ICANN '93 ICANN '93 Proceedings of the International Conference on Artificial Neural Networks Amsterdam, The Netherlands 13-16 September 1993 Edited by Stan Gielen and Bert Kappen Springer-Verlag London Berlin Heidelberg New York Paris Tokyo Hong Kong Barcelona Budapest Stan Gielen and Bert Kappen Dutch Foundation for Neural Networks University of Nijmegen Geert Grooteplein 21 6525 EZ Nijmegen The Netherlands ISBN 978-3-540-19839-0 ISBN 978-1-4471-2063-6 (eBook) DOl 10.10071 978-1-4471-2063-6 British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Cataloging-in-Publication Data International Conference on Artificial Neural Networks (3rd: 1993: Amsterdam, Netherlands) ICANN '93: International Conference on Artificial Neural Networks, Amsterdam, The Netherlands, 13-16 September 19931 edited by Stan Gielen and Bert Kappen. p. em. Includes bibliographical references and index. 1. Neural networks (Computer science) -Congresses. 1. Gielen, Stan, 1952- . II. Kappen, Bert, 1958-- . III. Title. QA76.87.I57 1993 93-5522 006.3-dc20 CIP Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers. © in individual papers held by the authors or their employers © Springer-Verlag London Limited 1993 The use of registered names, trademarks etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant laws and regulations and therefore free for general use. The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal" responsibility or liability for any errors or omissions that may be made. Typesetting: Camera ready by author 3413830-543210 Printed on acid-free paper Preface This book contains the proceedings of the International Confer ence on Artificial Neural Networks which was held between September 13 and 16 in Amsterdam. It is the third in a series which started two years ago in Helsinki and which last year took place in Brighton. Thanks to the European Neural Network Society, ICANN has emerged as the leading conference on neural networks in Europe. Neural networks is a field of research which has enjoyed a rapid expansion and great popularity in both the academic and industrial research communities. The field is motivated by the commonly held belief that applications in the fields of artificial intelligence and robotics will benefit from a good understanding of the neural information processing properties that underlie human intelligence. Essential aspects of neural information processing are highly parallel execution of com putation, integration of memory and process, and robustness against fluctuations. It is believed that intelligent skills, such as perception, motion and cognition, can be easier realized in neuro-computers than in a conventional computing paradigm. This requires active research in neurobiology to extract com putational principles from experimental neurobiological find ings, in physics and mathematics to study the relation between architecture and function in neural networks, and in cognitive science to study higher brain functions, such as language and reasoning. Neural networks technology has already lead to practical methods that solve real problems in a wide area of industrial applications. The clusters on robotics and applications contain sessions on various sub-topics in these fields. These proceedings contain an up-to-date overview of research and applications, at universities as well as in industry. The large number of contributions have passed through a rigorous process of reviewing. Our program committee has been invaluable in this process. We would like to thank all organizers and volunteers for their invaluable help that has made the conference possible. In vi Preface particular, thanks are due to the Dutch Foundation for Neural Networks, the European Commission, Stichting Infor matica Onderzoek Nederland, Shell Research and Siemens Nederland for financial support. Nijmegen, 1993 Stan Gielen Bert Kappen Contents PLENARY CONTRIBUTIONS A. Aertsen Dynamic coupling in cortical neural networks ............................. 3 G. E. Hinton and D. van Camp Keeping neural networks simple .............................................. 11 PRINCIPLES FROM NEUROBIOLOGY Memory and selforganization---:-oral contributions A. Treves and E. T. Rolls (invited paper) The a';1to~ssociative hypothesis places constraints on hippocampal organtzation .......................................................................... 21 M. Nakao, Y. Mizutani, K. Watanabe and M. Yamamoto Metastability of network attractor and dream sleep ...................... 27 S. Wacquant, F. Joublin, F. Spengler, B. Godde, H. R. Dinse Somatosensory cortical maps: reorganization following post- ontogenetic plasticity-experiments and theory .......................... 31 D. J. Amit and N. Brunei Adequate input for learning in attractor neural networks.............. 37 Memory and seiforganization-poster contributions B. Bruckner and W. Zander Neurobiological modelling and structured neural networks........... 43 H. Ikeno and S. Usui Model analysis of associative learning in the photoreceptor of marine mollusc, Hermissenda Crassicomis .................................... 47 J. L. Velay, ,. C. Gilhodes, B. Ans and Y. Coiton A neural network model for motor shapes learning and programming ........................................................................ 51 A. Murciano and ,. Zamora Learning through adaptive value: a model working in a variable environment ......................................................................... 55 E. Lebert and R. H. Pha! Improving categorization with CALM maps ............................... 59 viii Contents D. Heinke and H.-M. Gross A simple self-organizing neural network architecture for selective visual attention...................................................................... 63 R. Moeller and H.-M. Gross Detection of coincidences and generation of hypotheses--a proposal for an elementary cortical function ............................... 67 F. H. Guenther DIVA: a self-organizing neural network model for motor equivalent speech production .................................................. 71 M. M. van Hulle Adaptive non-uniform AID conversion achieved with an unsupervised learning rule maximizing information-theoretic entropy ................................................................................ 75 G. Tambouratzis and T. J. Stonham Optimal topology-preservation using self-organising logical neural networks .............................................................................. 76 M. H. Spigt, D. S. Bree and M. Nielen Incorporation of neurobiological aspects of Aplysia's associative conditioning in neural networks for on-line pattern detection........ 80 F. A. Monaco Description on the use of the autogenerative nodal memory model (ANM) as controlling element of an autonomously responsive system ................................................................................. 81 S. J. Mrchev Human memory-neurocomputer (MeNeCo project): structure for reverbation of the information in N-peaked nets (in STMemory) .... 82 Visuo-motor interaction-oral contributions J. van Opstal and B. Kappen (invited paper) Neural representation of saccadic eye movements in monkey superior colliculus .................................................................. 84 D. Bullock, D. Greve, S. Grossberg and F. H. Guenther A self-organizing neural network for learning a body-centered invariant representation of 3-D target position ............................ 90 K. Kopecz, C. Engels and G. Schaner Dynamic field approach to target selection in gaze control ............ 96 J. F. M. van Brederode and W. J. Spain Differences in synaptic input and excitability between superficial and deep pyramidal cells in the cat sensorimotor cortex ............... 102 Visuo-motor interaction-poster contributions H.-M. R. Arnoldi An adaptive sensory fusion approach for the superior colliculus .... 107 R. Hosaka and T. Nagano A neural network model for spatial information representation ..... 111 Contents ix P. Morasso, V. Sanguineti and T. Tsuji A dynamical model for the generation of curved trajectories ......... 115 L. N. Kalia Functional organisation in the cerebellum .................................. 119 D. G. Ruegg, L. Studer and J.-P. Gabriel Activation and contraction of a muscle ...................................... 120 The visual system-oraI contributions D. Sporns, G. Tononi and G. M. Edelman (invited paper) Correlated neuronal activity and behaviour ................................ 125 F. Wolf, K. Pawelzik, T. Geisel, D.-S. Kim and T. Bonhoeffer Map structure from pinwheel position....................................... 131 H.-U. Bauer, K. Pawelzik and T. Geisel Emergence of transient oscillations in an ensemble of neurons ...... 136 T. Pomierski, H.-M. Gross and D. Wendt A distributed multicolumnar system for primary cortical analysis of real-world scenes ................................................................... 142 The visual system-poster contributions A. J. Noest Singularities in cortical orientation and direction maps: vortices, strings and bubbles ................................................................ 149 P. Grandguillaume A new model for spatial frequency and orientation tuning in the visual cortex based on delayed inputs from the retina .................. 153 E. Nelle and F. Worgotter Cascaded intrac ortical inhibition: modeling connection schemes on a large scale simulator . .. .. ... .. ...... ...... ........ .. ... .. .. .. .. .... .. ...... .. ... 157 K. Pawelzik, J. Deppisch and T. Geisel Hidden assembly dynamics and correlated neuronal responses ..... 161 G. Bugmann and J. G. Taylor A model for latencies in the visual system.................................. 165 F. J. Diaz Pernas and J. LOpez Coronado A neur~! architecture for textured color image segmentation and recognition ........................................................................... 169 Dynamics of single neurons-oraI contributions L. F. Abbott, G. LeMasson, M. Siegel and E. Marder (invited paper) Activity-dependent modification of intrinsic neuronal properties ... 171 A. van Doyen and J. van Pelt Implications of and activity-dependent neurite outgrowth for developing neural networks .................................................... 177 C. Fyfe PCA properties of intemeurons ................................................ 183 x Contents H. R. Dinse, C. E. Schreiner, F. Spengler, B. Godde and B. Hartfiel Temporal distributed processing-TDP: a time-based processing scheme accounts for time dependent receptive fields and representational maps .................................... ,....................... 189 Dynamics of single neurons-poster contributions V. L6pez, J. A. Sigiienza, J. R. Dorronsoro and S. Carrillo-Menendez Stochastic specificity in neural interaction .................................. 196 R. Lahoz-Beltra, A. Murciano, J. Zamora, F. Vico, J. M. Jerez, S. R. Hameroff and J. E. Dayhoff A comput~r simul,atio~ mO,del of backwards feedback across synapse via arachidOnIC aCid .................................................... 200 G. Vaucher Study of a self-learning artificial neuron model .......................... , 204 N. Katayama, M. Nakao, Y. Mizutani and M. Yamamoto Simulation study on calcium-activated dynamics of compartment dendrite model ..... , .................................. " .... , ......... , ......... "., 205 A. J. Klaassen and J. Hoekstra On the adaptive capabilities of pulse-coded cable neurons ............ 206 J. Hoekstra A local approximation of the cable equation for implementing a local interaction model ............ , ................. , ... , .... , ...... ,.,........... 207 Y. Kamiyama, T. Suzuki, H, Ishii and S. Usui Effect of glutamate uptake on the response dynamiCS of the retinal horizontal cell ............................................................... , . . . . . . . 208 ROBOTICS Robot vision-oral contributions F. C. A. Groen, B. J. A. Krose and A. J. Noest (invited paper) Neural networks for robot eye-hand coordination ....................... 211 P. Koistinen Unsupervised formation of feature detectors using residual inputs. 219 M. Proesmans, E. Pauwels, L. J. Van Gool, T. Moons and A. Oosterlinck Geometry-driven diffusion: coupled diffusion maps as a model for excitatory and inhibitory behaviour in vision .............................. 224 H. Keuchel, E. von Puttkamer and U. R. Zimmer SPIN: learning and forgetting surface classifications with dynamic neural networks . , ......... , .......... , . , , , ... , , .. , ............ , .. , ... , ... , .... ' . , . , 230 Robot vision-poster contributions T. M. H. Dijkstra, E. Argante and C. C. A. M. Gielen Motion parallax from catastrophies in scale-space ........................ 237 Contents xi S. T. Toborg Stability and convergence control in cooperative integration networks .............................................................................. 241 H. Neumann and H. S. Stiehl Towards a neural architecture for unified visual contrast and brightness perception ............................................................. 245 E. Chen-Kuo Tsao and H.-Y. Liao Fuzzy Kohonen clustering networks for reducing search space in 3-D object recognition ............................................................. 249 L. Raffo, S. P. Sabatini, G. Indiveri, D. D. Caviglia and G. M. Bisio An active resistor mesh embedding cortical visual processing ........ 250 J. L. Contreras-Vidal and M. Aguilar A fast BCSIFCS algorithm for image segmentation....................... 251 Robot control-oral contributions P. Morasso, V. Sanguineti and 1'. Tsuji (invited paper) Neural architecture for robot planning ....................................... 256 J. Heikkonen, P. Koikkalainen and E. Oja From ~itu~tions to actions: motion behavior learning by self- orgaruzation .......................................................................... 262 T. Wengerek and H. Ritter Application of Q-Iearning in robot grasping tasks ........................ 268 M. Jansen, J. R. Beerhold and R. Eckmiller I/O-stability for robot control with a global neural net inverse model in the feedback loop ...................................................... 274 Robot control-poster contributions J. M. Vleugels, J. N. Kok and M. H. Overmars A self-organizing neural network for robot motion planning ......... 281 D. Cliff, I. Harvey and P. Husbands Evolved recurrent dynamical networks use noise ........................ . 285 G. Fahner and R. Eckmiller The Bellmann Mapping Machine for nonlinear approximation in control policy space ................................................................ 289 J. N. H. Heemskerk and P. T. W. Hudson A real-time robot demonstration controlled by the BSP400 neurocomputer...................................................................... 293 J. R. Beerhold, M. Jansen and R. Eckmiller First results on stable adaptive robot control with RBF networks .... 297 J. I. Arciniegas, K. J. Cios and A. H. Eltimsahy Fuzzy inference, radial basis functions, and control of flexible robotic manipulators ........................... ,..... ..... .... ...... . .. ... ..... ... 301 N. H.-R. Goerke, C. M. Mullender and R. Eckmiller A recurrent trajectory storage network with parceling of the workspace .................................................................... ,....... 305
Description: