ebook img

I. Determination of chemical reaction rate constants by numerical nonlinear analysis: differential methods PDF

0.32 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview I. Determination of chemical reaction rate constants by numerical nonlinear analysis: differential methods

I. Determination of chemical reaction rate 1 1 constants by numerical nonlinear analysis: 0 2 differential methods n a J ChristopherG. Jesudason∗ 6 2 DepartmentofChemistryandCenterforTheoreticalandComputationalPhysics UniversityofMalaya ] h 50603KualaLumpur,Malaysia p - January 27,2011 n e g . s c Abstract i s The primary emphasis of this work on kinetics is to illustrate the a posteri- y h oriapproachtoapplications,wherefocusondataleadstonoveloutcomes,rather p thantheaprioritendenciesofappliedanalysiswhichimposesconstructsonthe [ natureoftheobservable. Thesecondaryintentionisthedevelopmentofappropri- atemethodsconsonantwithexperimentaldefinitions. Chemicalkineticequations 1 werelargelydevelopedwiththeassumptionofrateconstantinvarianceandinpar- v ticularrateconstantdeterminationusuallyrequiredknowledge oftheinitialcon- 0 centrations. Thesemethodscould notdeterminetheinstantaneous rateconstant. 6 0 Previousworkbasedonprecisesimulationdata[J.Math. Chem43(2008)976– 5 1023]ofabidirectionalchemicalreactionsysteminequilibriumconcludedthatthe . rateconstantsisafunctionofspeciesconcentrationthroughthedefinedanddeter- 1 minedreactivitycoefficientsforatleastelementaryreactions. Inhomogeneitiesin 0 thereactionmediummightalsoleadtocross-couplingofforcesandfluxes,leading 1 1 toconcentration dependencies. Byfocusing ongradients, itispossibletodeter- : mineboththeaverageandinstantaneousrateconstantsthatcanmonitorchanges v intherateconstantwithconcentrationchangesassuggestedbythistheory. Here, i X methodsaredevelopedanddiscussedutilizingnonlinearanalysiswhichdoesnot require exact knowledge of initial concentrations. These methods are compared r a withthosederivedfromstandardmethodologyforknownchemicalreactionsstud- ied by eminent kineticistsand in one case withareaction whose initial reactant concentrationwasnotwelldetermined. Thesegradientmethodsareshowntobe consistentwiththeonesfromstandardmethodsandcouldreadilyserveasalterna- tivesforstudieswheretherearelimitsorunknownsintheinitialconditions,such asintheburgeoningfieldsofastrophysicsandastrochemistry,forensics,archeol- ogyandbiology.Allfourreactionsstudiedexhibitedsemisinusoidal-likechange withreactantconcentrationchangewhichstandardmethodscannotdetect,which ∗Emails:[email protected][email protected] 1 seemstoconstitutetheobservationofaneweffectthatisnotpredictedbycurrent formulations,wherethepossibilitythattheobservationsareduetoartifactsfrom instrumentalerrorsortheoptimizationmethodisreasonedasunlikelysincetheex- perimentswereconductedbydifferentgroupsatverydifferenttimeswithdifferent classesofreactions. Twobroadreasonsaregivenforthisobservation,andexper- iments aresuggested that can discriminatebetween these twoeffects. Although firstandsecondorderreactionswereinvestigatedhereusingdatafromprominent experimentalists, themethodappliestoarbitraryfractionalordersbypolynomial expansion of the ratedecay curves whereclosed form integratedexpressions do notexist.Integralmethodsfortheabovewillbeinvestigatednext. Keywords: numericalnonlinearanalysis; orthogonalpolynomialexpansion; chemical reactionratelaw; apriori; aposteriori 1 INTRODUCTION AND METHODS Current trends in mathematical applications almost always indicate the creation of mathematicalstructuresthatarethensupposedandconsideredtomirrorphysicalreal- ityandexperimentaloutcomes.Lesscommonareapplicationsthatanalyzeexperimen- taldatausingascloselyaspossibletheoperationaldefinitionofvariablestoelucidate the validity or otherwise of theories. The main thrust of this sequel is to illustrate researchthatputspriorityontheexperimentaldataasameanstoconstructingorsug- gestingtheoreticalandmathematicalstructures.Thedatafromhighlyempiricalfieldof chemicalkineticsisusedwithinthescopeofthedefinitionofthemeasuredvariablesto discover/uncoverneweffects;itissuggestedherebasedontheoutcomeoftheanalysis thatmathematicalanalysisofthedatainotherfieldswithintheoperationaldefinitionof theempiricalvariablescanelucidatenewphenomenaandsuggesthowappropriateand consistent theory can be constructed a posteriori, rather than the a priori tendencies of many applied mathematicians. One aspect of this culture is the cult of prediction andofpredictabilityinthenaturalscienceswhereresourcesareexpendedinperform- ing experimentsto verifyand substantiate theories. The methodsdevelopedhere are ofsecondaryimportancecomparedtotheaposteriorianalysisofthedataanditsout- comes;thesemethodsrefertovariableswhichcomefromtheexperimentaldefinition. Foranelementaryreaction A +ν A ...ν A Products (1) 1 2 2 nr nr → wedefinetherateconstantkasthefactorintheequation d[A ] 1 =[A˙]= k[Q] (2) dt − where nr [Q]= [A ]νi =l (t)=l (t) i A1A2...Anr Q iY=1 with l (t) = [R](t) in general and l (t) = [A] (t) in particular, with the notation R A 1 l (t)l (t)...l (t) = l (t). Thesquarebracketsdenotetheconcentrationofthe A1 A2 Anr Q 2 species, and t is the time parameter. For the above, the order O, which need not be integerisdefinedasO = nr ν . Clearly,fortheabove i=1 i P d[A ] k = 1 /Q. (3) −(cid:26) dt (cid:27) Wedeterminek heredirectlybyvariousmethodsofcomputingaverageandinstanta- neousgradientsforequation(2).Intraditionalmethods,theintegratedratelawexpres- sion isknownforonlya handfulof integerO valuesof(2) which also requireinitial conditions;nosuchrestrictionsapplytothecurrentnumericaltechnique.Anotherclass ofmethodisthroughaleastsquaresoptimizationofthefunctionR(k)forndatapoints definedas n 2 dl (t ) A i R(k)= kl (t )) . (4) Q i (cid:18) dt − (cid:19) Xi=1 Then, n dl (t ) ′ A i R(k)=0 kl (t ) l (t )=0 Q i Q i ⇒ (cid:18) dt − (cid:19) Xi=1 implies n dlA(ti).l (t ) k = i=1 dt Q i . (5) −P n l2(t ) i=1 Q i P Eq.(5)doesnotrequireiterativemethodssuchasNewton-Raphson’s(NR)todetermine the rate constant. A variant of the R(k) optimization above is found in Sec(2.0.5); the reason being that we optimize over an intergratedexpression rather than directly the rate equation (2) such as (18) for the first order rate constant k and 19 for the 1 second order constant k . All variants of the above methods will be discussed in 2 sequence in what follows. Most kinetic determinations use logarithmic plots with known initial concentrations, although there have been attempts at integral methods [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, and refs. therein] that dispense with the initial concentration. (There may be ambiguitiesin e.g. [1] concerningchoice of indepen- dentvariablesthat will be discussed elsewhere). These standardmethodsall assume constancyoftherateconstantk,andthereforehavenotinspiredmethodologythatcan detectthechangestotherateconstantthat,accordingtothedetailedresultsofref.[13] shedsimportantinformationontheactivationenergyprofilechangesduetotheforce fields acting on the reacting species. There are conceivably many other reasons for variationwithtimeoftherateconstants;theyincludecouplingofinhomogenoustem- peraturefield gradientswith chemicalspecies fluxes, leading to physicalvariable in- homogeneitiesinthereactioncellthatmodifiestherateofreactionwithtime. Thisis discussedafterthedataispresentedinwhatfollows. There have been detailed and specialized reports and treatises of computational techniquesoverthemanydecadesbutthesehavebeensparseandfarbetween.Wiberg has[14, p.757]describedvariousmoreadvancedseriesexpansiontechniquesincon- junctionwith least squaresanalysistoderivekineticdata. Hisuse of numericalinte- grationis confinedto solvingby Runge-Kuttaintegrationa set of coupledequations, suchasfeatureinanenzyme-catalysedreaction[14,p.771].Wiberginturndrawsupon 3 the collectiveefforts collated by D. F. Detar [15, 16]. It seems that Detar’s collation anticipatestosomedegreemanyofthedevelopmentscitedaboveinthiswork’sbibliog- raphy. AfirstordertreatmentofachemicalreactionisgivenintheprogramLSKIN1 [15, p.126] requires data and time intervals that are conformable to the Roseveare- Guggenheimtimeintervalrequirement.LSKIN2[16,p.3]solvesforrateconstantand initialconcentrationsofasecondorderreactionbasedonaseriesexpansionofthein- tegratedrate law expression. Here, the curvaturewould introduce"errors" if a linear expansionwereused. Forboththesemethods,theconstancyoftherateconstantkisa basicassumption,whichisnotthecasehere. Nonlinearanalysis(NLA),willbeattemptedhereinpreliminaryform,inorderto compute both the instantaneousand average rate constants. We analyze 2 first order reactionsandonesecondorderoneusingdatafromprominentkineticists. Inaddition, weselectonefirstorderreactionwhoseinitialconcentrationindexisambiguousutiliz- ingtheothersasareferencetogaugethelikelihoodofourresultbasedonNLA;ifour analysisconcurswiththe3reactionsfromtheliterature, thenonemightbeconfident that the NLA analysis of the ambiguous reaction is reasonably accurate. Important experimentsinscienceareconductedunderuncontrolledconditions,suchasinastro- chemicalreactionratedeterminationsandphotochemicalemissionspectraintheMars andTitanatmospheresovertheseveraldecades[17,18,19].Asimilarsituationobtains inforensicscienceandarcheologyandinbiologicalphysiologicalratedeterminations. The basic methods presented here caters for both controlled and uncontrolled initial conditions. The3firstorderreactions(i)-(iii)andsecondorderreaction(iv)studiedareitem- izedbelow: (i) the tert butyl chloride hydrolysis reaction in ethanol solvent (80%v/v) at 25oC derivedfromtheYearIIIteachinglaboratoryofthisUniversity(UM)wherethe initial concentration,althoughdetermined,is ambiguous. Because oftime con- straints, the inaccurate λ∞ = 2050µScm−1 for (i) was determinedby heating the reaction vessel at the end of the monitoringto 60oC until there was no ap- parent change in the conductivitywhen equilibratedback at 25oC. Reaction (i) involved0.3mLofthereactantwhichwasdissolvedin50mLofethanolinitially. Thereactionwasconductedat25oCandmonitoredovertime(minutes)bymea- suringconductivity(µScm−1)duetothereleaseofH+ andCl− ionsasshown belowin(6), C H Cl+H O ka C H OH+H++Cl−. (6) 4 9 2 4 9 −→ (ii) themethanolysisofionizedphenylsalicylatederivedfromtheliterature[20,Ta- ble 7.1,p.381]with presumablyaccuratevaluesofboththe initialconcentration andforalldatasetsofthekineticrun. Reaction(ii)maybewritten PS−+CH OH kb MS−+PhOH (7) 3 −→ wherefortheratelawispseudofirst-orderexpressedas − − rate=k [PS] =k [CH OH][PS ]. b c 3 4 Themethanolconcentrationisinexcessandiseffectivelyconstantforthereac- tion runs [20, p.407]. The data for this reaction is given in detail in [20, Table 7.1], conducted at 30oC where several ionic species are present in the reaction solutionfromKOH,KCl,andH Oelectrolytes. 2 (iii) the primarily SN1 substitution reaction [25, Table IX,p.2071] of tertiary butyl bromide(ButBr) with dilute ethylalcoholicsodiumethoxidein ethanolsolvent where there concurrently occurs an approximately 20% contribution of an E1 eliminationreaction.Reaction(iii)maybewritten SN1 CH CBr Products (8) 3 −−−−−→ wherethesolventwasEtOHwithinitialsodiumethoxideconcentration[NaOEt]= 0.02386Nat25oC.Theproductsconsistedofapproximately81%substitutedter- tiarybutylethoxideand19%olefinicmoleculesduetoE1elimination.Hencethe rate constanthere refers to a composite reaction (details in [23, 2064] and [25, p.2070]. (iv) thesecondorderE2eliminationreaction[23,p.2059-2060andTableVII,p.2064] withreactantsisopropylbromide(PriBr)andsodiumethoxide(NaOEt).Reaction (iv)involvingisopropylbromidePriBr (CH )CHBr(CH )maybewritten 3 3 ≡ E2 (CH )CHBr(CH ) + OEt− CH CHCH +Br− +HOEt (9) 3 3 2 3 −−−−−→ wheretheisopropylbromidereactswiththeOEt− ioninEtOHsolventat25oC toyield80.3%oftheolefinicproductwithsomeSN2substitutionwiththe(OEt) functionalgroup[23, Table III,p.2061]accordingto the kineticists. Furtherde- tails and data appear [23, Table VII,p.2064]. It should be mentioned that the E2 reactionwasinferredto besecondorderfrompriorexperimentalconsidera- tionssincethe[NaOEt]concentrationreductionfromthedataexactlycoincides withthereductionofPriBrandwasnotindependentlydetermined.Thisperhaps somewhatexperimentallyquestionabletechniquemaywellbethereasonforthe instantaneousrateconstantascomputedheretobesomewhatnon-smooth,aswill bediscussedlater(seeFig.(21)forthegraph). “Units” in the figuresandtextpertainto the appropriatereactionvariabledimen- sion, for instance either the absorbancefor (i) or the conductivity(µScm−1) for (ii) below. Eitherbecauseofevaporationorthetemperaturesnotequilibratingafterheat- ing, the measured λ∞, it would be inferred that for (i) the measured value is larger thantheactualonedeterminedfromtheanalysis. Reaction(ii)isveryrapidcompared to (i) and the experimental data plots show high nonlinearity. We denote by λ the measurementparameterwhichistheconductivityµScm−1 orabsorbanceA[20,eqn 7.24-7.26]forreactions(i)and(ii)respectively;λalsoreferstotheconcentration[X] ofspecies X for reactions(iii) and (iv). The moreaccuratelydeterminedλ∞ = A∞ for(ii)[20,Table7.1,p.381]wasatapproximately0.897. Analysisof(ii)givevalues of A∞ = λ∞ very close to the experimentalones that suggests that our determina- tionforreaction(i)λ∞ iscorrect. Theexperimentaldataandnumberofreadingsfor 5 thedeterminationofrateconstantsisalwaysrelatedtothemethodusedandtheorder of accuracy required in the study; for Khan [20, Table 7.1,first A column], (reaction (ii)), 14normalreadingsover360seconds(s)sufficedforKhan’spurposes,whereas for the practical class (reaction (i)), 36 readings over 55 minutes (mins) were taken. Themeager14readingsof(ii)coveredamajorportionofthenonlinearregionofthe reaction, whereas for (i) the many readings were confined to the near-linear regime. Linear proportionalityis assumed between λ and the extent of reaction x, where the firstorderlaw(cbeingtheinstantaneousconcentration,kthegeneralrateconstantand atheinitialconcentration)is ddct = −kc = −k(a−x);withλ∞ = αa,λt = αxand λ(0)=λ =αx ,integrationyieldsforassumedconstantk 0 0 ln (λ∞−λ0) =kt (10) (λ∞ λ(t)) − Eqn.(10)determineskifλ0 andλ∞areknown. Theanalysisforthelatterreactions(ii)-(iv)wouldprovideareferenceandindica- tionofthe predictedvaluein(i)fortheinitialconcentration,apartfromcheckingfor overallconsistencyof the methodologyin generalsituationsespecially whenthere is doubtconcerningthevalueoftheinitialconcentration. Themethodspresentedhereappliestoanyorderprovidedtheexpressionscan be expandedas ann-orderpolynomialof the concentrationvariableagainstthe time in- dependentvariable. Togetsmoothcurvesthatarestableonehadtomodifyandusea propercurve-interpolationtechniquethatis stable whichdoesnotformsuddenkinks orpointsofinflexionandthisfollowsnext. 1.1 Orthogonalpolynomialstabilization ItwasdiscoveredthattheusualleastsquarespolynomialmethodusingGaussianelim- ination [21, Sec.6.2.4,p.318]to derive the coefficients of the polynomial was highly unstablefornpoly > 4,whichisaknowncondition[21,p.318,Sec6.2.4]. Forhigher orders, there is in addition the tendency to form kinks and loops in an interpolated curve for values between two known intervals. Other methods described in special- izedtreatises[22,Ch.5,Sec.5.7-5.13],evenifrobustandstable,suchastheChebyshev approximation required values of the proposed experimental curve at predetermined definite points in time, which is outside the control of one using predetermineddata andsoforthiswork,theleastsquareapproximationwasstabilizedbyorthogonalpoly- nomials[21, Sec.6.3]modifiedfordeterminationof differentials. Itis hopedthatthe method can also be extended to integrals in future investigations. The usual method defines the nth order polynomial p (t) which is then expressed as a sum of square n termsoverthedomainofmeasurementtoyieldQin(11). p (t) = n h tj n j=0 j P (11) Q(f,p ) = N [f p (t )]2 n i=1 i− n i P The Q function is minimized over the polynomial coefficient space. In the orthog- onal method adopted here, we express our polynomial expression p (t) linearly in m 6 coefficientsa ofϕ functionsthatareorthogonalwithrespecttoaninnerproductdef- j j inition. Forarbitraryfunctionsf,g,theinnerproduct(f,g)isdefinedbelow,together withpropertiesoftheϕ orthogonalpolynomials: j N (f,g) = f(t ).g(t ) k=1 k k (12) P (ϕ ,ϕ )=0 (i=j) and (ϕ ,ϕ )=0. i j i i 6 6 ϕi(t) = (t bi)ϕi−1(t) ciϕi−2(t)(i 1), − − ≥ ϕ (t) = 1, and ϕ =0 for j <1, 0 j (13) bi = (tϕi−1,ϕi−1)/(ϕi−1,ϕi−1) (i 1),bi =0(i<1), ≥ ci = (tϕi−1,ϕi−2)/(ϕi−2,ϕi−2) (i 2),andci =0 (i<2). ≥ Wedefinethemth orderpolynomialandassociateda coefficientsasfollows: j m p (t) = a ϕ (t) m j=0 j j P (14) a = (f,ϕ )/(ϕ ,ϕ ),(j =0,1,...m) j j j j Therecursivedefinitionsforthefirstandsecondderivativesaregivenrespectively as: ′ ′ ′ ϕi(t) = ϕi−1(t)(t−bi)+ϕi−1(t)−ciϕi−2(t)(i≥1) (15) ′′ ′′ ′ ′′ ϕ (t) = ϕ (t)(t b )+2ϕ (t) c ϕ (t)(i 2) i i−1 − i i−1 − i i−2 ≥ HerethecodesweredevelopedinC/C++whichprovidesforrecursivefunctionswhich we exploitedforthe evaluationofalltheterms. The experimentaldatawere fittedto anmth orderexpressionλ (t)definedbelow m m m λ (t)= h tj =p (t)= a ϕ (t) (16) m j m j j Xj=0 Xj=0 The coefficients h are all computed recursively, and the derivatives determined i from(16)orfrom(14)and(15). Onceh ora aredetermined,thenthegradienttothe j j curveλ (t)iscomputedas m m λ′ (t)= jh tj−1. (17) m j Xj=0 The l (t) function of (2) is expanded similarly as for λ (t) for order m. The or- Q m thogonalpolynomialmethodisstableandthemeansquareerrordecreaseswithhigher polynomialorderingeneralmonotonically(wheren isusedtodenotethe integeror- der),butthedifferentialsarenotsostable,becauseofthecontributionofhigherorder coefficients in the differentialexpression as will be shown. From the form of the of theequationthatwillbedeveloped,therateconstantisdeterminedasthegradientof astraight-linegraphin theappropriatesegmentofthegraph. However,thecurvature 7 oftheplotwillincreasewithincreasingn,givingapoorervalueofk,whereashigher values of n would better fit the λvst curve. Hence inspection of the plots is neces- sarytodecideontheappropriatenvalue,wherewechoosethelowestnvalueforthe mostlineargraphoftheexpressionunderconsiderationthatalsoprovidesagoodλ(t) fit over a suitable time range over which the k rate constants apply. The orthogonal polynomialstabilizationmethodprovidesgoodλfitswithincreasingn,butnotgradi- ents,sothattheonsetofsuddenchangestothegradientwhichonphysicalgroundsis unreasonablecanbeusedasanindicationaswhichisthebestcurvetoselect. Thereis inpracticelittleambiguityinselectingtheappropriatepolynomials,aswillbedemon- strated. Reactions (i) and (ii) both gauge initial concentrationsin terms of the A∞ ( λ∞)orfinalreadingofaphysicalfactorproportionaltoconcentrationandthestructure oftheanalysisisthesameandwillthereforebediscussedsimultaneously,followedby reactions (iii) to (iv) , where concentrationsare measured directly during the course of the reaction, which will be discussed together because the form of the boundary conditionsanddataareofthesameclass. 2 ANALYSIS OF REACTIONS (I) and (II) 200 150 1 − m S c100 expt. curve µ n=2 λ (t) / nn==35 50 n=6 n=10 n=16 0 0 10 20 30 40 50 60 Time/mins Figure1: Plotof(i)usingorthogonalpolynomialsforvariousordersn. Thetheleast squaresdeviationgoesdowndramaticallywith increasingn, whichwasfoundnotto bethecasewiththenormalnon-orthogonalpolynomialmethod. Figure (1) are plots for the differentpolynomialorders n for reaction (i). It will benoticedthathighernvaluesingeneralleadstobetterfitsvisually;thenormalleast squares method leads to severe kinks and loop formation for n 4 which is not ∼ ≥ evidenthere. The reaction (ii) data coversa far greater domain with respect to half- lifetimeswithonlyabout14points(whichisapoordatasetwithrespecttoourmethods but which still gives quantitatively accurate values); because of the relatively more rapidcurvaturechanges,wewouldexpectverydifferentgradientbehaviorascompared to(i)withitsstrongerlinearity. 8 Thecorrespondingplotsforreaction(ii)areinFig. (2). 1 0.9 Expt. curve (ii) 0.8 0.7 A (t) 0.6 0.5 0.4 0 100 200 300 400 Time /s Figure2: ExperimentalpointsomittingpointatA∞ forreaction(ii)attime= 2135s. Thecurveisrathernon-linear. Inviewofthenonlinearity,wechosealimitedregimetocurvefitforpolynomial ordern = 3,4,5inFig.(2)andthegradientwascomputedforthen = 5polynomial to determine the rate constantsas it was the only order that gave a smooth curve for the first 12 consecutivepointsin the range; the otherordersalso gaveconsistentand almostequalgradientsexceptattheextremeendpointsoftherangeplottedasdepicted forexampleinFigs. (6,8,12). 1 n=3 0.9 n=4 n=5 0.8 Expt. (ii) 0.7 A (t) 0.6 0.5 0.4 0 50 100 150 200 Time /s Figure3: Experimentalpointscurvefittedwithpolynomialsofordern = 3,4,5. The fitforthisrangeisexcellent,despitethenonlinearnatureofthecurve Unlikereaction(ii),theλ∞ forreaction(i)wasambiguous. Theplotof(10)was madeforthesameexperimentalvalueswithdifferentλ∞’s,bothhigherandlowerthan thesupposedexperimentalvalueforthisreaction.TheplotsinFig.(4)showsincreasing 9 0.4 0.2 0 λ(t)) −0.2 λλ−)/(−∞∞0−0.4 kkk210===131...167747xxx111000−−−333 λλ∞∞((01))21005500 λ−ln( −0.6 λ∞(2)3050 −0.8 −1 −1.2 0 10 20 30 40 50 60 Time /mins Figure 4: Integrated equation(10) plot with λ∞ from experiment (0) and from two differentarbitrary values(1,2) for λ∞, which yields two differentvalues for the rate constantduetogradientchange. ka fordecreasingλ∞;thechoiceλ∞ = 1050leadstoavalueofka closetotheNLA valuesforthedifferentmethodsdiscussedwhichdoesnotrequireλ∞,butisalsoable to determinethis value by extrapolation. The rate constantfromNLA is higherthan thatdeterminedfromexperiment,implyingalowerλ∞ valuewhichisconsonantwith evaporation of solvent and/or the non-equilibrationof temperature prior to measure- menttodetermineλ∞. HenceelementaryNLAallowsonetodeducetheaccuracyof theactualexperimentalmethodologyinthisexample.Exceptforonesection,weshall applyNLAbasedonconstantkassumption. WealsoquotesomevaluesofKhan’sre- sults[20,Table7.1]inTable(1),wheresomecommentisrequired.TheAabsorbance ismonotonicallyincreasingandathighertime(t)values(see[20, Table7.1])theex- perimentalA valueexceedsthe A∞ thatis determinedbythe processof minimizing d2i. Hencetheminimizationof d2i withrespecttoA∞ istakenasaprotocolfor dPeterminingthe bestk valueevenPifit contradictsexperimentalobservation. Further, thisprotocolishighlysensitivetoA;achangeof10−3leadstoanapproximatelyten- foldchangein k. On the other hand, if A∞ determinedfrom experimentas 0.897is accepted,thenthencomputedrateconstantforthisvalueisk = 2.69 10−3s−1 im- plyingthattheuncertaintyinkisoftheorderof 14 10−3. Hencew×ecanconclude ± × thattheKhanmethodisaprotocolthatacceptsascorrectthekvaluethatisdetermined bytheminimizationofA∞ foracertainA∞ range( 0.8980 .8805),whichagain ≈ − referstoanunspecifiedprotocolastothechoiceoftherange. Thegeneral1stand2ndorderequations Westatethestandardintegratedforms below as a reference that requires specification of initial concentrations in order to contrastthemtothemethodsdevelopedhere. 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.