ebook img

i nfluence of annealing temperature on the properties of indium tungsten oxide thin films PDF

32 Pages·2017·1.56 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview i nfluence of annealing temperature on the properties of indium tungsten oxide thin films

I N F L U E N C E O F A N N E A L I N G T E M P E R A T U R E O N T H E P R O P E R T I E S O F I N D I U M T U N G S T E N O X I D E T H I N F I L M S INDFLYDELSE AF ANNEALING TEMPERATURER PÅ EGENSKABERNE AF INDIUM WOLFRAMOXID TYND FILM KIM JANA PAULSEN 201303714 AARHUS UNIVERSITY DEPARTMENT OF PHYSICS AND ASTRONOMY DATE: 15. MARCH 2017 SUPERVISOR: BRIAN JULSGAARD CO-SUPERVISOR: SANJAY RAM Abstract Inrecenttimestungstendopedindiumoxide, In O :W(IWO)thinfilmshaveemergedas 2 3 apromisingtransparentconductingoxide(TCO)material,duetotheattributesofhigh carriermobilityandhightransmittanceinthevisibleandinfra-redregion. Inthisthesis, theinfluenceofpost-depositionannealingonthepropertiesoftwosetsofIWOthinfilms: onehaving1.6atomicpercent(at.%)Wandtheotherhaving3.6at.%W,bothdeposited atroomtemperaturebyRFmagnetronsputtering,arepresented. Theas-depositedIWO filmsarefoundtobetypicallyhighlyresistiveandbarelyopticallytransparent. Inorder to explore the beneficial effect, if any, of post-deposition annealing on the optical and theelectricalpropertiesoftheIWOfilms,detailedinvestigationswerecarriedoutfora rangeofannealingtemperatures,from150to450◦C.Theopticalpropertiesofthefilms arepresentedintheformoftotaltransmittance;totalreflectanceandopticalbandgap(E ). g Theelectricalpropertiesofthefilmswereobtainedfromfour-probeelectricalresistivity and Hall-effect measurement system. The transmittance of the films of both the sets greatlyincreasesandreachesupto90%intheIR-regionwithannealingtemperatures atorabove300◦C.Thebandgapswerefoundtoincreasewiththeriseintheannealing temperatureupto300◦C,butdecreasewithfurtherincreaseinthetemperaturebeyond 300◦C. A temperature dependent variation was also observed for carrier mobility (µ), carrierconcentration(n)andresistivity(ρ). ThemobilityoftheIWOfilmwith1,6at.%W improvesbyafactorof15throughannealingupto300◦Candfallsbeyondthat,while thecarrierconcentrationwasfoundtoreducewiththeriseintheannealingtemperature. This fall in n is related to the reduction in the Oxygen vacancies due to the structural restructuring on annealing. Further investigations revealed a correlation between the opticalandtheelectricalpropertieswhere E increasesaswithrisingvaluesofndueto g the Burstein-Moss effect till it reaches a plateau, and with further rise in the n, the E g decreasesduetoabandgapnarrowingeffect. Thedependenceofµwithncanbeseen as a rise in µ with decreasing values of n, followed by a fall with further lowering of n. Theinitialriseinµwithdecreasingncanberelatedtothereducedionizedimpurity scattering. However,asanincreaseintheannealingtemperaturebringsaboutalowered valueofn,therearealsoconcurrentlystructuralchangesoccurringinthefilms. Previous studiesofthestructuralpropertiesofroomtemperaturedepositedIWOfilmsindicatean amorphousstructureofthefilms. However,wecontendthatinourstudy,atthehigher annealing temperatures, the films develop small crystallite grains which enhance the grainboundaryscatteringeffect,leadingtothedecreaseinthemobilitybeyond300◦C. Weconcludethatpost-depositionannealingisaneffectivemethodtoimprovetheoptical andelectricalpropertiesoftheIWOfilms,buttheoptimumtemperaturesdependonthe externaldopinginthefilms. i Resumé I den seneste tid har wolframdoteret indiumoxid, In O :W (IWO) tynd-film vist sig 2 3 somenlovendetransparentledendeoxid(TCO),pågrundafdensegenskaber,somhøj mobilitetafladningsbæreroghøjtransmissionidetsynligeoginfrarødeområde. Idenne afhandlingpræsenteresindflydelsen afopvarmingefter deponeringpå egenskaberne aftosætIWOtyndfilm: én,derhar1,6atomprocent(at.%)Wogdenandenhar3,6at.% W, begge deponeret ved stuetemperatur af RF magnetron sputtering. De deponerede IWOfilmerfundettilathavemegethøjresistivitetogværenæppegennemsigtig. For atudforskedengavnligeeffekt,hvisderernogen,afpost-depositionvarmebehandling pådeoptiskeogelektriskeegenskaberafIWOfilmeneblevdetaljeredeundersøgelser udførtforenrækkeannealing-temperaturerfra150til450◦C.Deoptiskeegenskaberaf filmeneerpræsenteretiformaftotaltransmission;totalrefleksionogoptiskenergigab (E ). De elektriske egenskaber af filmene blev opnået gennem et fire-sonde-elektrisk- g modstandogetHall-effektmålesystem. Transmissionaffilmeneibeggesætøgesstærkt og når op til 90% i IR-regionen ved annealing-temperaturer på 300◦C eller derover. Energigabeneerfundettilatvoksemedstigendeannealingtemperaturpåoptil300◦C, men aftager når temperaturen stiger over 300◦C. En variation i temperatur afhængig blev også observeret for ladningsbærer mobilitet (µ), ladningsbærer koncentration (n) ogresistivitet(ρ). MobilitetenafIWOfilmmed1,6på. %Wforbedresmedenfaktor15 gennemvarmebehandlingoptil300◦Cogfaldervedtemperaturerudoverdette,mens ladningsbærerkoncentrationenvistesigatreduceresvedstigendetemperatur. Dettefald inerrelaterettilreduktionenafoxygenhuller(vacancies)grundetomstruktureringved annealing. Yderligereundersøgelserafsløredeensammenhængmellemdeoptiskeog elektriske egenskaber, hvor E stiger med stigende værdier af n på grund af Burstein- g Mosseffektenindtildennåretplateau. Medyderligerestigninginaftager E pågrund g afenenergigabindsnævrendeeffekt. Afhængighedenafµpånkansessomenstigning i µ med faldende værdier af n, efterfulgt af et fald i µ ved yderligere sænkning af n. Den første stigning i µ med faldende n kan relateres til den reducerede spredning forårsaget af ioniserede urenheder (reduced ionized impurity scattering). Eftersom en stigning i annealings temperaturen medfører en reduktion af n, sker der samtidigt strukturelleforandringerifilmene. Tidligereundersøgelserafdestrukturelleegenskaber vedstuetemperaturdeponeredeIWOfilmindikererenamorfstrukturaffilmene. Der hævdesidenneundersøgelse,atfilmenevedhøjeannealingstemperaturerudviklersmå krystallinekernersomforøgerkorngrænsespredningseffekt(grainboundaryscattering effect),hvilketførertiletfaldimobilitetvedtemperaturerover300◦C.Vikonkluderer,at post-depositionannealingereneffektivmetodetilatforbedredeoptiskeogelektriske egenskaberafIWOtyndfilm,mendeoptimaletemperaturerafhængerafdeneksterne dopingifilmene. ii Contents Indhold iii 1 Introduction 1 2 Experimentaldetails 3 2.1 Thinfilmfabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 Substratecleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.2 RadiofrequencymagnetronSputtering . . . . . . . . . . . . . . . . 3 2.2 Postdepositionannealing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3 Opticalcharacterisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3.1 UV-VIS-IR-opticalspectrophotometry . . . . . . . . . . . . . . . . . 5 2.3.2 Opticalbandgapcalculation . . . . . . . . . . . . . . . . . . . . . . . 6 2.4 Electricalcharacterisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4.1 Four-pointprobetechnique . . . . . . . . . . . . . . . . . . . . . . . 7 2.4.2 Halleffect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.5 Erroranalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 Results 10 3.1 Opticalproperties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2 Electricalproperties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4 Discussion 18 4.1 Opticalbandgap-carrierconcentrationrelationship . . . . . . . . . . . . . 18 4.2 Carriermobility-carrierconcentrationrelationship . . . . . . . . . . . . . 20 5 Conclusion 23 Litteratur 24 iii Acknowledgement This Bachelor project arose in collaboration with the Semiconductor Group at the De- partment of Physics and Astronomy at Aarhus University. I would like to thank my supervisorBrianJulsgaardforgivingmethechancetodosuchaninterestingandexiting projekt. IwouldalsoliketothankPiaBomholtJensenfordevelopingandhelpingme annealingmysamplesaswellasJeppeChristiansen,IevgenBoturchuk,HarishLakhotiya andKarlFrederikFærchFischerforhelpingmewiththemeasurements. Aspecialthanks to my co-supervisor Sanjay Ram, who guided me through the process, fed me with articlesandhelpedmetounderstandthephysicsbehindtheproject. iv Chapter 1 Introduction Transparentconductivematerialsareusedinmanyelectronictechnicaldevices. Theyare usedinfield-effecttransistor(FET)andoptoelectronicdeviceslikeLED,Touchscreens, SmartWindows,LCDTV’sandsolarcells. Theyareknownfortheirhighopticaltrans- mittanceinthevisiblerangeandhighelectricalconductivity. Today the mostly used type of transparent conducting materials are transparent con- Figure 1.1: an example of application for transparent conducting material, solar cells. Picturetakenfromref[33] ducting oxides (TCOs), which took over the market from silicon. TCOs are n-type semiconductorswithbandgapsbiggerthen3eV,whicharedopedintrinsic(defectsand vacancies)orextrinsic(externaldopant). ExamplesofTCOsareITO,SnO,ZnOandInO. Indiumtinoxide(ITO)waswidelyused,butbecauseofthehighcostofindiumtheusage is been narrowed. ITO is stil the dominant material in flat-panel displays [16]. While other TCOs are used in the manufacturing e.g ZnO and SnO in the manufacturing of thin-filmsolarcells. Transparentconductivematerialsisalargeresearcharea,tryingto optimizethealreadyknownmaterialsandtodevelopnewones,e.g. areGrapheneand nanowires upcoming transparent conducting materials. However, until now the first choiceTransparentconductingmaterialisindiumoxide,becauseofitsgreatelectrical andopticalpropertiesincombinationwithitschemicalstability[2]. AsubgroupofTCOs 1 CHAPTER1. INTRODUCTION 2 are high mobility TCOs, which have carrier mobility above 65 cm2/Vs. This group is importantforincreasingtheelectricalconductivity. Theconductivityisgivenbyelectron chargetimesthemobilitytimesthecarrierconcentrationσ = eµn. Therearetwowaysto increasetheconductivity,byincreasingthecarrierconcentrationorthecarriermobility. Carriermobilitydependsoncarrierconcentration,ifincreasingthecarrierconcentration tofarelectronscatteringwillbecomeabigfactorandmobilitywilldecrease. Thechal- lengeistofindthestatewhereµnhasthehighestpossiblevalue. Highmobilityimproves electricalconductivitywithoutthecostofopticaltransparencyinthevisiblelightregion, andsimultaneouslyitprovideshighoperationspeedintransparentelectronicdevices[1]. Tungstendopedindiumoxide(IWO)isapromisingcandidateforhighmobility. Indium oxide(In O )hasadirectbandgapof3,7eV,isfairlytransparentinthevisibleregionand 2 3 hashighelectronconcentration. Whenitisdopedwithtransitionmetalsliketungsten (W),Titanium(Ti),Molybdenum(Mo)orother(extrinsicdoping)thecarrierconcentra- tioncanberaisedfurtherup. Theelectronscancomefromimpurities,oxygenvacancies (intrinsicdoping)[2]andfromactivatingW6+ duringheattreatment(annealing). Doped indium oxide has high electron concentration, to get a high conductivity the mobility mustbeincreased. Thatcanbedonebypostdepositiontreatmentlikeannealing. IWOis anamorphousmaterial,whichbecomescrystallineduringannealing. Therearedifferent deposition techniques, the samples in this project are deposited at room temperature by magnetron sputtering. Deposition at room temperature is of great interest due to theapplicationofIWOthinfilms. IWOthinfilmsareoftendevelopedonheatsensitive substratee.g. thea-Sifilmsontheheterojunctionsolarcell[1]. Anotherbenefitofroom temperature is the reduce of energy input. The aim of thesis is to study the impact ofpostdepositionannealingontheopticalandelectricalpropertiesof(highlydoped) IWOthinfilms. Thesamplesaredepositonborosilicateglassatroomtemperaturewith 1,6atmosphericpercenttungsten(at.%W)and3,6atmosphericpercenttungsten. After depositionthesampleswereannealedatdifferenttemperaturesfrom150◦C-450◦C,one sampleofeachdepositionseriesstayedunannealed,furthermentionedasnonannealed orroomtemperaturesample. Theexperimentalsetupandtheorycanbefoundinkapitel2andtheresultsinkapitel3. Thediscussioncanbefoundinkapitel4 Chapter 2 Experimental details Thischapterwillgiveaninsightinthethinfilmfabricationof1,6and3,6atmosphericper- centtungsten(at.%W)dopedindiumoxide(IWO).Furthermoretheopticalandelectrical experimentalset-upandtheoryareprocessed. 2.1 Thin film fabrication Beforedevelopingthesamples,thesubstrate,whichisborosilicateglass,mustbecleaned. Aftercleaningtheglass,thethinfilmsaredevelopedbymagnetronsputtering. 2.1.1 Substratecleaning TheborosilicateglasswerecleanedchemicallywithAcetone,ISO-Propanolanddeionized waterinaultrasonicbath. TheglassisfirstplacedinAcetone,thenindeionizedwater andfinallyinISO-propanoleachtimeitisplaceintheultrasonicbathforfiveminutes. Whenthelaststepisfinishedtheglassiscarefullyblowndryandsatinaheatingcabinet foratleasthalfanhour. 2.1.2 RadiofrequencymagnetronSputtering Althoughtherearemanyotherphysicalandchemicaldepositiontechniquesasmolecular beam epitaxy and pulsed laser ablation [3], which partially gives give better results, magnetronsputteringischosenbecauseofitslowcostandscalability. Therf-magnetron sputteringisaformofphysicalvapourdeposition. Sputteringisaprocesswherematerial isejectedfromatarget(source)ontoasubstrate(destination),sketchedinfigur2.1. The 3 CHAPTER2. EXPERIMENTALDETAILS 4 ejection of atoms occurs by bombarding the surface of the target with argon carrier gasions(Ar+)figur2.1[3]. ForproducingthesamplesinthisprojectAJAATCOrion sputteringsystemwasusedwithparametersasshownintabel2.1,withborosilicateglass assubstrate. Figure 2.1: Deposition of substrate in UHV chamber via. Magnetron sputtering. The yellowatomsareIndiumOxidedopedwithTungstenthathasbeenknockedofthetarget withAr-ions. Theblueatomistheelectronwhichistrappedinmagneticfield. Thepink cloudistheplasmacreatedfromcollisionofanelectronandaneutralAr. Thisfigureis takenfromRef[4]. Table2.1: Parametersofthesputteringprocessatroomtemperature Parameter Value[unit] Depositiontime 36[min] Magnetronpower 40[W] Workingpressure 2,2[mT] Tungstendopinglevel 3.6[at.%]and1.6[at.%] Gascomposition Ar:20,O : 0,Ar+O :0 2 2 2.2 Post deposition annealing Afterthedepositionthesampleswereannealedforanhouratdifferenttemperatures. The annealingtookplaceinanairfurnacewithNitrogenflow. Nitrogenisnotasreactiveas Oxygen. Thetemperatureismeasuredinthemiddleofthefurnace,closetothesamples,a sketchofthefurnaceisseenonfigur2.2. Thesamplesareplacedinthefurnace,whenthe temperaturehasstabilized. Theannealingtemperaturesweresetto150◦C,200◦C,350◦C CHAPTER2. EXPERIMENTALDETAILS 5 and400◦Cforthe1,6at.%Wseriesandto250◦C,300◦C,350◦C,400◦Cand450◦Cforthe3,6 at.%W.Thetemperaturesaredifferentforthesamplesseries. The1,6at.%Wserieswere annealedanditwasseen,thattherewerenotmuchdifferencebetweennonannealedand annealedat150◦C,buttherewereabigdifferencebetweenannealingtemperaturesof 200◦Cand300◦C.Forgetabetterideaofwhatthereishappeningathighertemperatures, the 3,6at.% series were annealed at different temperatures. Both series have one non annealedsample,referredtoasRT. Figure2.2: Asketchofthefurnaceusedforannealing. Aroundthesample,thetempera- tureisalmostconstantandthereisaconstantNitrogenflow. Thebluelinepresentsthe thermometer,thetemperatureismeasuredclosetothesample. 2.3 Optical characterisation Thissectionisabouttheopticalmeasurementsandcalculations. Thetotaltransmittance and total reflectance are measured by spectrophotometry. From the out comes the ab- sorptioncanbecalculatedbysubtractingthetotaltransmittanceandtotalreflectionfrom 100%. Theopticalbandgapcanbecalculatedthroughtheabsorptioncoefficient,which canbefoundfromthetotaltransmittanceandtotalreflectancemeasurement. 2.3.1 UV-VIS-IR-opticalspectrophotometry TheopticalmeasurementsareexertedonaPerkinElmerLambda1050spectrophotometer witha150nmintegrationsphereforwavelengthfrom300nmto2500nm. Asketchofthe setupcanbeseenonfigur2.3,itisasketchforLambda950,butitisthesameprinciple forLambda1050. Thereisaholeforincominglight,fortransmittancemeasurementthe sampleisplacedbetweentheincominglightbeamandthesphere,markedredonthe

Description:
In recent times tungsten doped indium oxide, In2O3:W (IWO) thin films have emerged as a promising [23] Alex M. Ganose and David O. Scanlon.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.