ebook img

I. N159W PDF

25 Pages·2016·3.09 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview I. N159W

A&A596,A85(2016) Astronomy DOI:10.1051/0004-6361/201628098 & (cid:13)c ESO2016 Astrophysics Radiative and mechanical feedback into the molecular gas in the Large Magellanic Cloud I. N159W(cid:63),(cid:63)(cid:63) M.-Y.Lee1,S.C.Madden1,V.Lebouteiller1,A.Gusdorf2,3,B.Godard4,R.Wu5,M.Galametz6,D.Cormier7, F.LePetit4,E.Roueff4,E.Bron4,8,L.Carlson9,M.Chevance1,Y.Fukui10,F.Galliano1,S.Hony7,A.Hughes11, R.Indebetouw12,13,F.P.Israel14,A.Kawamura15,J.LeBourlot4,P.Lesaffre2,3,M.Meixner16,E.Muller15, O.Nayak17,T.Onishi18,J.Roman-Duval16,andM.Sewiło19 1 LaboratoireAIM,CEA/IRFU/Serviced’Astrophysique,Bât.709,91191Gif-sur-Yvette,France e-mail:[email protected] 2 LERMA,ObservatoiredeParis,ÉcoleNormaleSupérieure,PSLResearchUniversity,CNRS,UMR8112,75014Paris,France 3 SorbonneUniversités,UPMCUniv.Paris6,UMR8112,LERMA,75005Paris,France 4 LERMA,ObservatoiredeParis,PSLResearchUniversity,CNRS,UMR8112,92190Meudon,France 5 InternationalResearchFellowoftheJapanSocietyforthePromotionofScience(JSPS),DepartmentofAstronomy, UniversityofTokyo,Bunkyo-ku,113-0033Tokyo,Japan 6 EuropeanSouthernObservatory,Karl-Schwarzschild-Str.2,85748Garching-bei-München,Germany 7 InstitutfürTheoretischeAstrophysik,ZenturmfürAstronomiederUniversitätHeidelberg,Albert-UeberleStr.2, 69120Heidelberg,Germany 8 ICMM,ConsejoSuperiordeInvestigacionesCientificas,28049Madrid,Spain 9 Harvard-SmithsonianCenterforAstrophysics,60GardenSt.,Cambridge,MA02138,USA 10 DepartmentofPhysics,NagoyaUniversity,Chikusa-ku,464-8602Nagoya,Japan 11 CNRS,IRAP,9Av.colonelRoche,BP44346,31028ToulouseCedex4,France 12 DepartmentofAstronomy,UniversityofVirginia,POBox400325,Charlottesville,VA22904-4325,USA 13 NationalRadioAstronomyObservatory,520EdgemontRd.,Charlottesville,VA22903,USA 14 SterrewachtLeiden,LeidenUniversity,POBox9513,2300RALeiden,TheNetherlands 15 NationalAstronomicalObservatoryofJapan,Mitaka,181-8588Tokyo,Japan 16 SpaceTelescopeScienceInstitute,3700SanMartinDr.,Baltimore,MD21218,USA 17 DepartmentofPhysicsandAstronomy,TheJohnsHopkinsUniversity,366BloombergCenter,3400NCharlesSt.,Baltimore, MD21218,USA 18 Department of Physical Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, 599-8531Osaka,Japan 19 NASAGoddardSpaceFlightCenter,8800GreenbeltRd.,Greenbelt,MD20771,USA Received9January2016/Accepted12June2016 ABSTRACT WepresentHerschelSPIREFourierTransformSpectrometer(FTS)observationsofN159W,anactivestar-formingregionintheLarge MagellanicCloud(LMC).Inourobservations,anumberoffar-infraredcoolinglines,includingcarbonmonoxide(CO)J = 4 → 3 to J = 12 → 11, [CI] 609 µm and 370 µm, and [NII] 205 µm, are clearly detected. With an aim of investigating the physical conditions and excitation processes of molecular gas, we first construct CO spectral line energy distributions (SLEDs) on ∼10 pc scales by combining the FTS CO transitions with ground-based low-J CO data and analyze the observed CO SLEDs using non- LTE (local thermodynamic equilibrium) radiative transfer models. We find that the CO-traced molecular gas in N159W is warm (kinetic temperature of 153–754 K) and moderately dense (H number density of (1.1−4.5)×103 cm−3). To assess the impact of 2 theenergeticprocessesintheinterstellarmediumonthephysicalconditionsoftheCO-emittinggas,wethencomparetheobserved COlineintensitieswiththemodelsofphotodissociationregions(PDRs)andshocks.WefirstconstrainthepropertiesofPDRsby modelingHerschelobservationsof[OI]145µm,[CII]158µm,and[CI]370µmfine-structurelinesandfindthattheconstrained PDRcomponentsemitveryweakCOemission.X-raysandcosmic-raysarealsofoundtoprovideanegligiblecontributiontothe COemission,essentiallyrulingoutionizingsources(ultravioletphotons,X-rays,andcosmic-rays)asthedominantheatingsource forCOinN159W.Ontheotherhand,mechanicalheatingbylow-velocityC-typeshockswith∼10kms−1appearssufficientenough toreproducetheobservedwarmCO. Keywords. ISM:molecules–MagellanicClouds–galaxies:ISM–infrared:ISM (cid:63) HerschelisanESAspaceobservatorywithscienceinstrumentsprovidedbyEuropean-ledPrincipalInvestigatorconsortiaandwithimportant participationfromNASA. (cid:63)(cid:63) ThefinalreducedHerscheldata(FITSfiles)areonlyavailableattheCDSviaanonymousftptocdsarc.u-strasbg.fr(130.79.128.5) orviahttp://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/596/A85 ArticlepublishedbyEDPSciences A85,page1of25 A&A596,A85(2016) 1. Introduction LMC(e.g.,Johanssonetal.1994;Fukuietal.1999;Wongetal. 2011),N159Whasbeenfrequentlytargetedforradio,mm,and Star formation exclusively occurs in molecular clouds, the sub-mmobservationsaswell.TheAustraliaTelescopeCompact densest component of the interstellar medium (ISM; e.g., Array(ATCA)andtheAtacamaLargeMillimeter/submillimeter Kennicutt&Evans2012).Themainconstituentofthesemolec- Array (ALMA) have provided the sharpest view of molecu- ularcloudsismolecularhydrogen(H )whichis,unfortunately, lar gas so far (Sealeetal. 2012; Fukuietal. 2015), revealing 2 not directly observable in the typical conditions of cold molec- the complex filamentary distributions of CO(2–1), 13CO(2–1), ular gas owing to its symmetric, homonuclear nature. The HCO+(1–0), and HCN(1–0). The presence of high excitation strong rotational transitions of carbon monoxide (12CO; sim- molecular gas was hinted at by CO(4–3), CO(6–5), and CO(7– ply CO hereafter) at mm and sub-mm wavelengths have, in- 6) observations by Bolattoetal. (2005), Pinedaetal. (2008), stead,beenusedascommontracersofmoleculargas.Inparticu- Mizunoetal.(2010),andOkadaetal.(2015). lar, CO rotational lines have a wide range of critical densities, Besidestheextensiveobservationsatmultiplewavelengths, making them accessible probes of the physical conditions of the presence of various energetic sources makes N159W an moleculargasindiverseenvironments(e.g.,kinetictemperature ideal target for our study. As described in the previous para- T ∼10–1000Kandhydrogendensityn∼103–108cm−3). k graph, numerous OB-type stars and YSOs exist in the re- The diagnostic power of CO rotational transitions has been gion and they can produce UV photons and strong stellar out- exploited considerably further since the advent of the ESA flows. In addition, the nearby black hole binary LMC X-1, the Herschel Space Observatory (Pilbrattetal. 2010). In combi- most luminous X-ray source in the LMC (X-ray luminosity of nation with ground-based telescope data, Photodector Array ∼1038 ergs−1; Schlegeletal. 1994), can have a substantial in- Camera and Spectrometer (PACS; Poglitschetal. 2010), Spec- fluence on the surrounding ISM. Compared to UV photons, tral and Photometric Imaging Receiver (SPIRE; Griffinetal. X-rays penetrate deeper into molecular clouds while dissociat- 2010), and Heterodyne Instrument for the Far Infrared (HIFI; ingfewermolecules.Asaresult,X-raysproducelargercolumn deGraauwetal. 2010) spectroscopic observations have en- densities of warm molecular gas for a given irradiation energy abled us to construct CO spectral line energy distribu- (e.g.,Meijerink&Spaans2005).Thesupernovaremnant(SNR) tions (SLEDs) from the upper level Ju=1 to 50. In recent J0540.0–6944 and its expanding shell are located just ∼75 pc years, Herschel-based CO SLEDs have been extensively ex- from N159W (e.g., Chuetal. 1997; Williamsetal. 2000) and amined for a wide range of Galactic (e.g., photodissocia- canbeanothersourceofheating.Lastbutnotleast,anumberof tion regions (PDRs): Habartetal. 2010; Köhleretal. 2014; studieshaveindicatedthatthe“molecularridge”whereN159W Ponetal.2014;Stocketal.2015;protostars:Larsonetal.2015) islocatedmayhavebeenexposedtolarge-scaleenergeticevents and extragalactic sources (e.g., infrared (IR)-bright galaxies: drivenbymultiplesupernovaexplosions,tidalforce,and/orram Rangwalaetal. 2011; Kamenetzkyetal. 2012; Meijerinketal. pressure.Themolecularridgeisthelargestmolecularconcentra- 2013; Pellegrinietal. 2013; Greveetal. 2014; Luetal. 2014; tionintheLMC,comprising∼30%ofthetotalmolecularmass Papadopoulosetal. 2014; Rosenbergetal. 2014; Schirmetal. inthegalaxy(e.g.,Mizunoetal.2001).Thedistributionofstar 2014; Mashianetal. 2015; Wuetal. 2015b; Seyfert galax- formation across the ridge is quite intriguing, increasing from ies: vanderWerfetal. 2010; Hailey-Dunsheathetal. 2012; south to north toward the starbursting 30 Doradus region, and Israeletal. 2014), revealing the ubiquitous presence of warm thishasledseveralauthorstosuggestsequentialstarformation. molecular gas (T (cid:38) 100 K). Various heating sources, e.g., ul- k For example, deBoeretal. (1998) proposed that the motion of traviolet (UV) photons, X-rays, and cosmic-rays, have been in- theLMCthroughthehothalogasoftheMilkyWaycreatedbow vokedtoexplainthepropertiesofthiswarmmoleculargasand shocksattheleadingedge,consequentlytriggeringthesequen- the emerging picture is that non-ionizing sources, such as me- tialstarformation.ThisleadingedgeoftheLMCcorrespondsto chanicalheating(e.g.,shocksdrivenbymergingactivities,stel- thesoutheasternHIoverdensityregion,whichappearstomerge larwinds,andsupernovaexplosions),mustplayacriticalrole. intotheSmallMagellanicCloud(SMC)throughtheMagellanic In this paper, we aim at probing the physical conditions Bridge connecting the two Magellanic Clouds (e.g., Kimetal. and excitation processes of molecular gas traced by CO emis- 1998;Putmanetal.2003).SincetheMagellanicBridgehasbeen sion in detail on individual molecular cloud scales. To do so, considered to be formed through gravitational interactions be- we study N159W, an active star-forming region in the Large tween the two Magellanic Clouds (e.g., Bekki&Chiba 2007; MagellanicCloud(LMC),largelybasedonHerschelPACSand Beslaetal.2012),thishintsthatthetidalforcecouldbeatwork SPIREobservations.TheLMCisanexcellentlaboratoryforour intheHIoverdensityregion.TheHIoverdensityregionhasalso studyforthefollowingreasons.Firstofall,theproximityofthe been shown to harbour several supergiant and giant HI shells LMC(distanceof∼50kpc;e.g.,Pietrzyn´skietal.2013)enables (e.g., Kimetal. 1998, 1999), suggesting that powerful super- ustoperformhigh-resolutionobservationsofspatially-resolved nova explosions from multiple OB associations have injected a molecularclouds.Inaddition,theLMCislocatedathighGalac- largeamountofmechanicalenergyintothesurroundingISM.In ticlatitudeandhasanalmostface-onorientation(inclinationan- Fig.1,wepresentthree-colorcompositeandHIcolumndensity gleof∼35◦;e.g.,vanderMarel&Cioni2001),providingaview imagesofN159Wanditssurroundingregions. withlessconfusionandlowinterstellarextinction. Thispaperisorganizedinthefollowingway.First,wepro- N159W is one of the three prominent molecular clouds in vide a description of the multiwavelength datasets used in our theHIIregioncomplexN159(Fig.1)anditsstellarandgascon- study (Sect. 2). Next, we discuss spectral line detection in our tentshavebeenextensivelystudiedatmultiplewavelengths.For Herschel SPIRE Fourier Transform Spectrometer (FTS) obser- example, previous optical and near IR studies have identified a vations(Sect.3)andderivethephysicalpropertiesofmolecular large number of O- and B-type stars, embedded young stellar gas by modeling CO lines with the non-LTE radiative transfer objects(YSOs),andultracompactHIIregions(e.g.,Jonesetal. codeRADEX(vanderTaketal.2007;Sect.4).Wethenemploy 2005; Fariñaetal. 2009; Chenetal. 2010; Carlsonetal. 2012), theoreticalmodelsofPDRsandshockstoexaminetheexcitation suggesting that N159W is one of the most intense star-forming conditionsofCOinN159W(Sect.5)andfinallysummarizeour regions in the LMC. As the brightest CO(1–0) peak in the conclusions(Sect.6). A85,page2of25 M.-Y.Leeetal.:RadiativeandmechanicalfeedbackintothemoleculargasintheLargeMagellanicCloud.I. Fig.1. Leftpanel:three-colorcompositeimageoftheHIIregioncomplexN159anditssurroundingenvironment(Spitzer3.6µm/8µm/24µmin blue/green/red;Meixneretal.2006).TheCO(1–0)integratedintensityfromtheMAGMAsurvey(Wongetal.2011)isshownastheredcontours withlevelsrangingfrom10%to90%ofthepeak(39.5Kkms−1)in20%steps.Middlepanel:HIcolumndensityimagefromKimetal.(1998) withthesameMAGMACOcontoursasshownintheleftpanel(nowinblack).SeveralofthesupergiantHIshells,identifiedbyKimetal.(1999) (clockwisefromleft:SGSs22,17,16,15,13,12,19,and20),areshownasthepurplecircles.Thislarge-scaleHIstructure,wherethemolecular ridgeisembedded,correspondstothesoutheasternHIoverdensityregionintheLMC.Rightpanel:CO(1–0)integratedintensityimageofN159 withthesamecontoursaspresentedintheleftpanel.ThelocationsoftheSLWandSSWdetectorsareshownastheblueandgreencrosses,while thecentraldetectorsforthefirstjiggleobservation(SLWC3andSSWD4)areinyellowandorange.AllthesedetectorsarealsoshowninFig.3. Finally,thethreeprominentsub-regionsinN159arelabeled. 2. Data ThecalibrationwasobtainedfrommeasurementsofUranusand itsuncertaintywasestimatedtobe∼10%(SPIREManual)1 Inthissection,wedescribethedatainourstudyandsummarize Toderiveintegratedintensityimagesandtheiruncertainties, theirmainparameters(e.g.,restwavelength,FWHM,1σuncer- weemploythedatareductionscriptbyWuetal.(2015b),which taintyintheintegratedintensity,luminosity,etc.;Table1). wasrecentlyusedtosuccessfullygenerateFTScubesforM83. Wefirststartoffbyperforminglinemeasurementofpointsource calibratedspectraforeachtransition.Asanexample,thespectra 2.1. HerschelSPIREspectroscopicdata fromthecentralSLWandSSWdetectorsarepresentedinFig.2, withthelocationsofthespectrallinesobservedwiththeSPIRE 2.1.1. Observations FTS.Inourlinemeasurement,acombinationofparabola(con- N159WwasobservedwiththeSPIREFTSinthehighspectral tinuum) and sinc (emission) functions is used to fit a spectral resolution(∆f ∼1.2GHz),intermediatespatialsamplingmode. lineforthefrequencyrangeofνline±15GHz,whereνline isthe TheFTShastwospectrometerarrays,SPIRELongWavelength restfrequencyoftheline.Thecontinuumsubtractedspectraare (SLW)andSPIREShortWavelength(SSW),whichcoverwave- thenprojectedontoacommongridcoveringa5(cid:48) ×5(cid:48) areawith lengthrangesof303–671µmand194–313µmrespectively.The apixelsizeof15(cid:48)(cid:48) (roughlycorrespondingtothejigglespacing FTSbeamprofilechangeswithwavelengthandcannotbechar- oftheSSWobservations)toconstructaspectralcube.Thespec- acterizedbyasimpleGaussianfunctionduetothemulti-moded trumforeachpixeliscalculatedasthe(1/σ2)-weightedsumof p natureoffeedhorncoupleddetectors(Makiwaetal.2013).The overlappingspectra,whereσpisthe1σuncertaintyprovidedby FTSbeamsizevariesfrom17(cid:48)(cid:48)to42(cid:48)(cid:48)(correspondingto4–10pc thepipeline.Theoverlappingspectraarescaledinproportionto atthedistanceoftheLMC;Wuetal.2015b)andispresentedin their covering areas in the pixel before the summation. Finally, Table1.TheSLWandSSWarraysconsistof19and37detectors theintegratedintensity(ICO, ICI,or INII)isderivedbyperform- respectively,whicharearrangedinahexagonalpatterncovering ing line measurement of the constructed spectral cube and its a ∼3(cid:48) × 3(cid:48) area. In the intermediate spatial sampling mode, the uncerta(cid:112)inty(σf)isobtainedbyaddingtwoerrorsinquadrature, SLW and SSW are moved to four jiggling positions with ∼28(cid:48)(cid:48) σ = σ2+σ2, where σ is the statistical error based on the f s c s and ∼16(cid:48)(cid:48) spacings respectively. The locations of all detectors residual from line measurement and σ is the calibration error c are shown in Figs. 1 and 3. Note that our final maps are sub- of10%. Nyquist sampled because of the detector spacing that roughly In this paper, we combine the FTS data with other tracers corresponds to the FTS beam size. The observations were per- of gas and dust (Sects. 2.2–2.4). To compare them at a com- formedonJanuary8,2013withatotalintegrationtimeof5707s mon resolution, we smooth the FTS maps to 42(cid:48)(cid:48) resolution (Obs.ID:1342259066;PI:S.Hony). (∼10pcattheLMCdistance),whichcorrespondstotheFWHM for the CO(4–3) transition, by convolving with proper kernels. These kernels were generated by Wuetal. (2015b) based on 2.1.2. Dataprocessingandmap-making the fitting of a two-dimensional Hermite-Gaussian function to the FTS beam profiles, essentially following the method by WeprocesstheFTSdatausingtheHerschelInteractiveProcess- ing Environment (HIPE) version 11.0.2825 and the SPIRE cal- 1 http://herschel.esac.esa.int/Docs/SPIRE/html/spire_ ibrationversion11.0(Fultonetal.2010;Swinyardetal.2014). om.html A85,page3of25 A&A596,A85(2016) Table1. Spectrallinesanddustcontinuumemissioninourstudy. Species Transition Restwavelengtha Ea nb FWHMc σd,g,h σe,g,h Luminosityf,g u crit s,med f,med (µm) (K) (cm−3) ((cid:48)(cid:48)) (10−11Wm−2sr−1) (10−11Wm−2sr−1) (L ) (cid:12) 12CO J=1–0 2600.8 6 4.7×102 45 0.1 0.8 0.9±0.1 12CO J=3–2 867.0 33 1.5×104 22 1.4 25.1 33.5±1.9 12CO J=4–3 650.3 55 3.7×104 42 15.3 29.4 67.8±2.2 12CO J=5–4 520.2 83 7.2×104 34 11.6 34.6 88.5±2.6 12CO J=6–5 433.6 116 1.3×105 29 6.6 36.9 101.5±3.0 12CO J=7–6 371.7 155 2.0×105 33 6.3 32.5 86.5±2.6 12CO J=8–7 325.2 199 2.9×105 33 17.2 29.4 71.5±2.6 12CO J=9–8 289.1 249 4.0×105 19 14.7 22.6 48.7±1.7 12CO J=10–9 260.2 304 5.3×105 18 18.3 22.7 33.4±1.5 12CO J=11–10 236.6 365 7.0×105 17 20.6 23.2 24.3±1.3 12CO J=12–11 216.9 431 9.0×105 17 17.9 23.2 18.9±1.1 12CO J=13–12 200.3 503 1.1×106 17 27.1 27.9 – [CI] 3P –3P 609.1 24 4.9×102 38 17.9 20.0 18.8±1.2 1 0 [CI] 3P –3P 370.4 62 9.3×102 33 6.3 17.4 48.8±1.5 2 1 [CII] 2P –2P 157.7 91 2.7×103 12 368.8 9439.1 3907.2±399.9 3/2 1/2 [OI] 3P –3P 145.5 327 1.5×105 12 88.1 622.7 250.3±25.4 0 1 [OI] 3P –3P 63.2 228 9.7×105 10 354.5 6444.5 2435.1±248.9 1 2 [OIII] 3P –3P 88.4 163 5.0×102 10 544.8 1.1×104 5460.5±600.8 1 0 [NII] 3P –3P 205.2 70 4.5×101 17 27.5 42.5 99.2±3.5 1 0 L – 60–200 – – 42 – 3.9×104 (3.3±0.1)×105 FIR L – 3–1000 – – 42 – 8.1×104 (7.5±0.1)×105 TIR Notes.(a)DatafromLeidenAtomicandMolecularDatabase(exceptfor[NII]and[OIII],whosedatacomefromCarilli&Walter2013).(b)Critical density(COdatafromWalkeretal.2015andtherestfromTielens2005).FortheCO,[CI],[CII],and[OI]lines,thecriticaldensitiesareevaluated atthekinetictemperatureof100K.(c) Angularresolutionoftheoriginaldata.(d) Medianσ intheintegratedintensityat42(cid:48)(cid:48) resolution(σ = s s statistical1σuncertainty).(e) Medianσ intheintegratedintensityat42(cid:48)(cid:48) resolution(σ =final1σuncertainty;statisticalandcalibrationerrors f f addedinquadrature).(f)LuminosityderivedbyintegratingoverallpixelswithS/N >5at42(cid:48)(cid:48)resolution.(g)ExceptforCO(1–0)at45(cid:48)(cid:48)resolution. s (h)ForCO(1–0)andCO(3–2),theconversionfactorsof1.6×10−12and4.2×10−11areusedtoconvertKkms−1intoWm−2sr−1.(d,e,f)Different spatialareasareconsideredfortheestimates:∼1.0(cid:48)×1.5(cid:48)forthe[CII],[OI],and[OIII]transitionsand∼2.5(cid:48)×2.5(cid:48)fortherest. Fig.2. PointsourcecalibratedFTSspectraobtainedwiththetwocentraldetectors,SLWC3(red)andSSWD4(blue),forthefirstjiggleobservation. ThepositionsofthetwodetectorsareshownastheyellowandorangecrossesinFigs.1and3andthespectrallinesobservedwiththeSPIREFTS areindicatedastheblackdashedlines. Gordonetal.(2008).Inaddition,werebinthesmoothedmapsto Finally,tocross-checkourmap-makingprocedure,wecom- haveafinalpixelsizeof30(cid:48)(cid:48),whichroughlycorrespondstothe pare the FTS CO(4–3) integrated intensity image with NAN- jigglespacingoftheSLWobservations.Wepresenttheresulting TEN2 CO(4–3) observations at 38(cid:48)(cid:48) resolution (Mizunoetal. integrated intensity images in Fig. 3 and Appendix A and refer 2010). For the comparison, we convolve the NANTEN2 data toWuetal.(2015b)fordetailsonthemap-makingprocedure. with a Gaussian kernel to have a final resolution of 42(cid:48)(cid:48) and A85,page4of25 M.-Y.Leeetal.:RadiativeandmechanicalfeedbackintothemoleculargasintheLargeMagellanicCloud.I. provided by PACSman) and the calibration uncertainty of 22% (σ ; 10% for spaxel-to-spaxel variations and 12% for absolute c calibration)areaddedinquadrature.Wepresentfinalintegrated intensity maps and a sample of PACS spectra in Figs. 4 and 5 and refer to Lebouteilleretal. (2012) and Cormieretal. (2015) fordetailsonthedatareductionandmap-makingprocedures. ThelimitedspatialcoverageofthePACSdata,unfortunately, results in only several pixels to work with when the maps are smoothedandregriddedtomatchtheFTSresolution(42(cid:48)(cid:48))and pixelsize(30(cid:48)(cid:48)).ThecommonregionbetweenthePACSandFTS data at 42(cid:48)(cid:48) resolution has a size of ∼1.0(cid:48) ×1.5(cid:48) (e.g., Fig. 13) and all fine-structure transitions are clearly detected with the statisticalsignal-to-noiseratioS/N (integratedintensitydivided s byσ )>5(ourthresholdforlinedetection;Sect.3.1). s 2.3. Ground-basedCOdata Fig. 3. CO(7–6) integrated intensity image at 42(cid:48)(cid:48) resolution (pixel size=30(cid:48)(cid:48)).InourFTSobservations,CO(7–6)isoneofthemostsen- 2.3.1. MopraCO(1–0)data sitivetransitionswiththelowestmedianstatisticaluncertainty(σ ; s,med Table 1). The SLW and SSW arrays are shown as the blue and green We use the CO(1–0) data from the MAGellanic Mopra As- crosses, except the central detectors for the first jiggle observation sessment (MAGMA) survey (Wongetal. 2011). This survey (SLWC3andSSWD4)inyellowandorange.Thespectrawiththestatis- targeted bright CO complexes that were previously identified ticalsignal-to-noiseratioS/Ns(integratedintensitydividedbyσs)>5 from the NANTEN survey (Mizunoetal. 2001) and observed are presented in red (our threshold for detection; Sect. 3.1) and their them with the 22 m Mopra telescope on 45(cid:48)(cid:48) scales. To esti- x-axis(inGHz)andy-axis(in10−18Wm−2Hz−1sr−1)rangesareshown mate the CO(1–0) integrated intensity, each data cube was first inthebottomrightcornerwiththespectrumofthepixelobservedwith smoothedto90(cid:48)(cid:48) resolutionandamaskwasgeneratedbasedon SLWC3 and SSWD4. The black dashed circle delineates the 2(cid:48) unvi- the 3σ level. The generated mask was then applied to the orig- gnetted field-of-view for FTS observations and almost all pixels are inal cube and the CO(1–0) emission within the mask was in- within this field-of-view. Note that we do have a spectrum for every tegrated from3 v = +200 kms−1 to +305 kms−1. The un- detector and the blank pixels within the SLW coverage in the current LSR imagesimplyresultfromtherebinningprocess. certainty in the integrated intensity was derived by multiply- ingtheroot-mean-square(rms)noiseperchannelbythesquare root of the number of channels that contribute to the intensity findthattheFTSandNANTEN2dataareconsistentwithin1σ map at that position. To take a systematic error into account, uncertainties: the ratio of the FTS to NANTEN2 data ranges we combine this uncertainty with the calibration uncertainty of from∼0.7to∼1.2,suggestingthatourmap-makingprocedureis 25% (T.Wong, priv. comm.) and add them in quadrature. For accurate. theareathatoverlapswiththeFTScoverage(2.5(cid:48)×2.5(cid:48)insize; Fig. 7), the final uncertainty at 45(cid:48)(cid:48) resolution has a median of 2.2. HerschelPACSspectroscopicdata ∼5.3 Kkms−1 (Table 1) and the CO(1–0) transition is detected everywherewithS/N >5. N159WwasobservedwiththePACSspectrometeronMay24, s 2011,aspartoftheHerschelguaranteedtimekeyprojectSHIN- ING(PI:E.Sturm).Thefourfine-structurelines,[CII]158µm, 2.3.2. ASTECO(3–2)data [OI]63µm,[OI]145µm,and[OIII]88µm,weremappedinthe unchoped scan mode (Obs. IDs: 1342222075 to 1342222084). WeusetheCO(3–2)dataobtainedbyMinamidanietal.(2008). As described in Poglitschetal. (2010), the PACS spectrometer Minamidanietal. (2008) observed N159 with the 10 m Ata- is an integral field spectrometer that consists of 25 (spatial) × camaSubmillimeterTelescopeExperiment(ASTE)telescopeat 16(spectral)pixels.Thespectrometercoversawavelengthrange 22(cid:48)(cid:48) resolution. In order to derive the integrated intensity, we of 51–220 µm with a projected footprint of 5 × 5 spatial pix- integrate the CO(3–2) emission from v = +220 kms−1 to LSR els (“spaxels”) on the sky (corresponding to a ∼47(cid:48)(cid:48)×47(cid:48)(cid:48) +250 kms−1. This velocity range is slightly different from that field-of-view). The FWHM depends on wavelengths, ranging used to estimate the CO(1–0) integrated intensity, but the dis- from∼10(cid:48)(cid:48)at60µmto∼12(cid:48)(cid:48)at160µm(PACSManual)2. crepancy would not make a significant impact on the CO(3–2) ThePACSspectroscopicdataarefirstreducedwiththeHIPE integrated intensity considering that the spectra contain essen- version12.0.0(Ott2010)fromLevel0toLevel1.TheLevel1 tially noise beyond the velocity range of 220–250 kms−1 (e.g., cubes(calibratedinbothfluxandwavelength)arethenexported Fig. 2 of Minamidanietal. 2008). The final uncertainty in the and processed with PACSman (Lebouteilleretal. 2012) to cre- integratedintensityisthenestimatedinthesamewayaswedo ate integrated intensity images. Each spectrum is fitted with a forCO(1–0):addthestatisticalerrorderivedfromthermsnoise combinationofpolynomial(baseline)andGaussian(line)func- perchannelandthecalibrationerrorof20%(Minamidanietal. tionsandthelinefluxesofallspaxelsareprojectedontoagrid 2008) in quadrature. When smoothed to 42(cid:48)(cid:48) resolution and with a size of ∼1(cid:48) × 2(cid:48). The pixel size of ∼3(cid:48)(cid:48) (corresponding regriddedtomatchtheFTSdata,theCO(3–2)observationshave to ∼1/3 of the spaxel size) is chosen to recover the best spa- amedianuncertaintyof∼5.9Kkms−1 (Table1)andS/N > 5 s tialresolutionpossible.Forthe1σerrorintheintegratedinten- isachievedeverywhere. sity,theuncertaintyfrommapprojection/linemeasurement(σ ; s 2 http://herschel.esac.esa.int/Docs/PACS/html/pacs_om. 3 Inthispaper,allvelocitiesarequotedintheLocalStandardofRest html (LSR)frame. A85,page5of25 A&A596,A85(2016) Fig.4. IntegratedintensityimagesofPACSfine-structurelines.Theangularresolutionsare∼10(cid:48)(cid:48)for[OI]63µmand[OIII]88µmand∼12(cid:48)(cid:48)for [OI]145µmand[CII]158µm.TheFTScoverage(e.g.,Fig.3)isindicatedastheblacksolidline.NotethatthePACSobservationsarespatially limitedandhenceonlypartoftheFTScoverageisshownhere.Ineachimage,thelocationofthespaxelwhereanexamplespectrumisextracted isalsooverlaidastheredcross.ThisspecificspaxelischosenastheclosestonetotheFTSSLWC3detector(yellowcrossinFig.3).Theextracted spectraarepresentedinFig.5. 2.4. DeriveddustandIRcontinuumproperties 36(cid:48)(cid:48) resolution and estimated their uncertainties by performing MC simulations where the measured IR fluxes were perturbed based on 1σ errors and the SED fitting was repeated 20 times. We use the dust and IR continuum properties of N159W esti- In our study, we use the parameters estimated on 42(cid:48)(cid:48) scales to mated following Galametzetal. (2013). To derive these prop- matchtheFTSresolution.WerefertoGalametzetal.(2013)and erties, Galametzetal. (2013) applied the dust spectral energy Gallianoetal.(2011)fordetailsondustSEDmodeling. distribution (SED) model by Gallianoetal. (2011) to Spitzer (3.6, 4.5, 5.8, 8, 24, and 70 µm) and Herschel (100, 160, 250, 350,and500µm)photometricdata(Meixneretal.2006,2013). 3. Results Theamorphouscarbon(AC)compositionwasusedforthispur- pose,asitwasdesignedtoconsistentlyreproducetheHerschel 3.1. FTSlinedetection broadband emission of the LMC. It is more emissive than the standard Draine&Li (2007) model. In essence, Gallianoetal. WeshowtheFTSspectrainFig.3andAppendixA.1andfocus (2011)’s approach is twofold: (1) modeling of dust SED for on CO and [CI] line detection in this section. A detailed anal- a single mass element of the ISM with uniform illumination ysis on the physical properties and excitation conditions of the and (2) synthesizing several mass elements to account for the CO-emitting gas will be presented in Sects. 4 and 5. Through- variations in illumination conditions. In the SED fitting proce- out this paper, we apply a threshold of S/N > 5 for line s dure,independentfreeparametersarethetotaldustmass(M ), detection and categorize the CO transitions into three groups dust PAH-to-dust mass ratio (f ), index for the power-law distri- (e.g., Köhleretal. 2014): low-J for J ≤ 5, intermediate-J for PAH u butionofstarlight intensities(α ),lowercut-off forthepower- 6≤ J ≤9,andhigh-JforJ ≥10whereJ istheupperlevelJ. U u u u lawdistributionofstarlightintensities(U ),rangeofstarlight In N159W, FTS CO transitions with J = 4–12 are de- min u intensities (∆U), and mass of old stars (M ). Based on these tected. These rotational lines have upper level energies of star free parameters, the following properties can also be estimated E ∼55–431 K and critical densities of n ∼ 104–106 cm−3 u crit (Fig. 6 and Table 1): far IR luminosity (60–200 µm; L ), (Table 1; Yangetal. 2010), suggesting that they are valuable FIR total IR luminosity (3–1000 µm; L ), and dust temperature probesofmoleculargasoverarangeofdensityandtemperature. TIR (T ). Galametzetal.(2013) derived all these parameters at To estimate the total CO luminosity, we add up the integrated dust A85,page6of25 M.-Y.Leeetal.:RadiativeandmechanicalfeedbackintothemoleculargasintheLargeMagellanicCloud.I. Fig.5. ExamplePACSspectra.Thelocationofthespaxelwhereeachspectrumisextractedisindicatedinthetopleftcornerofeachplot,aswell asinFig.4astheredcross. Fig.6. DustandIRcontinuumproperties:farIRluminosityL (left),totalIRluminosityL (middle),anddusttemperatureT (right).All FIR TIR dust imagesareat42(cid:48)(cid:48) resolutionwithapixelsizeof30(cid:48)(cid:48) andtheSpitzer24µmemissionat6(cid:48)(cid:48) resolutionisoverlaidastheredcontourswithlevels rangingfrom10%to90%ofthepeak(2149MJysr−1)in10%steps. intensities at 42(cid:48)(cid:48) resolution over all pixels with S/N > 5 and non-LTE radiative transfer modeling (Sect. 4.2) suggests that s provide the results in Table 1. We find the total CO luminos- high-J transitions with J ≥ 13 could contribute up to 8% of u ity of L = (575.5 ± 6.8) L (including J = 1,3,4,...,12), thetotalCOluminosity4. CO (cid:12) u whichis∼8×10−4 ofthetotalIRluminosity.ThistotalCOlu- Both atomic carbon fine-structure lines at 609 µm and minosity is dominated by the rotational lines with 4 ≤ Ju ≤ 8 370 µm are detected in N159W. Their upper levels lie ∼24 K (low-J andintermediate-J)andthelargestcontribution(∼20%) and∼62Kabovethegroundstateandtheircriticaldensitiesare comes from the CO(6–5) transition. Note, however, that our lowwithn ∼102–103cm−3(Table1;Launay&Roueff1977). crit estimate is limited up to Ju = 12. Considering that the ob- UnderthetypicalconditionsofPDRs(densityn∼0.5–107cm−3 served CO SLEDs are relatively flat up to J = 12 for some u pixels (Sect. 4.1), hinting at more CO emission at Ju ≥ 13, the 4 Thisestimateisbasedontheassumptionthatthereisnoadditional actual total CO luminosity is likely higher. To be specific, our warmcomponentemittingatJ ≥13. u A85,page7of25 A&A596,A85(2016) Fig.7. Topleft:CO(1–0)integratedintensityimageat45(cid:48)(cid:48) resolution.TheSpitzer24µmemissionatitsoriginalresolutionof6(cid:48)(cid:48) isoverlaidin redwithcontourlevelsrangingfrom10%to90%ofthepeak(2149MJysr−1)in10%steps.Topright:sameasthetopleftpanel,butforCO(6–5). Bottomleft:normalizedCO(1–0)integratedintensityasafunctionofangulardistancefromitspeakat(RA,Dec)=(05h39m37s,−69◦45(cid:48)43(cid:48)(cid:48)). Theindividualpixelvaluesareshownasthegraycirclesandthe(1/σ2)-weightedmeanvaluesareoverplottedastheredcircleswhenthereismore s thanonedatapointineachangulardistancebin.Bottomright:sameasthebottomleftpanel,butforCO(6–5). and temperature T ∼ 10–8000 K; e.g., Hollenbach&Tielens pixelvaluesasgraycircles,whileoverplotting(1/σ2)-weighted s 1997; Tielens 2005), the two [CI] lines therefore can be easily values as red circles when there is more than one data point in excited and thermalized. In N159W, the ratio of the 370 µm to eachangulardistancebin.Ingeneral,wefindthatintermediate-J 609µmlinesis∼1.5–2.3fortheregionswherebothlinesarede- andhigh-J transitionsaremorecompactthanlow-J transitions. tected,whichindicatesopticallythinemission(e.g.,Pinedaetal. Tobespecific,thewidthathalfmaximumis∼42(cid:48)(cid:48)–60(cid:48)(cid:48) forthe 2008; Okadaetal. 2015). As we do for the CO lines, we then low-J CO lines (J ≤ 5), while not resolved (<42(cid:48)(cid:48)) for the u estimate the total [CI] luminosity of L = (67.6±1.8) L by intermediate-J and high-J CO lines (J ≥ 6). Similar results CI (cid:12) u summing up the measured integrated intensities at 42(cid:48)(cid:48) resolu- werefoundintheFTSobservationsofGalacticPDRs,OrionBar tionforthepixelswithS/N > 5(Table1fortheluminosityof andNGC7023(Habartetal.2010;Köhleretal.2014).Wealso s eachtransition).Thiscorrespondsto∼9×10−5ofthetotalIRlu- findthatthe[CI]609µmand370µmtransitionsareascompact minosity.IncomparisonwithCO,wefindthatthe[CI]emission astheCOlineswith J ≥ 6.Note,however,thatourradialpro- u ismuchweaker.Tobespecific,thetotalCO-to-[CI]luminosity fileanalysisissomewhatlimitedduetotheincompletecoverage ratiovariesfrom∼5to∼18withamedianof∼9. oftheFTSmaps(e.g.,blankpixelsattheedge)andlarge-scale observationsarehencerequiredtostudythespatialdistribution oftheCOand[CI]emissionmoreaccurately. 3.2. SpatialdistributionoftheneutralgastracedbytheCO and[CI]emission 4. PhysicalpropertiesoftheCO-emittinggas Inthissection,weexaminethespatialdistributionoftheneutral gasprobedbytheCOand[CI]emissionon42(cid:48)(cid:48) scales(∼10pc 4.1. ObservedCOSLEDs at the LMC distance). First of all, we find that the CO and [CI] integrated intensities peak at comparable locations, (RA, WepresenttheobservedCOSLEDsfrom J = 1to13(J = 2 u u Dec) ∼ (05h39m40s, −69◦45(cid:48)30(cid:48)(cid:48)). These peaks are adjacent to notincluded)inFig.8.ToconstructtheCOSLEDonapixel-by- the peak of the Spitzer 24 µm emission (Fig. 7), which traces pixel basis, we use the integrated intensity images smoothed to thewarmdustheatedbyyoungstars.Toquantifythespatialdis- thecommonresolutionof42(cid:48)(cid:48)andapplyathresholdofS/N >5 s tribution of neutral gas, we derive a radial profile for each CO forlinedetection.OurCOSLEDimageclearlyshowsregional and [CI] transition and measure the radius at which the profile variations in the shape of the CO SLEDs, indicating different reaches half its maximum. As examples, CO(1–0) and CO(6– physical conditions of the CO-emitting gas. For example, the 5) radial profiles are presented in Fig. 7. We show individual locationofthepeakandtheslopebeyondthepeakaresensitive A85,page8of25 M.-Y.Leeetal.:RadiativeandmechanicalfeedbackintothemoleculargasintheLargeMagellanicCloud.I. Fig.9. High-Jslopeimageoverlaidwiththe24µmemissioncontours. NotethatthetwopixelswhoseCOSLEDsdonothaveclearpeaks(red inFig.8)aremaskedhere. Fig.8. COSLEDsforJ =1,...,13(J =2notincluded).Inthisimage, thepixelscorrespondtoutheindividuauldatapoints(30(cid:48)(cid:48) insize)inour CO SLEDs found for many Galactic and extragalactic sources FTS maps at 42(cid:48)(cid:48) resolution and the pair of numbers in the top right (e.g., Habartetal. 2010; vanderWerfetal. 2010; Köhleretal. cornerofeachpixelshowsalocationofthepixelrelativetothecenter 2014;Kamenetzkyetal.2014;Mashianetal.2015). oftheFTScoverage([0,0]is[RA,Dec]=[05h39m37s,−69◦46(cid:48)13(cid:48)(cid:48)]). ThecirclesrepresentdetectedCOtransitionsandthedownwardarrows showupperlimitsbasedon5σ.MostoftheobservedCOSLEDsshow 4.2. Non-LTEmodeling s peakat J ≥ 6(gray),whilesomepixelshavepeaksthatareuncertain u WeanalyzetheobservedCOSLEDsusingthenon-LTEradiative (red)oroccuratthetransitionslowerthan J = 6(green).Finally,the u transfercodeRADEX(vanderTaketal.2007).Tocomputethe best-fitRADEXmodelsdeterminedinSect.4.2areoverlaidinblue. intensitiesofatomicandmolecularlines,RADEXsolvesthera- diativetransferequationbasedontheescapeprobabilitymethod. to the density and temperature, while the CO column density Byassumingthatthespectrallinesareproducedinanisothermal determinesthelineintensitymagnitude.InN159W,mostofthe andhomogeneousmedium,thissimplemodelcanthenbeused observedCOSLEDspeakatJ ≥6(grayinFig.8;tenpixelsat toconstrainthephysicalconditionsofthemedium,e.g.,kinetic u J =6andonepixelat J =7),whilesomeshowpeaksthatare temperature,density,andcolumndensityofeachspecies. u u uncertainduetonon-detections(red;twopixels)oroccuratthe To model the intensity of each CO transition, we consider transitionslowerthanJu =6(green;onepixelatJu =5andtwo a grid of the following input parameters: kinetic temperature pixelsatJu =4). Tk = 10–103 K, H2 density n(H2) = 102–105 cm−3, CO col- It is interesting to notice that the CO SLEDs with peaks at umn density N(CO) = 1015–1020 cm−2, and beam filling factor Ju ≤5arealllocatedattheedgeofourFTSmaps,somedistance Ω = 10−3–1. These input parameters are sampled uniformly in awayfromtheactivestar-formingregions.Inaddition,theslope log space with 50 points, except for N(CO) where 100 points ofeachCOSLEDbeyonditspeakspatiallychanges.Toquantify areused.Inaddition,weusethecosmicmicrowavebackground howdifferenttheslopesare,wecomputethe“high-J slope”by radiation temperature of 2.73 K and the FWHM linewidth of ∆ICO,norm =[ICO(Jp+3)−ICO(Jp)]/ICO(Jp),whereICO(Jp)isthe 10kms−1 (basedonPinedaetal.2008;andMizunoetal.2010, integrated intensity of the peak transition Jp and ICO(Jp +3) is where CO transitions up to J = 7–6 were spectrally resolved theintegratedintensityofthe Jp+3transition(Fig.9).Bydef- for N159W). In our modeling, we compare the observed inte- inition, the high-J slope is always negative and a smaller value grated intensities (I ) with RADEX predictions scaled by the obs representsasteeperdecrease.TheJp+3transitionischosenhere beam filling factor (ΩImod) and find the best-fit model with the to calculate the high-J slope for all pixels except for those two minimumχ2whereχ2isdefinedas whosepeaksareuncertain.Wefindthatthehigh-Jslopechanges byafactorofthreeacrossN159W.Inparticular,thetwopixels (cid:88)13 (cid:34)I −(ΩI )(cid:35)2 correspondingtotheactivestar-formingregionsat(RA,Dec)∼ χ2 = i,obs i,mod · (1) (05h39m40s, −69◦46(cid:48)10(cid:48)(cid:48)) (traced by the Spitzer 24 µm emis- i=1 σi,obs sioninFig.9)havetheflattestCOSLEDswith∆I ∼−0.3 CO,norm while the pixels at the northwest edge of our FTS maps show Hereσ istheuncertaintyintheobservedintegratedintensity obs thesteepestdecreasewith∆I ∼−0.7.Asimilarapproach andthesummationisdonefortheCOtransitionsfromJ =1to CO,norm u was recently adopted in Rosenbergetal. (2015), where the pa- 13(J =2notincluded)withS/N >5.Westartwithfittingthe u s rameter α = [L (J = 11−10)+ L (J = 12−11)+ L (J = COlineswithasingletemperaturecomponent,whichissimplis- CO CO CO 13−12)]/[L (J = 5−4) + L (J = 6−5) + L (J = 7−6)] ticconsideringthatmultipleISMphasesarelikelymixedatour CO CO CO was used to categorize the CO SLEDs of 29 (ultra)luminous spatialresolutionof∼10pc.Nevertheless,usingonecomponent infrared galaxies ((U)LIRGs). Almost an order of magnitude wouldstillprovideaveragephysicalconditionsofthephasesin variation in the α parameter was found, confirming the diverse thebeam. A85,page9of25 A&A596,A85(2016) Fig.10. Histogramsof“good”parametersforthecentralpixelofourFTSmaps([0,0]inFig.8;[RA,Dec]=[05h39m37s,−69◦46(cid:48)13(cid:48)(cid:48)]).To derive these histograms, the threshold of χ2 ≤ minimum χ2 + 4.7 is applied to the calculated χ2 distribution. Along with the log value of the best-fitparameter,thestandarddeviationoftheχ2 distributionmeasuredinlogspaceareshowninblueinthetoprightcornerofeachplot.The correspondingbluelineofeachhistogramrepresentsthebest-fitparameter.Finally,thenumberinblackintheT plotistheratioofthenumber k of“good”modelstothetotalnumberofRADEXmodelsinourstudy.SeeSect.4.2fordetails. Wedeterminethebest-fitRADEXmodelsforindividualpix- region.Forexample,Ωvariesfrom0.02to0.5,butagainmostly els and show them with the observed CO SLEDs in Fig. 8. To around the median of 0.1 (Fig. 11). The estimated beam filling illustratehowtoestimatetheuncertaintiesinthebest-fitparam- factorof∼0.1suggeststhattheCOclumpsinN159Wareonav- eters,wethenshowthehistogramsof“good”parametersforthe erage∼9(cid:48)(cid:48)insize(∼2pcattheLMCdistance).Thisisconsistent central pixel of our FTS maps ([0,0] in Fig. 8) in Fig. 10. To with what high-resolution ALMA observations of 13CO(1–0), derivethesehistograms,weapplyathresholdofχ2 ≤minimum 13CO(2–1),and12CO(2–1)inN159Wfound(Fukuietal.2015): χ2 +4.7 to the calculated χ2 distribution: ∆χ2 = 4.7 is chosen thespatiallyresolvedCOstructuresareroughly∼10(cid:48)(cid:48)insize. for the 1σ confidence interval with four parameters (Tk, n(H2), Aninterestingtrendisthatthepixelswithhighkinetictem- N(CO),andΩ;Pressetal.1992).Inadditiontothehistograms peratures(∼500–754K)andbeamfillingfactors(∼0.1−0.2)co- of the four primary parameters, those of secondary parame- incidewiththedatapointswiththeflattestCOSLEDs(Fig.9), ters, thermal pressure P = nTk (cid:39) n(H2)Tk and beam-averaged essentiallytracingthemassivestar-formingregions.Ontheother CO column density (cid:104)N(CO)(cid:105) = ΩN(CO), are presented. We hand,theCOcolumndensitydistributionshowstheopposite:the calculate the upper and lower error bounds by measuring the peak(∼(0.6–1)×1018cm−2)insteadoccursatthesoutheastand standarddeviationofeach“good”parameterdistributioninlog northwest edges of our FTS coverage. We note, however, that space, while noting that the distributions of “good” parameters theprimaryparametersaredegenerateinourRADEXmodeling are not always symmetric around the best-fit values. Since the andhaverelativelylarge1σuncertainties(e.g.,Table2),limiting primary parameters are degenerate in our modeling (Tk with ourabilitytoexaminethespatialdistributionsoftheparameters n(H2)and N(CO)withΩ)5,theirproducts, Pand(cid:104)N(CO)(cid:105),are moreaccurately. betterconstrainedingeneral.Theimagesofthebest-fitparame- Astheprimaryparametersarenotindependentofeachother, tersarepresentedinFig.11andtheirrangesand1σuncertainties itisthereforetheirproducts(secondaryparameters)thatcanbe aresummarizedinTable2. better constrained and interpreted more straightforwardly. We findthatboththethermalpressureandbeam-averagedCOcol- umn density distributions are quite uniform with only a factor 4.3. Spatialdistributionsofthebest-fitparameters offourvariationsoverourwholecoverage.Theirmedianvalues Figure11showshowthepropertiesoftheCO-emittinggasvary are9.5×105Kcm−3and3.0×1016cm−2respectively. acrossN159W.Wesummarizeourfindingsasfollows. In summary, the excellent agreement between the RADEX Asfortheprimaryparameters,T andn(H )showquiteuni- models and our CO SLEDs (Fig. 8) suggests that the CO lines k 2 form distributions (only a factor of two variations around the upto J = 12–11observedon∼10pcscalesareonaveragepro- medianvaluesof429Kand2.2×103 cm−3),whileN(CO)and ducedbyasingletemperaturecomponent.Ourmodelingshows Ω change by a factor of ∼30 across the entire ∼40 pc × 40 pc that this component can be characterized by high thermal pres- suresof∼9.5×105Kcm−3andmoderatebeam-averagedCOcol- 5 Highertemperaturesandlowerdensitiescanproducethesameinten- umndensitiesof∼3.0×1016 cm−2 whosedistributionsareuni- sityaslowertemperaturesandhigherdensities.Thesamethingapplies formacrossthe∼40pc×40pcregion.Consideringthegoodfit toCOcolumndensitiesandbeamfillingfactors. withthesingletemperaturecomponent,wedonotattempttoadd A85,page10of25

Description:
2015), revealing the complex filamentary distributions of CO(2–1), 13CO(2–1), Spinoglio, L., Pereira-Santaella, M., Busquet, G., et al. 2012, ApJ
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.