ebook img

Hypersymmetry: Physics of the Isotopic Field-Charge Spin Conservation PDF

230 Pages·2021·3.846 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Hypersymmetry: Physics of the Isotopic Field-Charge Spin Conservation

GyörgyDarvas Hypersymmetry Also of interest WilsonLinesinQuantumFieldTheory IgorOlegovichCherednikov/TomMertens/FrederikVanderVeken,  ISBN----,e-ISBN(PDF)----, e-ISBN(EPUB)---- InvariantDifferentialOperators. Volume:Supersymmetry VladimirK.Dobrev, ISBN----,e-ISBN(PDF)----, e-ISBN(EPUB)---- OntheOriginofNaturalConstants. AxiomaticIdeaswithReferencestotheMeasurableReality HansPeterGood, ISBN----,e-ISBN(PDF)----, e-ISBN(EPUB)---- Self-organizationofMatter. Adialecticalapproachtoevolutionofmatterinthemicrocosm andmacrocosmos ChristianJooss, ISBN----,e-ISBN(PDF)----, e-ISBN(EPUB)---- Symmetry. ThroughtheEyesofOldMasters EmilMakovicky, ISBN----,e-ISBN(PDF)----, e-ISBN(EPUB)---- György Darvas Hypersymmetry Physics of the Isotopic Field-Charge Spin Conservation Author Dr.GyörgyDarvas EötvösSt.29 Budapest1067 Hungary [email protected] ISBN978-3-11-071317-6 e-ISBN(PDF)978-3-11-071318-3 e-ISBN(EPUB)978-3-11-071348-0 LibraryofCongressControlNumber:2020943675 BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableontheInternetathttp://dnb.dnb.de. ©2021WalterdeGruyterGmbH,Berlin/Boston Coverimage:“Twobosonexchange”byKristófSarkady(8y)2010 Typesetting:IntegraSoftwareServicesPvt.Ltd. Printingandbinding:CPIBooksGmbH,Leck www.degruyter.com Contents ANOTHERVERSION OF FACTS 1 INTRODUCTION 3 ChapterI: FIELD-CHARGES 2 MASS 13 2.1 Equivalenceversusidentity 15 2.2 Examplesofthedistinctionbetweenidentityand equivalence 17 2.2.1 Physicalapproach 17 2.2.2 Mathematicalapproach 19 2.3 Equivalencedoesnotmeanidentity 20 2.4 Theequivalenceprinciple 21 2.4.1 Equivalenceofthemassesofgravityandinertia 21 2.5 Transformationpropertiesofgravitationalandinertial masses 22 2.6 Theroleofmassesinthestress–energytensorofGTR 25 2.7 Conservationofmass 26 2.8 Somepreliminaryconsequencesofthedistinctionbetween massesofgravityandinertia 28 2.8.1 Wherecanonemeetseparatedinertialandgravitational masses? 30 3 ELECTRICCHARGE 31 3.1 Distinctionbetweenelectriccharges 31 3.2 Sourcesoftheelectromagneticfield 34 3.3 Equivalenceprincipleforelectriccharges 36 3.4 Transformationofthetwotypesofelectromagneticcharges 36 3.5 Somepreliminaryconsequencesofthedistinctionbetween field-chargesoftheelectromagneticfield 37 ChapterII: ISOTOPICFIELD-CHARGES 4 ISOTOPICFIELD-CHARGES(IFC) 43 4.1 Fieldsourcesinthestandardmodel(SM) 43 4.2 Isotopicfield-charges 44 4.2.1 Masses 44 VI Contents 4.2.2 Electriccharges 45 4.3 Theidentity-equivalencediversityontheexampleoftheisotopic spin 46 4.4 3+1quantitiesinphysics 49 5 HYPERSYMMETRY(HySy) 51 5.1 Matrixalgebrafor3+1parametrictransformations 51 5.1.1 Vectoralgebraandquaternionalgebra 51 5.1.2 Vectorandquaternionalgebrasappliedtophysics 54 5.2 Thealgebraofhypersymmetry(HySy) 54 5.2.1 Introductiontotheτ-algebra 54 5.2.2 Theτ-algebra 55 5.2.3 Grouppropertiesoftheτ-matrices 56 5.2.4 Representationofthegroupcomposedbytheτ-matrices 59 5.2.5 ThegroupofHySy 60 5.3 Comparingtheτ-algebraandtheDiracalgebra 64 5.3.1 TheτandtheDirac(γ)matrices 64 5.3.2 Comparisonofthealgebrasoftheδ-andtheτ-matrices 65 5.3.3 Theτalgebrabeyondphysics(matrixgenetics) 66 5.4 Summaryoftheτalgebra 71 6 VELOCITYDEPENDENCEINPHYSICS 73 6.1 Velocity-dependentphenomena 73 6.2 Velocity-dependentfields 74 6.3 Velocitydependenceinthelightofconservationlawsand symmetries 75 ChapterIII: ISOTOPICFIELD-CHARGE SPIN 7 CONSERVATIONLAWSANDHYPERSYMMETRY 81 7.1 Preliminaryassumptions 81 7.2 IntroductiontothemathematicsofthetwosimultaneousNoether currentsinHySy 82 7.3 Noether’scurrentsforgaugeinvariancelocalisedinavelocity field 84 7.4 Discussionofthemathematicalresults 90 7.5 Physicalconsiderations 92 Contents VII 8 CONSERVATIONOFTHEISOTOPICFIELD-CHARGESPIN(IFCS) 93 8.1 Firstconservedquantity:conservationofthefield‐charge(ך) 93 8.2 Secondconservedquantity:conservationoftheisotopic field-chargespin(Δ) 94 8.3 Couplingofthetwoconservedquantities(ךandΔ) 95 8.4 Interpretationoftheisotopicfield-chargespin(Δ) 96 9 ISOTOPICFIELD-CHARGESINFUNDAMENTALINTERACTIONS 99 9.1 Isotopicfield-chargesinstrongandelectroweakinteractions 99 9.2 Summary:field-chargesinallthefourfundamental interactions 101 9.3 QuantaoftheDfield 103 ChapterIV: INTERACTION BETWEEN ISOTOPICFIELD-CHARGES 10 ISOTOPICFIELD-CHARGES(ך˅andךτ)ININTERACTION 109 10.1 MechanismoftheinteractionbetweenIFC 109 10.1.1 Singleparticle’sIFCstates 109 10.1.1.1 Theprobabilisticmodel 110 10.1.1.2 Theharmonicoscillatormodel 111 10.1.1.3 Theflip-flopmodel 111 10.1.1.4 Theintermediateparticlemodel 111 10.1.2 Theintermediatemodelofinteractionbetweentwoparticles 112 10.1.2.1 Symmetricorasymmetricinteractingagents? 114 10.2 InterpretationoftheIFCSconservation 115 10.2.1 Ontherolesofthemassesonceagain 116 10.3 MassofdionsthatmediateHySytransformations 119 10.3.1 Massoftheδboson 120 10.3.2 TransformationinacoupledSMfieldandtheDfield–Theorigin ofthemassofδ 121 10.3.3 SpontaneousbreakingpointofHySy 129 10.3.4 Themassofthemediatingbosonδinlightofthetransformation oftheDfield 133 10.3.5 ConclusionsonthedionmassandthetransformationoftheD field 134 11 IFCINTERACTIONSINSMFIELDS 135 11.1 MechanismofcommutingΔ 135 11.2 Hypersymmetryappliedtogravitationalinteraction 138 11.2.1 Applicationoftheτalgebraforthegravitationalstress–energy tensor 139 VIII Contents 11.2.2 Hypersymmetryofthegravitationalequations 143 11.2.3 Theaffineconnectionfield 145 11.2.4 ThemechanismoftheΔexchangeingravitationalinteraction 146 11.3 Hypersymmetryappliedtoelectromagneticinteraction 147 11.3.1 IsotopicelectricchargesinclassicalEM 148 11.3.2 IsotopicelectricchargesinQED 149 11.3.3 Isotopicelectricchargesinthepresenceofakineticgauge field 155 11.3.4 HypersymmetryoftheextendedDiracequation 157 11.3.5 ApplicationoftheHySyalgebrafortheextendedDiracequation 159 11.3.6 InvarianceoftheextendedDiracequation 161 11.3.7 MechanismoftheΔexchangeinelectromagneticinteraction 162 11.3.8 ModifiedDiracequationinthepresenceofisotopicelectric chargesandakineticgaugefield 163 11.3.8.1 CoincidencewiththeclassicalDiracequationinboundarycase, whennokineticfieldispresent 163 11.3.8.2 Themagneticandtheelectricmoments 163 11.3.8.3 Themagneto-kineticandelectro-kineticmoments 163 11.3.8.3.1 Themagneto-kineticmoment 165 11.3.8.3.2 Theelectro-kineticmoment 165 11.3.9 TheHamiltonianandtheLagrangianoftheelectromagnetic interactioninthepresenceofisotopicgravitationalandelectric chargesaswellasakineticgaugefield 168 11.3.9.1 Thefullmagneticandelectricmoments 168 11.3.9.2 Themomentuminakineticfieldandtheappearanceofavirtual “coupling”spin 170 11.3.10 ThefieldtensorsoftheEMandthekineticfields 171 11.3.10.1 ThefieldtensoroftheEMfield 171 11.3.10.2 Thefieldtensorofthekineticfield 171 11.3.10.3 Thecurvatureoftheconnectionfield 172 11.3.11 TheLorentzforceinthepresenceofakineticfield 173 11.3.12 Theconservedcurrentsandtheconservedisotopicelectric chargespin 174 11.3.13 Quantisation 175 11.3.14 Observationofadion(aδboson) 177 11.3.15 ConcludingremarkstoSection11.3 179 11.4 MechanismoftheΔexchangeinweakinteractions 181 11.5 MechanismoftheΔexchangeinstronginteractions 183 12 SUMMARY 185 12.1 ThebirthandchildhoodofIFChypersymmetry 185 12.2 SummaryofthefindingsintheHySymodel 188 Contents IX 12.2.1 SUSYandHySy 188 12.2.2 Whatarethoseisotopicfield-charges? 188 12.2.3 Whywehavenotfeaturedtheminourphysicalequations? 189 12.2.4 Thequestionoflocalisation 190 12.2.5 Interactionbetweenthedifferentcomponentsofa Hamiltonian? 190 12.2.6 WhyonlyoppositeIFCSstateparticlescaninteractwitheach other? 191 12.2.7 3+1typequantitiesinphysics 192 12.2.8 ThetransformationgroupofHySy 192 12.2.9 Velocity-dependentfield?Velocity-dependentquantitiesin physics 192 12.2.10 Conservedcurrent–conservedquantity–mediatingboson (dion) 193 12.2.11 Propertiesoftheisotopicfield-chargesandtheδbosons 194 12.2.12 Howmuchisthemassofadion? 194 12.2.13 MassivebosonsintheDfield? 194 12.2.14 Howmanykindsofdionaresought? 195 12.2.15 WhyisHySysimplerthantheSUSYmodel? 195 12.2.16 Inwhatfeaturesis(ifatall)HySymorecomplicatedthanthe SUSYmodel? 195 12.2.17 Fermion–fermionandboson–bosonpairsinsteadoffermion– bosonpairs 196 12.2.18 DothetwoconservedNoethercurrentsacttogetheror separately? 196 12.2.19 TheSMandtheHySy 196 12.2.20 GUTandHySy 197 12.2.21 Darkparticles? 197 12.2.22 Wave-corpuscledualism 197 12.2.23 Whydoesnottheelectronrunaway? 198 12.2.24 Tableofafewpropertiesofisotopicfield-charges 198 12.3 Hypersymmetryandourpictureofthephysicalworld 199 12.4 Closingremarks 200 REFERENCES 203 INDEX 215

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.