ebook img

Ice Ages and Interglacials: Measurements, Interpretation, and Models PDF

420 Pages·2012·9.46 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Ice Ages and Interglacials: Measurements, Interpretation, and Models

Ice Ages and Interglacials Measurements, Interpretation, and Models (Second Edition) Donald Rapp Ice Ages and Interglacials Measurements, Interpretation, and Models (Second Edition) Published inassociationwith PPrraaxxiiss PPuubblliisshhiinngg Chichester, UK Dr. Donald Rapp South Pasadena California U.S.A. SPRINGER–PRAXIS BOOKS IN ENVIRONMENTAL SCIENCES ISBN 978-3-642-30028-8 ISBN 978-3-642-30029-5 (eBook) DOI 10.1007/978-3-642-30029-5 Springer Heidelberg New York Dordrecht London Library of Congress Control Number: 2012937366 © Springer-Verlag Berlin Heidelberg 2012 First Edition published 2009 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied,withrespecttothematerialcontainedherein. Cover design: Jim Wilkie Project management: OPS Ltd., Gt. Yarmouth, Norfolk, U.K. Printed on acid-free paper Springer is part of Springer ScienceþBusiness Media (www.springer.com) Contents Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix List of figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi List of abbreviations and acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii 1 Life and climate in an ice age . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Continental climates during the Ice Age. . . . . . . . . . . . . . . . . 1 1.2 The glacial world—according to Wally Broecker . . . . . . . . . . 8 1.3 Ice age forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4 The Last Glacial Maximum (LGM) . . . . . . . . . . . . . . . . . . . 11 2 Variability of the Earth’s climate . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1 Factors that influence global climate . . . . . . . . . . . . . . . . . . 17 2.2 Stable extremes of the Earth’s climate . . . . . . . . . . . . . . . . . 21 2.3 The relation between ancient climates and CO concentration . . 26 2 2.3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3.3 The transition from the Last Glacial Maximum (LGM) to the pre-industrial era . . . . . . . . . . . . . . . . . . . . . . . 36 2.3.4 The Early Pliocene: 3 to 5 million years ago . . . . . . . . 49 2.3.5 The past 20 million years or so. . . . . . . . . . . . . . . . . 51 2.3.6 Initiation of Antarctic glaciation 34–33 million years ago 58 2.3.7 Peak warming around 40 million years ago . . . . . . . . . 60 2.3.8 60 to 40 million years ago . . . . . . . . . . . . . . . . . . . . 61 2.3.9 100 to 300 million years ago . . . . . . . . . . . . . . . . . . 66 v vi Contents 2.3.10 Estimates of climate sensitivity based on CO and climate 2 in the Phanerozoic . . . . . . . . . . . . . . . . . . . . . . . . . 66 2.4 Continental drift and continental geometry as a factor in paleo- climate change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 2.4.1 Effects of continental geometry . . . . . . . . . . . . . . . . . 84 2.4.2 Evolution of glaciation near the South Pole (cid:2)34MYBP... 88 2.4.3 Effect of the Isthmus of Panama on NH glaciation in the past 2,700,000 years . . . . . . . . . . . . . . . . . . . . . . . . 90 2.5 Ice ages in the recent geological past . . . . . . . . . . . . . . . . . . 95 2.6 Geological evidence of ice ages . . . . . . . . . . . . . . . . . . . . . . 97 3 Ice core methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 3.1 History of ice core research . . . . . . . . . . . . . . . . . . . . . . . . 105 3.2 Dating ice core data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 3.2.2 Age markers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 3.2.3 Counting layers visually . . . . . . . . . . . . . . . . . . . . . 113 3.2.4 Layers determined by measurement . . . . . . . . . . . . . . 116 3.2.5 Ice flow modeling . . . . . . . . . . . . . . . . . . . . . . . . . 120 3.2.6 Other dating methods . . . . . . . . . . . . . . . . . . . . . . . 122 3.2.7 Synchronizing the dating of ice cores from Greenland and Antarctica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 3.2.8 GISP2 experience . . . . . . . . . . . . . . . . . . . . . . . . . . 123 3.2.9 Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 3.2.10 Flimsy logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 3.3 Processing ice core data . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 3.3.1 Temperature estimates from ice cores . . . . . . . . . . . . . 127 3.3.2 Climate variations . . . . . . . . . . . . . . . . . . . . . . . . . 135 3.3.3 Trapped gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 4 Ice core data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 4.1 Greenland ice core historical temperatures . . . . . . . . . . . . . . . 137 4.2 Antarctica ice core historical temperatures . . . . . . . . . . . . . . . 142 4.2.1 Vostok and EPICA data . . . . . . . . . . . . . . . . . . . . . 142 4.2.2 Homogeneity of Antarctic ice cores . . . . . . . . . . . . . . 144 4.3 North–south synchrony . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 4.3.1 Direct comparison of Greenland and Antarctica ice core records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 4.3.2 Interpretation in terms of ocean circulation . . . . . . . . . 150 4.3.3 Seasonal variability of precipitation . . . . . . . . . . . . . . 151 4.3.4 Worldwide effects of changes originating in the NH . . . 152 4.4 Interglacials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 4.5 Data from high-elevation ice cores . . . . . . . . . . . . . . . . . . . . 157 4.6 Carbon dioxide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 4.7 Sudden climate changes . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Contents vii 5 Ocean sediment data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 5.2 Chronology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 5.3 Universality of ocean sediment data . . . . . . . . . . . . . . . . . . . 181 5.4 Summary of ocean sediment ice volume data . . . . . . . . . . . . . 182 5.5 Ocean sediment data and polar ice core data compared . . . . . . 184 5.6 Historical sea surface temperatures . . . . . . . . . . . . . . . . . . . 187 5.7 Ice-rafted debris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 6 Other data sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 6.1 Devil’s Hole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 6.1.1 Devil’s Hole data . . . . . . . . . . . . . . . . . . . . . . . . . . 191 6.1.2 Devil’s Hole data and ocean sediment data compared . . 192 6.1.3 Devil’s Hole: Global or regional data? . . . . . . . . . . . . 194 6.1.4 Devil’s Hole data and Vostok data compared . . . . . . . 195 6.2 Speleothems in caves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 6.3 Magnetism in rocks and loess . . . . . . . . . . . . . . . . . . . . . . . 199 6.3.1 Magnetism in loess . . . . . . . . . . . . . . . . . . . . . . . . 199 6.3.2 Rock magnetism in lake sediments . . . . . . . . . . . . . . 200 6.4 Pollen records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 6.5 Physical indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 6.5.1 Ice sheet moraines . . . . . . . . . . . . . . . . . . . . . . . . . 202 6.5.2 Coral terraces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 6.5.3 Mountain glaciers . . . . . . . . . . . . . . . . . . . . . . . . . 205 6.6 Red Sea sediments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 6.7 Influence of dust and iron . . . . . . . . . . . . . . . . . . . . . . . . . 207 7 Summary of climate variations . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 8 Overview of the various models for ice ages in the recent past (3MYBP to present). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 8.2 Variability of the Sun . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 8.3 The astronomical theory. . . . . . . . . . . . . . . . . . . . . . . . . . . 218 8.4 Volcanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 8.5 Greenhouse gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 8.6 Role of the oceans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 8.6.1 Glacial–interglacial cycles: the consensus view . . . . . . . 224 8.6.2 Sudden climate change: the consensus view . . . . . . . . . 228 8.6.3 Wunsch’s objections . . . . . . . . . . . . . . . . . . . . . . . . 231 8.7 Models based on clouds . . . . . . . . . . . . . . . . . . . . . . . . . . 236 8.7.1 Extraterrestrial dust accretion . . . . . . . . . . . . . . . . . . 238 8.7.2 Clouds induced by cosmic rays . . . . . . . . . . . . . . . . . 239 8.7.3 Ocean–atmosphere model . . . . . . . . . . . . . . . . . . . . 242 8.8 Models based on the Southern Hemisphere . . . . . . . . . . . . . . 244 viii Contents 9 Variability of the Earth’s orbit: The astronomical theory . . . . . . . . . . 247 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 9.2 Variability of the Earth’s orbit . . . . . . . . . . . . . . . . . . . . . . 250 9.2.1 Variability within the orbital plane . . . . . . . . . . . . . . 250 9.2.2 Variability of the orbital plane . . . . . . . . . . . . . . . . . 253 9.3 Calculation of solar intensities . . . . . . . . . . . . . . . . . . . . . . 254 9.4 Importance of each orbital parameter . . . . . . . . . . . . . . . . . . 255 9.5 Historical solar irradiance at higher latitudes . . . . . . . . . . . . . 259 9.6 Connection between solar variability and glaciation–deglaciation cycles according to the astronomical theory . . . . . . . . . . . . . . 261 9.6.1 Models for ice volume . . . . . . . . . . . . . . . . . . . . . . 263 9.6.2 Review of the Imbrie model . . . . . . . . . . . . . . . . . . . 271 9.6.3 Memory model . . . . . . . . . . . . . . . . . . . . . . . . . . . 274 9.7 Models based on eccentricity or obliquity . . . . . . . . . . . . . . . 274 9.7.1 A model based on eccentricity . . . . . . . . . . . . . . . . . 274 9.7.2 The Mid-Pleistocene Transition . . . . . . . . . . . . . . . . . 276 9.8 North or south? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 10 The astronomical theory and data compared . . . . . . . . . . . . . . . . . . 281 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 10.2 Data and the astronomical theory compared. . . . . . . . . . . . . . 282 10.2.1 Direct comparison of the variability of peak solar inten- sity with ice core data . . . . . . . . . . . . . . . . . . . . . . 284 10.2.2 The Imbrie ice volume model and ocean sediment data compared . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 10.2.3 Change in ice sheet volume and peak solar intensity compared . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 10.2.4 Terminations of ice ages and origins of interglacials. . . . 296 10.3 Spectral analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 10.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 10.3.2 Spectral analysis of solar and paleoclimate data . . . . . . 315 10.4 Status of our understanding . . . . . . . . . . . . . . . . . . . . . . . . 320 11 Future prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 11.1 The next ice age (or lack thereof) . . . . . . . . . . . . . . . . . . . . 327 11.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 11.1.2 Orthodoxy in climatology . . . . . . . . . . . . . . . . . . . . 328 11.1.3 Effect of CO growth on global temperature . . . . . . . . 333 2 11.1.4 Other evidence on the role of CO . . . . . . . . . . . . . . 348 2 11.2 Ways of improving our understanding . . . . . . . . . . . . . . . . . 370 11.2.1 The need to depoliticize climate change . . . . . . . . . . . 370 11.2.2 Technical progress. . . . . . . . . . . . . . . . . . . . . . . . . . 372 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399 Preface The typical description of the past million years would be that the Earth has experienced about 10 major periods of glaciation (ice ages) spaced at roughly 100,000-year intervals. This presupposes that ice ages are unusual departures from normalcy.Actually,it appears asif the natural stateof theEarth during this period was an ice age, but there were about 10 interruptions during which the climate resembled something like today’s climate for perhaps 10,000 years or so. Each ice age required several tens of thousands of years to develop to its maximum state of glaciation. During the Last Glacial Maximum, some 20,000 years ago, Canada and the northern U. S. were blanketed by huge ice sheets up to 4km thick. In addition, there was a large ice sheet covering Scandinavia that reached down into Northern Europe. The Antarctic ice sheet was somewhat more full than today. Local glacia- tions existed in mountainous regions of North America, Europe, South America, andAfricadrivingthetreelinedownbyasmuchas700m(800minsomecases).The temperature of Greenland dropped by as much as 20(cid:3)C, but the climate was prob- ably only a few degrees colder than normal in the tropics. Conditions were very harsh20,000yearsagoattheLastGlacialMaximum(LGM)whenanicesheetmore than 2 miles thick pushed down from Canada into the northern U. S. These ice sheets tied up so much of the Earth’s water that the oceans were as much as 120m shallower. As a result, the shorelines of continents extended much fartheroutthantoday.TheBeringialandbridgefromSiberiatoAlaskawascreated, allowinganimalsandhumanstocrossfromonecontinenttotheother.Intheupper- to mid-latitudes the climate was semi-Arctic and the flora shifted to tundra. Humidity was reduced and much of the land dried out. The sharp temperature discontinuity at the edges of the ice sheets generated violent winds that swept up dust and dirt from dry regions, filling the atmosphere. This ice age began to wane around 15,000 years ago and dissipated through a series of gyrating climate ix x Preface oscillations, ending in the comparatively benign period that has lasted for the past (cid:2)10,000 years called the Holocene. A few geologists in the 19th century were perceptive enough to notice signs of glaciation in rocks and geological formations and concluded that the Earth must haveonce(atleast)beenheavilyglaciatedwithmassiveicesheetsthatgeneratedthe markings and rock depositions that they observed. They eventually overcame the initial resistance to this new (and shocking) concept in the geological community. But, it was not until the 1970s that extensive studies of marine sediments (followed by polar ice core studies in the 1980s and 1990s) demonstrated the existence, amplitude, and recurrent chronology of multiple ice ages. During the 19th century several scientists proposed that ice ages could have resulted from the quasi-periodic variability of the Earth’s orbital parameters that affect relative solar energy input to higher latitudes. As the theory goes, when summersolarenergyinputtohighernorthernlatitudesdropsbelowacriticalthresh- old, ice and snow can better survive the summer. Data acquired in the 20th century suggestthaticesheetsslowlybegintoformovermanymillenniaatlatitudesroughly in the range 60(cid:3)N to 70(cid:3)N. As the ice cover spreads, the albedo (reflectivity) of the region increases, further adding to the cooling effect. Water increasingly leaves the oceans and gets deposited in the process of building ice sheets, lowering the oceans and extending shorelines. Since land has a higher albedo than the ocean, this pro- vides further cooling. In regions adjacent to the ice sheets vegetation is inhibited, adding still further to increased Earth albedo. As northerly regions cool, the con- centrations of key greenhouse gases such as water vapor, CO , and CH decrease, 2 4 creating a worldwide cooling effect that converts the budding ice age into a global phenomenon.Othereffectssuchaswidespreadduststormsandtheexpansionofsea iceandmountainglaciersalsocontribute.Thus,therunawayexpansionoficesheets developsovermanymillennia.JamesCrollformulatedtheconceptoftheSunacting as a trigger for ice ages based on variations of the Earth’s orbit in 1875. In the first several decades of the 20th century, M. Milankovitch quantified this theory by carrying out extensive calculations by hand (no mean feat in the pre-computer age). Nevertheless, in the absence of long-term data over many ice ages, the astro- nomical theory remained an abstract concept. Furthermore, there were no credible mechanistic models to describe how changing solar energy input to higher latitudes could lead to alternating ice ages and deglaciations. With the advent of marine sediment data in the 1970s, it became possible to compare the astronomical theory with data over many glacial cycles. John Imbrie was a pioneer in this regard. He built up a stack of ocean sediment data—which he dubbed the ‘‘SPECMAP’’ stack—from several sites with the objective of reducing noise and devised models to compare ice sheet volume (V) with solar variations. In doingthis,hetunedthechronologyoftheSPECMAPstackusingsolarvariabilityas aguide.Healsousedspectralanalysistoshowthatsomeoftheprominentfrequency componentsinSPECMAPvariabilitywereinconsonancewithknownfrequenciesof solar variation. From this, he concluded that the astronomical model explained much of the ice age record—at least for the past (cid:2)650,000 years. However, there seems to be some circular reasoning involved and one could construe his procedure

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.