I N F L U E N C E O F A N N E A L I N G T E M P E R A T U R E O N T H E P R O P E R T I E S O F I N D I U M T U N G S T E N O X I D E T H I N F I L M S INDFLYDELSE AF ANNEALING TEMPERATURER PÅ EGENSKABERNE AF INDIUM WOLFRAMOXID TYND FILM KIM JANA PAULSEN 201303714 AARHUS UNIVERSITY DEPARTMENT OF PHYSICS AND ASTRONOMY DATE: 15. MARCH 2017 SUPERVISOR: BRIAN JULSGAARD CO-SUPERVISOR: SANJAY RAM Abstract Inrecenttimestungstendopedindiumoxide, In O :W(IWO)thinfilmshaveemergedas 2 3 apromisingtransparentconductingoxide(TCO)material,duetotheattributesofhigh carriermobilityandhightransmittanceinthevisibleandinfra-redregion. Inthisthesis, theinfluenceofpost-depositionannealingonthepropertiesoftwosetsofIWOthinfilms: onehaving1.6atomicpercent(at.%)Wandtheotherhaving3.6at.%W,bothdeposited atroomtemperaturebyRFmagnetronsputtering,arepresented. Theas-depositedIWO filmsarefoundtobetypicallyhighlyresistiveandbarelyopticallytransparent. Inorder to explore the beneficial effect, if any, of post-deposition annealing on the optical and theelectricalpropertiesoftheIWOfilms,detailedinvestigationswerecarriedoutfora rangeofannealingtemperatures,from150to450◦C.Theopticalpropertiesofthefilms arepresentedintheformoftotaltransmittance;totalreflectanceandopticalbandgap(E ). g Theelectricalpropertiesofthefilmswereobtainedfromfour-probeelectricalresistivity and Hall-effect measurement system. The transmittance of the films of both the sets greatlyincreasesandreachesupto90%intheIR-regionwithannealingtemperatures atorabove300◦C.Thebandgapswerefoundtoincreasewiththeriseintheannealing temperatureupto300◦C,butdecreasewithfurtherincreaseinthetemperaturebeyond 300◦C. A temperature dependent variation was also observed for carrier mobility (µ), carrierconcentration(n)andresistivity(ρ). ThemobilityoftheIWOfilmwith1,6at.%W improvesbyafactorof15throughannealingupto300◦Candfallsbeyondthat,while thecarrierconcentrationwasfoundtoreducewiththeriseintheannealingtemperature. This fall in n is related to the reduction in the Oxygen vacancies due to the structural restructuring on annealing. Further investigations revealed a correlation between the opticalandtheelectricalpropertieswhere E increasesaswithrisingvaluesofndueto g the Burstein-Moss effect till it reaches a plateau, and with further rise in the n, the E g decreasesduetoabandgapnarrowingeffect. Thedependenceofµwithncanbeseen as a rise in µ with decreasing values of n, followed by a fall with further lowering of n. Theinitialriseinµwithdecreasingncanberelatedtothereducedionizedimpurity scattering. However,asanincreaseintheannealingtemperaturebringsaboutalowered valueofn,therearealsoconcurrentlystructuralchangesoccurringinthefilms. Previous studiesofthestructuralpropertiesofroomtemperaturedepositedIWOfilmsindicatean amorphousstructureofthefilms. However,wecontendthatinourstudy,atthehigher annealing temperatures, the films develop small crystallite grains which enhance the grainboundaryscatteringeffect,leadingtothedecreaseinthemobilitybeyond300◦C. Weconcludethatpost-depositionannealingisaneffectivemethodtoimprovetheoptical andelectricalpropertiesoftheIWOfilms,buttheoptimumtemperaturesdependonthe externaldopinginthefilms. i Resumé I den seneste tid har wolframdoteret indiumoxid, In O :W (IWO) tynd-film vist sig 2 3 somenlovendetransparentledendeoxid(TCO),pågrundafdensegenskaber,somhøj mobilitetafladningsbæreroghøjtransmissionidetsynligeoginfrarødeområde. Idenne afhandlingpræsenteresindflydelsen afopvarmingefter deponeringpå egenskaberne aftosætIWOtyndfilm: én,derhar1,6atomprocent(at.%)Wogdenandenhar3,6at.% W, begge deponeret ved stuetemperatur af RF magnetron sputtering. De deponerede IWOfilmerfundettilathavemegethøjresistivitetogværenæppegennemsigtig. For atudforskedengavnligeeffekt,hvisderernogen,afpost-depositionvarmebehandling pådeoptiskeogelektriskeegenskaberafIWOfilmeneblevdetaljeredeundersøgelser udførtforenrækkeannealing-temperaturerfra150til450◦C.Deoptiskeegenskaberaf filmeneerpræsenteretiformaftotaltransmission;totalrefleksionogoptiskenergigab (E ). De elektriske egenskaber af filmene blev opnået gennem et fire-sonde-elektrisk- g modstandogetHall-effektmålesystem. Transmissionaffilmeneibeggesætøgesstærkt og når op til 90% i IR-regionen ved annealing-temperaturer på 300◦C eller derover. Energigabeneerfundettilatvoksemedstigendeannealingtemperaturpåoptil300◦C, men aftager når temperaturen stiger over 300◦C. En variation i temperatur afhængig blev også observeret for ladningsbærer mobilitet (µ), ladningsbærer koncentration (n) ogresistivitet(ρ). MobilitetenafIWOfilmmed1,6på. %Wforbedresmedenfaktor15 gennemvarmebehandlingoptil300◦Cogfaldervedtemperaturerudoverdette,mens ladningsbærerkoncentrationenvistesigatreduceresvedstigendetemperatur. Dettefald inerrelaterettilreduktionenafoxygenhuller(vacancies)grundetomstruktureringved annealing. Yderligereundersøgelserafsløredeensammenhængmellemdeoptiskeog elektriske egenskaber, hvor E stiger med stigende værdier af n på grund af Burstein- g Mosseffektenindtildennåretplateau. Medyderligerestigninginaftager E pågrund g afenenergigabindsnævrendeeffekt. Afhængighedenafµpånkansessomenstigning i µ med faldende værdier af n, efterfulgt af et fald i µ ved yderligere sænkning af n. Den første stigning i µ med faldende n kan relateres til den reducerede spredning forårsaget af ioniserede urenheder (reduced ionized impurity scattering). Eftersom en stigning i annealings temperaturen medfører en reduktion af n, sker der samtidigt strukturelleforandringerifilmene. Tidligereundersøgelserafdestrukturelleegenskaber vedstuetemperaturdeponeredeIWOfilmindikererenamorfstrukturaffilmene. Der hævdesidenneundersøgelse,atfilmenevedhøjeannealingstemperaturerudviklersmå krystallinekernersomforøgerkorngrænsespredningseffekt(grainboundaryscattering effect),hvilketførertiletfaldimobilitetvedtemperaturerover300◦C.Vikonkluderer,at post-depositionannealingereneffektivmetodetilatforbedredeoptiskeogelektriske egenskaberafIWOtyndfilm,mendeoptimaletemperaturerafhængerafdeneksterne dopingifilmene. ii Contents Indhold iii 1 Introduction 1 2 Experimentaldetails 3 2.1 Thinfilmfabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 Substratecleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.2 RadiofrequencymagnetronSputtering . . . . . . . . . . . . . . . . 3 2.2 Postdepositionannealing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3 Opticalcharacterisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3.1 UV-VIS-IR-opticalspectrophotometry . . . . . . . . . . . . . . . . . 5 2.3.2 Opticalbandgapcalculation . . . . . . . . . . . . . . . . . . . . . . . 6 2.4 Electricalcharacterisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4.1 Four-pointprobetechnique . . . . . . . . . . . . . . . . . . . . . . . 7 2.4.2 Halleffect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.5 Erroranalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 Results 10 3.1 Opticalproperties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2 Electricalproperties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4 Discussion 18 4.1 Opticalbandgap-carrierconcentrationrelationship . . . . . . . . . . . . . 18 4.2 Carriermobility-carrierconcentrationrelationship . . . . . . . . . . . . . 20 5 Conclusion 23 Litteratur 24 iii Acknowledgement This Bachelor project arose in collaboration with the Semiconductor Group at the De- partment of Physics and Astronomy at Aarhus University. I would like to thank my supervisorBrianJulsgaardforgivingmethechancetodosuchaninterestingandexiting projekt. IwouldalsoliketothankPiaBomholtJensenfordevelopingandhelpingme annealingmysamplesaswellasJeppeChristiansen,IevgenBoturchuk,HarishLakhotiya andKarlFrederikFærchFischerforhelpingmewiththemeasurements. Aspecialthanks to my co-supervisor Sanjay Ram, who guided me through the process, fed me with articlesandhelpedmetounderstandthephysicsbehindtheproject. iv Chapter 1 Introduction Transparentconductivematerialsareusedinmanyelectronictechnicaldevices. Theyare usedinfield-effecttransistor(FET)andoptoelectronicdeviceslikeLED,Touchscreens, SmartWindows,LCDTV’sandsolarcells. Theyareknownfortheirhighopticaltrans- mittanceinthevisiblerangeandhighelectricalconductivity. Today the mostly used type of transparent conducting materials are transparent con- Figure 1.1: an example of application for transparent conducting material, solar cells. Picturetakenfromref[33] ducting oxides (TCOs), which took over the market from silicon. TCOs are n-type semiconductorswithbandgapsbiggerthen3eV,whicharedopedintrinsic(defectsand vacancies)orextrinsic(externaldopant). ExamplesofTCOsareITO,SnO,ZnOandInO. Indiumtinoxide(ITO)waswidelyused,butbecauseofthehighcostofindiumtheusage is been narrowed. ITO is stil the dominant material in flat-panel displays [16]. While other TCOs are used in the manufacturing e.g ZnO and SnO in the manufacturing of thin-filmsolarcells. Transparentconductivematerialsisalargeresearcharea,tryingto optimizethealreadyknownmaterialsandtodevelopnewones,e.g. areGrapheneand nanowires upcoming transparent conducting materials. However, until now the first choiceTransparentconductingmaterialisindiumoxide,becauseofitsgreatelectrical andopticalpropertiesincombinationwithitschemicalstability[2]. AsubgroupofTCOs 1 CHAPTER1. INTRODUCTION 2 are high mobility TCOs, which have carrier mobility above 65 cm2/Vs. This group is importantforincreasingtheelectricalconductivity. Theconductivityisgivenbyelectron chargetimesthemobilitytimesthecarrierconcentrationσ = eµn. Therearetwowaysto increasetheconductivity,byincreasingthecarrierconcentrationorthecarriermobility. Carriermobilitydependsoncarrierconcentration,ifincreasingthecarrierconcentration tofarelectronscatteringwillbecomeabigfactorandmobilitywilldecrease. Thechal- lengeistofindthestatewhereµnhasthehighestpossiblevalue. Highmobilityimproves electricalconductivitywithoutthecostofopticaltransparencyinthevisiblelightregion, andsimultaneouslyitprovideshighoperationspeedintransparentelectronicdevices[1]. Tungstendopedindiumoxide(IWO)isapromisingcandidateforhighmobility. Indium oxide(In O )hasadirectbandgapof3,7eV,isfairlytransparentinthevisibleregionand 2 3 hashighelectronconcentration. Whenitisdopedwithtransitionmetalsliketungsten (W),Titanium(Ti),Molybdenum(Mo)orother(extrinsicdoping)thecarrierconcentra- tioncanberaisedfurtherup. Theelectronscancomefromimpurities,oxygenvacancies (intrinsicdoping)[2]andfromactivatingW6+ duringheattreatment(annealing). Doped indium oxide has high electron concentration, to get a high conductivity the mobility mustbeincreased. Thatcanbedonebypostdepositiontreatmentlikeannealing. IWOis anamorphousmaterial,whichbecomescrystallineduringannealing. Therearedifferent deposition techniques, the samples in this project are deposited at room temperature by magnetron sputtering. Deposition at room temperature is of great interest due to theapplicationofIWOthinfilms. IWOthinfilmsareoftendevelopedonheatsensitive substratee.g. thea-Sifilmsontheheterojunctionsolarcell[1]. Anotherbenefitofroom temperature is the reduce of energy input. The aim of thesis is to study the impact ofpostdepositionannealingontheopticalandelectricalpropertiesof(highlydoped) IWOthinfilms. Thesamplesaredepositonborosilicateglassatroomtemperaturewith 1,6atmosphericpercenttungsten(at.%W)and3,6atmosphericpercenttungsten. After depositionthesampleswereannealedatdifferenttemperaturesfrom150◦C-450◦C,one sampleofeachdepositionseriesstayedunannealed,furthermentionedasnonannealed orroomtemperaturesample. Theexperimentalsetupandtheorycanbefoundinkapitel2andtheresultsinkapitel3. Thediscussioncanbefoundinkapitel4 Chapter 2 Experimental details Thischapterwillgiveaninsightinthethinfilmfabricationof1,6and3,6atmosphericper- centtungsten(at.%W)dopedindiumoxide(IWO).Furthermoretheopticalandelectrical experimentalset-upandtheoryareprocessed. 2.1 Thin film fabrication Beforedevelopingthesamples,thesubstrate,whichisborosilicateglass,mustbecleaned. Aftercleaningtheglass,thethinfilmsaredevelopedbymagnetronsputtering. 2.1.1 Substratecleaning TheborosilicateglasswerecleanedchemicallywithAcetone,ISO-Propanolanddeionized waterinaultrasonicbath. TheglassisfirstplacedinAcetone,thenindeionizedwater andfinallyinISO-propanoleachtimeitisplaceintheultrasonicbathforfiveminutes. Whenthelaststepisfinishedtheglassiscarefullyblowndryandsatinaheatingcabinet foratleasthalfanhour. 2.1.2 RadiofrequencymagnetronSputtering Althoughtherearemanyotherphysicalandchemicaldepositiontechniquesasmolecular beam epitaxy and pulsed laser ablation [3], which partially gives give better results, magnetronsputteringischosenbecauseofitslowcostandscalability. Therf-magnetron sputteringisaformofphysicalvapourdeposition. Sputteringisaprocesswherematerial isejectedfromatarget(source)ontoasubstrate(destination),sketchedinfigur2.1. The 3 CHAPTER2. EXPERIMENTALDETAILS 4 ejection of atoms occurs by bombarding the surface of the target with argon carrier gasions(Ar+)figur2.1[3]. ForproducingthesamplesinthisprojectAJAATCOrion sputteringsystemwasusedwithparametersasshownintabel2.1,withborosilicateglass assubstrate. Figure 2.1: Deposition of substrate in UHV chamber via. Magnetron sputtering. The yellowatomsareIndiumOxidedopedwithTungstenthathasbeenknockedofthetarget withAr-ions. Theblueatomistheelectronwhichistrappedinmagneticfield. Thepink cloudistheplasmacreatedfromcollisionofanelectronandaneutralAr. Thisfigureis takenfromRef[4]. Table2.1: Parametersofthesputteringprocessatroomtemperature Parameter Value[unit] Depositiontime 36[min] Magnetronpower 40[W] Workingpressure 2,2[mT] Tungstendopinglevel 3.6[at.%]and1.6[at.%] Gascomposition Ar:20,O : 0,Ar+O :0 2 2 2.2 Post deposition annealing Afterthedepositionthesampleswereannealedforanhouratdifferenttemperatures. The annealingtookplaceinanairfurnacewithNitrogenflow. Nitrogenisnotasreactiveas Oxygen. Thetemperatureismeasuredinthemiddleofthefurnace,closetothesamples,a sketchofthefurnaceisseenonfigur2.2. Thesamplesareplacedinthefurnace,whenthe temperaturehasstabilized. Theannealingtemperaturesweresetto150◦C,200◦C,350◦C CHAPTER2. EXPERIMENTALDETAILS 5 and400◦Cforthe1,6at.%Wseriesandto250◦C,300◦C,350◦C,400◦Cand450◦Cforthe3,6 at.%W.Thetemperaturesaredifferentforthesamplesseries. The1,6at.%Wserieswere annealedanditwasseen,thattherewerenotmuchdifferencebetweennonannealedand annealedat150◦C,buttherewereabigdifferencebetweenannealingtemperaturesof 200◦Cand300◦C.Forgetabetterideaofwhatthereishappeningathighertemperatures, the 3,6at.% series were annealed at different temperatures. Both series have one non annealedsample,referredtoasRT. Figure2.2: Asketchofthefurnaceusedforannealing. Aroundthesample,thetempera- tureisalmostconstantandthereisaconstantNitrogenflow. Thebluelinepresentsthe thermometer,thetemperatureismeasuredclosetothesample. 2.3 Optical characterisation Thissectionisabouttheopticalmeasurementsandcalculations. Thetotaltransmittance and total reflectance are measured by spectrophotometry. From the out comes the ab- sorptioncanbecalculatedbysubtractingthetotaltransmittanceandtotalreflectionfrom 100%. Theopticalbandgapcanbecalculatedthroughtheabsorptioncoefficient,which canbefoundfromthetotaltransmittanceandtotalreflectancemeasurement. 2.3.1 UV-VIS-IR-opticalspectrophotometry TheopticalmeasurementsareexertedonaPerkinElmerLambda1050spectrophotometer witha150nmintegrationsphereforwavelengthfrom300nmto2500nm. Asketchofthe setupcanbeseenonfigur2.3,itisasketchforLambda950,butitisthesameprinciple forLambda1050. Thereisaholeforincominglight,fortransmittancemeasurementthe sampleisplacedbetweentheincominglightbeamandthesphere,markedredonthe
Description: