystemworkswellin boundaryconditions.Kohlietal.[11]discussedabouttheclassificationofECGsig- nalstodifferentiateischemicchanges,oldinferiormyocardialfraction,sinusbrady- cardia,rightbundlebranchblockcases.Potteretal.[12]usedadvancedECGtech- niquestoidentifythehypertrophiccardiomyopathy.Losietal.[13]reviewedtheold techniquesinechocardiographylikeM-modeimaging,two-dimensionalLVhyper- trophy,Dopplerechocardiography,andalsonewtechniqueslikecontrastechocardio- graphy,tissueDopplerimaging,strainrateimaging,andreal-timethree-dimensional echocardiography to analyzing pathophysiological natures in HCM patients. This system identified the hypertrophic cardiomyopathy with echocardiography images and concluded that echocardiography alone cannot differentiate different forms of unexplainedLVhypertrophy. Shukri et al. [14] presented an investigation on detection of cardiomyopathy by using Elman neural networks and achieved 90% accuracy. Drezner et al. [15] explainedtheECGleaddifferencespresentedinathletestodifferentiatingtheLVNC, DCM, HCM, and ARVC. Mahmood and Syeda-Mahmood [16] proposed an auto- matedsystemtodetectdilatedcardiomyopathybyusingcardiacultrasoundimages andclassifiednormalandabnormalleftventricleswithlessaccuracy.O’Mahonyetal. [17]discussedtheparametersinhypertrophiccardiomyopathypatientswhichlead 4 P.MeganaSanthoshiandM.Thirugnanam tosuddencardiacdeathconditionswith3675patients’datasetobservation.Rahman etal.[18]used12-leadECGsignaltoclassifythehypertrophiccardiomyopathybased onmorphologicalandtemporalfeaturesof221HCMand541non-HCMpatients’ heartbeats. TripathyandDandapat[19]proposedasystemtoclassifythecardiacabnormal- itieslikeheartmuscledefect,bundlebranchblock,healthycontrol,andmyocardial infarctionover. ECGsignalssuggestedthatECGheartbeatsignalsareefficientindetectingother heartdiseaseslikeseptaldefects.Balajietal.[20]determinedatoolthatidentified thedilatedcardiomyopathyandhypertrophiccardiomyopathybyusingleftventricle parametersinechocardiogramimageswith92.04%accuracyinclassification.Begum andRamesh[21]proposedanautomatedsystemtodetectcardiomyopathybyobserv- ingthe65subjectshealthyandcardiomyopathyECGsignals,achieved95%classifi- cationaccuracybyneuralnetworksclassification,andalsosuggestedthepossibility ofdetectingthefourtypesofcardiomyopathywhichincludesdilatedcardiomyopa- thy,hypertrophiccardiomyopathy,restrictivecardiomyopathy,andarrhythmogenic rightventricularcardiomyopathy.Waeletal.[22]introducedregionalwallthickness parameter to detect the myocardium infraction and hypertrophic cardiomyopathy diseases by using MRI images, but this system generated the disease discriminate parametersbyconsideringthelimitednumberofsubjects,i.e.,27datasetsarecol- lected from normal and diseased persons. Several research works have stated on cardiomyopathydetection,showninTable1. As executed with the analysis on cardiomyopathy, it is observed that an ECG signal plays a major role in automatic identification of cardiomyopathy. But raw ECGcontainssomenoiseslikehigh-frequencynoiseandbaselinenoise.Inanypro- cess,qualitydatayieldthequalityresult.Inordertoremovethenoise,mostofthe researchershaveimplementedpre-processingtechniquesbyusingbandpassfilters, medianfilter,andmovingaveragefilters.However,thosefiltersarenotachievedthe 100%qualitydatawhichleadtolessaccurateintheresult.Anotherobservationis most of the researchers have committed their research on detection of cardiomy- opathy disease by extracting various features over ECG like time-based signals, frequency-based. But these features have given the less accuracy in finding car- diomyopathy. Hence, an attempt is made to improve the quality of ECG by using effectivefilteringtechniqueswhichwouldbefurtherprocessedbyselectingoptimal featurestoimprovetheaccuracyindetectionofcardiomyopathyandclassification ofcardiomyopathytypes. 2.2 ReviewonPre-fallDetection Researchonfalldetectionhasachievedthehighaltitudeinemergencynotification ofelderlypeoplewheneveranaccidentalfallsoccurred.Subsequently,researchers havestartedtheirworksalsoonpre-falldetectionoverthefallsoccurredinregular activitiesofanelderlypersontoavoidthefallconsequences.Mostoftheresearchers