I. Determination of chemical reaction rate 1 1 constants by numerical nonlinear analysis: 0 2 differential methods n a J ChristopherG. Jesudason∗ 6 2 DepartmentofChemistryandCenterforTheoreticalandComputationalPhysics UniversityofMalaya ] h 50603KualaLumpur,Malaysia p - January 27,2011 n e g . s c Abstract i s The primary emphasis of this work on kinetics is to illustrate the a posteri- y h oriapproachtoapplications,wherefocusondataleadstonoveloutcomes,rather p thantheaprioritendenciesofappliedanalysiswhichimposesconstructsonthe [ natureoftheobservable. Thesecondaryintentionisthedevelopmentofappropri- atemethodsconsonantwithexperimentaldefinitions. Chemicalkineticequations 1 werelargelydevelopedwiththeassumptionofrateconstantinvarianceandinpar- v ticularrateconstantdeterminationusuallyrequiredknowledge oftheinitialcon- 0 centrations. Thesemethodscould notdeterminetheinstantaneous rateconstant. 6 0 Previousworkbasedonprecisesimulationdata[J.Math. Chem43(2008)976– 5 1023]ofabidirectionalchemicalreactionsysteminequilibriumconcludedthatthe . rateconstantsisafunctionofspeciesconcentrationthroughthedefinedanddeter- 1 minedreactivitycoefficientsforatleastelementaryreactions. Inhomogeneitiesin 0 thereactionmediummightalsoleadtocross-couplingofforcesandfluxes,leading 1 1 toconcentration dependencies. Byfocusing ongradients, itispossibletodeter- : mineboththeaverageandinstantaneousrateconstantsthatcanmonitorchanges v intherateconstantwithconcentrationchangesassuggestedbythistheory. Here, i X methodsaredevelopedanddiscussedutilizingnonlinearanalysiswhichdoesnot require exact knowledge of initial concentrations. These methods are compared r a withthosederivedfromstandardmethodologyforknownchemicalreactionsstud- ied by eminent kineticistsand in one case withareaction whose initial reactant concentrationwasnotwelldetermined. Thesegradientmethodsareshowntobe consistentwiththeonesfromstandardmethodsandcouldreadilyserveasalterna- tivesforstudieswheretherearelimitsorunknownsintheinitialconditions,such asintheburgeoningfieldsofastrophysicsandastrochemistry,forensics,archeol- ogyandbiology.Allfourreactionsstudiedexhibitedsemisinusoidal-likechange withreactantconcentrationchangewhichstandardmethodscannotdetect,which ∗Emails:[email protected][email protected] 1 seemstoconstitutetheobservationofaneweffectthatisnotpredictedbycurrent formulations,wherethepossibilitythattheobservationsareduetoartifactsfrom instrumentalerrorsortheoptimizationmethodisreasonedasunlikelysincetheex- perimentswereconductedbydifferentgroupsatverydifferenttimeswithdifferent classesofreactions. Twobroadreasonsaregivenforthisobservation,andexper- iments aresuggested that can discriminatebetween these twoeffects. Although firstandsecondorderreactionswereinvestigatedhereusingdatafromprominent experimentalists, themethodappliestoarbitraryfractionalordersbypolynomial expansion of the ratedecay curves whereclosed form integratedexpressions do notexist.Integralmethodsfortheabovewillbeinvestigatednext. Keywords: numericalnonlinearanalysis; orthogonalpolynomialexpansion; chemical reactionratelaw; apriori; aposteriori 1 INTRODUCTION AND METHODS Current trends in mathematical applications almost always indicate the creation of mathematicalstructuresthatarethensupposedandconsideredtomirrorphysicalreal- ityandexperimentaloutcomes.Lesscommonareapplicationsthatanalyzeexperimen- taldatausingascloselyaspossibletheoperationaldefinitionofvariablestoelucidate the validity or otherwise of theories. The main thrust of this sequel is to illustrate researchthatputspriorityontheexperimentaldataasameanstoconstructingorsug- gestingtheoreticalandmathematicalstructures.Thedatafromhighlyempiricalfieldof chemicalkineticsisusedwithinthescopeofthedefinitionofthemeasuredvariablesto discover/uncoverneweffects;itissuggestedherebasedontheoutcomeoftheanalysis thatmathematicalanalysisofthedatainotherfieldswithintheoperationaldefinitionof theempiricalvariablescanelucidatenewphenomenaandsuggesthowappropriateand consistent theory can be constructed a posteriori, rather than the a priori tendencies of many applied mathematicians. One aspect of this culture is the cult of prediction andofpredictabilityinthenaturalscienceswhereresourcesareexpendedinperform- ing experimentsto verifyand substantiate theories. The methodsdevelopedhere are ofsecondaryimportancecomparedtotheaposteriorianalysisofthedataanditsout- comes;thesemethodsrefertovariableswhichcomefromtheexperimentaldefinition. Foranelementaryreaction A +ν A ...ν A Products (1) 1 2 2 nr nr → wedefinetherateconstantkasthefactorintheequation d[A ] 1 =[A˙]= k[Q] (2) dt − where nr [Q]= [A ]νi =l (t)=l (t) i A1A2...Anr Q iY=1 with l (t) = [R](t) in general and l (t) = [A] (t) in particular, with the notation R A 1 l (t)l (t)...l (t) = l (t). Thesquarebracketsdenotetheconcentrationofthe A1 A2 Anr Q 2 species, and t is the time parameter. For the above, the order O, which need not be integerisdefinedasO = nr ν . Clearly,fortheabove i=1 i P d[A ] k = 1 /Q. (3) −(cid:26) dt (cid:27) Wedeterminek heredirectlybyvariousmethodsofcomputingaverageandinstanta- neousgradientsforequation(2).Intraditionalmethods,theintegratedratelawexpres- sion isknownforonlya handfulof integerO valuesof(2) which also requireinitial conditions;nosuchrestrictionsapplytothecurrentnumericaltechnique.Anotherclass ofmethodisthroughaleastsquaresoptimizationofthefunctionR(k)forndatapoints definedas n 2 dl (t ) A i R(k)= kl (t )) . (4) Q i (cid:18) dt − (cid:19) Xi=1 Then, n dl (t ) ′ A i R(k)=0 kl (t ) l (t )=0 Q i Q i ⇒ (cid:18) dt − (cid:19) Xi=1 implies n dlA(ti).l (t ) k = i=1 dt Q i . (5) −P n l2(t ) i=1 Q i P Eq.(5)doesnotrequireiterativemethodssuchasNewton-Raphson’s(NR)todetermine the rate constant. A variant of the R(k) optimization above is found in Sec(2.0.5); the reason being that we optimize over an intergratedexpression rather than directly the rate equation (2) such as (18) for the first order rate constant k and 19 for the 1 second order constant k . All variants of the above methods will be discussed in 2 sequence in what follows. Most kinetic determinations use logarithmic plots with known initial concentrations, although there have been attempts at integral methods [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, and refs. therein] that dispense with the initial concentration. (There may be ambiguitiesin e.g. [1] concerningchoice of indepen- dentvariablesthat will be discussed elsewhere). These standardmethodsall assume constancyoftherateconstantk,andthereforehavenotinspiredmethodologythatcan detectthechangestotherateconstantthat,accordingtothedetailedresultsofref.[13] shedsimportantinformationontheactivationenergyprofilechangesduetotheforce fields acting on the reacting species. There are conceivably many other reasons for variationwithtimeoftherateconstants;theyincludecouplingofinhomogenoustem- peraturefield gradientswith chemicalspecies fluxes, leading to physicalvariable in- homogeneitiesinthereactioncellthatmodifiestherateofreactionwithtime. Thisis discussedafterthedataispresentedinwhatfollows. There have been detailed and specialized reports and treatises of computational techniquesoverthemanydecadesbutthesehavebeensparseandfarbetween.Wiberg has[14, p.757]describedvariousmoreadvancedseriesexpansiontechniquesincon- junctionwith least squaresanalysistoderivekineticdata. Hisuse of numericalinte- grationis confinedto solvingby Runge-Kuttaintegrationa set of coupledequations, suchasfeatureinanenzyme-catalysedreaction[14,p.771].Wiberginturndrawsupon 3 the collectiveefforts collated by D. F. Detar [15, 16]. It seems that Detar’s collation anticipatestosomedegreemanyofthedevelopmentscitedaboveinthiswork’sbibliog- raphy. AfirstordertreatmentofachemicalreactionisgivenintheprogramLSKIN1 [15, p.126] requires data and time intervals that are conformable to the Roseveare- Guggenheimtimeintervalrequirement.LSKIN2[16,p.3]solvesforrateconstantand initialconcentrationsofasecondorderreactionbasedonaseriesexpansionofthein- tegratedrate law expression. Here, the curvaturewould introduce"errors" if a linear expansionwereused. Forboththesemethods,theconstancyoftherateconstantkisa basicassumption,whichisnotthecasehere. Nonlinearanalysis(NLA),willbeattemptedhereinpreliminaryform,inorderto compute both the instantaneousand average rate constants. We analyze 2 first order reactionsandonesecondorderoneusingdatafromprominentkineticists. Inaddition, weselectonefirstorderreactionwhoseinitialconcentrationindexisambiguousutiliz- ingtheothersasareferencetogaugethelikelihoodofourresultbasedonNLA;ifour analysisconcurswiththe3reactionsfromtheliterature, thenonemightbeconfident that the NLA analysis of the ambiguous reaction is reasonably accurate. Important experimentsinscienceareconductedunderuncontrolledconditions,suchasinastro- chemicalreactionratedeterminationsandphotochemicalemissionspectraintheMars andTitanatmospheresovertheseveraldecades[17,18,19].Asimilarsituationobtains inforensicscienceandarcheologyandinbiologicalphysiologicalratedeterminations. The basic methods presented here caters for both controlled and uncontrolled initial conditions. The3firstorderreactions(i)-(iii)andsecondorderreaction(iv)studiedareitem- izedbelow: (i) the tert butyl chloride hydrolysis reaction in ethanol solvent (80%v/v) at 25oC derivedfromtheYearIIIteachinglaboratoryofthisUniversity(UM)wherethe initial concentration,althoughdetermined,is ambiguous. Because oftime con- straints, the inaccurate λ∞ = 2050µScm−1 for (i) was determinedby heating the reaction vessel at the end of the monitoringto 60oC until there was no ap- parent change in the conductivitywhen equilibratedback at 25oC. Reaction (i) involved0.3mLofthereactantwhichwasdissolvedin50mLofethanolinitially. Thereactionwasconductedat25oCandmonitoredovertime(minutes)bymea- suringconductivity(µScm−1)duetothereleaseofH+ andCl− ionsasshown belowin(6), C H Cl+H O ka C H OH+H++Cl−. (6) 4 9 2 4 9 −→ (ii) themethanolysisofionizedphenylsalicylatederivedfromtheliterature[20,Ta- ble 7.1,p.381]with presumablyaccuratevaluesofboththe initialconcentration andforalldatasetsofthekineticrun. Reaction(ii)maybewritten PS−+CH OH kb MS−+PhOH (7) 3 −→ wherefortheratelawispseudofirst-orderexpressedas − − rate=k [PS] =k [CH OH][PS ]. b c 3 4 Themethanolconcentrationisinexcessandiseffectivelyconstantforthereac- tion runs [20, p.407]. The data for this reaction is given in detail in [20, Table 7.1], conducted at 30oC where several ionic species are present in the reaction solutionfromKOH,KCl,andH Oelectrolytes. 2 (iii) the primarily SN1 substitution reaction [25, Table IX,p.2071] of tertiary butyl bromide(ButBr) with dilute ethylalcoholicsodiumethoxidein ethanolsolvent where there concurrently occurs an approximately 20% contribution of an E1 eliminationreaction.Reaction(iii)maybewritten SN1 CH CBr Products (8) 3 −−−−−→ wherethesolventwasEtOHwithinitialsodiumethoxideconcentration[NaOEt]= 0.02386Nat25oC.Theproductsconsistedofapproximately81%substitutedter- tiarybutylethoxideand19%olefinicmoleculesduetoE1elimination.Hencethe rate constanthere refers to a composite reaction (details in [23, 2064] and [25, p.2070]. (iv) thesecondorderE2eliminationreaction[23,p.2059-2060andTableVII,p.2064] withreactantsisopropylbromide(PriBr)andsodiumethoxide(NaOEt).Reaction (iv)involvingisopropylbromidePriBr (CH )CHBr(CH )maybewritten 3 3 ≡ E2 (CH )CHBr(CH ) + OEt− CH CHCH +Br− +HOEt (9) 3 3 2 3 −−−−−→ wheretheisopropylbromidereactswiththeOEt− ioninEtOHsolventat25oC toyield80.3%oftheolefinicproductwithsomeSN2substitutionwiththe(OEt) functionalgroup[23, Table III,p.2061]accordingto the kineticists. Furtherde- tails and data appear [23, Table VII,p.2064]. It should be mentioned that the E2 reactionwasinferredto besecondorderfrompriorexperimentalconsidera- tionssincethe[NaOEt]concentrationreductionfromthedataexactlycoincides withthereductionofPriBrandwasnotindependentlydetermined.Thisperhaps somewhatexperimentallyquestionabletechniquemaywellbethereasonforthe instantaneousrateconstantascomputedheretobesomewhatnon-smooth,aswill bediscussedlater(seeFig.(21)forthegraph). “Units” in the figuresandtextpertainto the appropriatereactionvariabledimen- sion, for instance either the absorbancefor (i) or the conductivity(µScm−1) for (ii) below. Eitherbecauseofevaporationorthetemperaturesnotequilibratingafterheat- ing, the measured λ∞, it would be inferred that for (i) the measured value is larger thantheactualonedeterminedfromtheanalysis. Reaction(ii)isveryrapidcompared to (i) and the experimental data plots show high nonlinearity. We denote by λ the measurementparameterwhichistheconductivityµScm−1 orabsorbanceA[20,eqn 7.24-7.26]forreactions(i)and(ii)respectively;λalsoreferstotheconcentration[X] ofspecies X for reactions(iii) and (iv). The moreaccuratelydeterminedλ∞ = A∞ for(ii)[20,Table7.1,p.381]wasatapproximately0.897. Analysisof(ii)givevalues of A∞ = λ∞ very close to the experimentalones that suggests that our determina- tionforreaction(i)λ∞ iscorrect. Theexperimentaldataandnumberofreadingsfor 5 thedeterminationofrateconstantsisalwaysrelatedtothemethodusedandtheorder of accuracy required in the study; for Khan [20, Table 7.1,first A column], (reaction (ii)), 14normalreadingsover360seconds(s)sufficedforKhan’spurposes,whereas for the practical class (reaction (i)), 36 readings over 55 minutes (mins) were taken. Themeager14readingsof(ii)coveredamajorportionofthenonlinearregionofthe reaction, whereas for (i) the many readings were confined to the near-linear regime. Linear proportionalityis assumed between λ and the extent of reaction x, where the firstorderlaw(cbeingtheinstantaneousconcentration,kthegeneralrateconstantand atheinitialconcentration)is ddct = −kc = −k(a−x);withλ∞ = αa,λt = αxand λ(0)=λ =αx ,integrationyieldsforassumedconstantk 0 0 ln (λ∞−λ0) =kt (10) (λ∞ λ(t)) − Eqn.(10)determineskifλ0 andλ∞areknown. Theanalysisforthelatterreactions(ii)-(iv)wouldprovideareferenceandindica- tionofthe predictedvaluein(i)fortheinitialconcentration,apartfromcheckingfor overallconsistencyof the methodologyin generalsituationsespecially whenthere is doubtconcerningthevalueoftheinitialconcentration. Themethodspresentedhereappliestoanyorderprovidedtheexpressionscan be expandedas ann-orderpolynomialof the concentrationvariableagainstthe time in- dependentvariable. Togetsmoothcurvesthatarestableonehadtomodifyandusea propercurve-interpolationtechniquethatis stable whichdoesnotformsuddenkinks orpointsofinflexionandthisfollowsnext. 1.1 Orthogonalpolynomialstabilization ItwasdiscoveredthattheusualleastsquarespolynomialmethodusingGaussianelim- ination [21, Sec.6.2.4,p.318]to derive the coefficients of the polynomial was highly unstablefornpoly > 4,whichisaknowncondition[21,p.318,Sec6.2.4]. Forhigher orders, there is in addition the tendency to form kinks and loops in an interpolated curve for values between two known intervals. Other methods described in special- izedtreatises[22,Ch.5,Sec.5.7-5.13],evenifrobustandstable,suchastheChebyshev approximation required values of the proposed experimental curve at predetermined definite points in time, which is outside the control of one using predetermineddata andsoforthiswork,theleastsquareapproximationwasstabilizedbyorthogonalpoly- nomials[21, Sec.6.3]modifiedfordeterminationof differentials. Itis hopedthatthe method can also be extended to integrals in future investigations. The usual method defines the nth order polynomial p (t) which is then expressed as a sum of square n termsoverthedomainofmeasurementtoyieldQin(11). p (t) = n h tj n j=0 j P (11) Q(f,p ) = N [f p (t )]2 n i=1 i− n i P The Q function is minimized over the polynomial coefficient space. In the orthog- onal method adopted here, we express our polynomial expression p (t) linearly in m 6 coefficientsa ofϕ functionsthatareorthogonalwithrespecttoaninnerproductdef- j j inition. Forarbitraryfunctionsf,g,theinnerproduct(f,g)isdefinedbelow,together withpropertiesoftheϕ orthogonalpolynomials: j N (f,g) = f(t ).g(t ) k=1 k k (12) P (ϕ ,ϕ )=0 (i=j) and (ϕ ,ϕ )=0. i j i i 6 6 ϕi(t) = (t bi)ϕi−1(t) ciϕi−2(t)(i 1), − − ≥ ϕ (t) = 1, and ϕ =0 for j <1, 0 j (13) bi = (tϕi−1,ϕi−1)/(ϕi−1,ϕi−1) (i 1),bi =0(i<1), ≥ ci = (tϕi−1,ϕi−2)/(ϕi−2,ϕi−2) (i 2),andci =0 (i<2). ≥ Wedefinethemth orderpolynomialandassociateda coefficientsasfollows: j m p (t) = a ϕ (t) m j=0 j j P (14) a = (f,ϕ )/(ϕ ,ϕ ),(j =0,1,...m) j j j j Therecursivedefinitionsforthefirstandsecondderivativesaregivenrespectively as: ′ ′ ′ ϕi(t) = ϕi−1(t)(t−bi)+ϕi−1(t)−ciϕi−2(t)(i≥1) (15) ′′ ′′ ′ ′′ ϕ (t) = ϕ (t)(t b )+2ϕ (t) c ϕ (t)(i 2) i i−1 − i i−1 − i i−2 ≥ HerethecodesweredevelopedinC/C++whichprovidesforrecursivefunctionswhich we exploitedforthe evaluationofalltheterms. The experimentaldatawere fittedto anmth orderexpressionλ (t)definedbelow m m m λ (t)= h tj =p (t)= a ϕ (t) (16) m j m j j Xj=0 Xj=0 The coefficients h are all computed recursively, and the derivatives determined i from(16)orfrom(14)and(15). Onceh ora aredetermined,thenthegradienttothe j j curveλ (t)iscomputedas m m λ′ (t)= jh tj−1. (17) m j Xj=0 The l (t) function of (2) is expanded similarly as for λ (t) for order m. The or- Q m thogonalpolynomialmethodisstableandthemeansquareerrordecreaseswithhigher polynomialorderingeneralmonotonically(wheren isusedtodenotethe integeror- der),butthedifferentialsarenotsostable,becauseofthecontributionofhigherorder coefficients in the differentialexpression as will be shown. From the form of the of theequationthatwillbedeveloped,therateconstantisdeterminedasthegradientof astraight-linegraphin theappropriatesegmentofthegraph. However,thecurvature 7 oftheplotwillincreasewithincreasingn,givingapoorervalueofk,whereashigher values of n would better fit the λvst curve. Hence inspection of the plots is neces- sarytodecideontheappropriatenvalue,wherewechoosethelowestnvalueforthe mostlineargraphoftheexpressionunderconsiderationthatalsoprovidesagoodλ(t) fit over a suitable time range over which the k rate constants apply. The orthogonal polynomialstabilizationmethodprovidesgoodλfitswithincreasingn,butnotgradi- ents,sothattheonsetofsuddenchangestothegradientwhichonphysicalgroundsis unreasonablecanbeusedasanindicationaswhichisthebestcurvetoselect. Thereis inpracticelittleambiguityinselectingtheappropriatepolynomials,aswillbedemon- strated. Reactions (i) and (ii) both gauge initial concentrationsin terms of the A∞ ( λ∞)orfinalreadingofaphysicalfactorproportionaltoconcentrationandthestructure oftheanalysisisthesameandwillthereforebediscussedsimultaneously,followedby reactions (iii) to (iv) , where concentrationsare measured directly during the course of the reaction, which will be discussed together because the form of the boundary conditionsanddataareofthesameclass. 2 ANALYSIS OF REACTIONS (I) and (II) 200 150 1 − m S c100 expt. curve µ n=2 λ (t) / nn==35 50 n=6 n=10 n=16 0 0 10 20 30 40 50 60 Time/mins Figure1: Plotof(i)usingorthogonalpolynomialsforvariousordersn. Thetheleast squaresdeviationgoesdowndramaticallywith increasingn, whichwasfoundnotto bethecasewiththenormalnon-orthogonalpolynomialmethod. Figure (1) are plots for the differentpolynomialorders n for reaction (i). It will benoticedthathighernvaluesingeneralleadstobetterfitsvisually;thenormalleast squares method leads to severe kinks and loop formation for n 4 which is not ∼ ≥ evidenthere. The reaction (ii) data coversa far greater domain with respect to half- lifetimeswithonlyabout14points(whichisapoordatasetwithrespecttoourmethods but which still gives quantitatively accurate values); because of the relatively more rapidcurvaturechanges,wewouldexpectverydifferentgradientbehaviorascompared to(i)withitsstrongerlinearity. 8 Thecorrespondingplotsforreaction(ii)areinFig. (2). 1 0.9 Expt. curve (ii) 0.8 0.7 A (t) 0.6 0.5 0.4 0 100 200 300 400 Time /s Figure2: ExperimentalpointsomittingpointatA∞ forreaction(ii)attime= 2135s. Thecurveisrathernon-linear. Inviewofthenonlinearity,wechosealimitedregimetocurvefitforpolynomial ordern = 3,4,5inFig.(2)andthegradientwascomputedforthen = 5polynomial to determine the rate constantsas it was the only order that gave a smooth curve for the first 12 consecutivepointsin the range; the otherordersalso gaveconsistentand almostequalgradientsexceptattheextremeendpointsoftherangeplottedasdepicted forexampleinFigs. (6,8,12). 1 n=3 0.9 n=4 n=5 0.8 Expt. (ii) 0.7 A (t) 0.6 0.5 0.4 0 50 100 150 200 Time /s Figure3: Experimentalpointscurvefittedwithpolynomialsofordern = 3,4,5. The fitforthisrangeisexcellent,despitethenonlinearnatureofthecurve Unlikereaction(ii),theλ∞ forreaction(i)wasambiguous. Theplotof(10)was madeforthesameexperimentalvalueswithdifferentλ∞’s,bothhigherandlowerthan thesupposedexperimentalvalueforthisreaction.TheplotsinFig.(4)showsincreasing 9 0.4 0.2 0 λ(t)) −0.2 λλ−)/(−∞∞0−0.4 kkk210===131...167747xxx111000−−−333 λλ∞∞((01))21005500 λ−ln( −0.6 λ∞(2)3050 −0.8 −1 −1.2 0 10 20 30 40 50 60 Time /mins Figure 4: Integrated equation(10) plot with λ∞ from experiment (0) and from two differentarbitrary values(1,2) for λ∞, which yields two differentvalues for the rate constantduetogradientchange. ka fordecreasingλ∞;thechoiceλ∞ = 1050leadstoavalueofka closetotheNLA valuesforthedifferentmethodsdiscussedwhichdoesnotrequireλ∞,butisalsoable to determinethis value by extrapolation. The rate constantfromNLA is higherthan thatdeterminedfromexperiment,implyingalowerλ∞ valuewhichisconsonantwith evaporation of solvent and/or the non-equilibrationof temperature prior to measure- menttodetermineλ∞. HenceelementaryNLAallowsonetodeducetheaccuracyof theactualexperimentalmethodologyinthisexample.Exceptforonesection,weshall applyNLAbasedonconstantkassumption. WealsoquotesomevaluesofKhan’sre- sults[20,Table7.1]inTable(1),wheresomecommentisrequired.TheAabsorbance ismonotonicallyincreasingandathighertime(t)values(see[20, Table7.1])theex- perimentalA valueexceedsthe A∞ thatis determinedbythe processof minimizing d2i. Hencetheminimizationof d2i withrespecttoA∞ istakenasaprotocolfor dPeterminingthe bestk valueevenPifit contradictsexperimentalobservation. Further, thisprotocolishighlysensitivetoA;achangeof10−3leadstoanapproximatelyten- foldchangein k. On the other hand, if A∞ determinedfrom experimentas 0.897is accepted,thenthencomputedrateconstantforthisvalueisk = 2.69 10−3s−1 im- plyingthattheuncertaintyinkisoftheorderof 14 10−3. Hencew×ecanconclude ± × thattheKhanmethodisaprotocolthatacceptsascorrectthekvaluethatisdetermined bytheminimizationofA∞ foracertainA∞ range( 0.8980 .8805),whichagain ≈ − referstoanunspecifiedprotocolastothechoiceoftherange. Thegeneral1stand2ndorderequations Westatethestandardintegratedforms below as a reference that requires specification of initial concentrations in order to contrastthemtothemethodsdevelopedhere. 10