ebook img

Hyperparameter Tuning for Machine and Deep Learning with R: A Practical Guide PDF

327 Pages·2023·4.357 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Hyperparameter Tuning for Machine and Deep Learning with R: A Practical Guide

Eva Bartz · Thomas Bartz-Beielstein · Martin Zaefferer · Olaf Mersmann   Editors Hyperparameter Tuning for Machine and Deep Learning with R A Practical Guide Hyperparameter Tuning for Machine and Deep Learning with R · · Eva Bartz Thomas Bartz-Beielstein · Martin Zaefferer Olaf Mersmann Editors Hyperparameter Tuning for Machine and Deep Learning with R A Practical Guide Editors EvaBartz ThomasBartz-Beielstein Bartz&BartzGmbH InstituteforDataScience,Engineering, Gummersbach,Germany andAnalytics THKöln MartinZaefferer Gummersbach,Germany Bartz&BartzGmbHandwithInstitutefor DataScience,Engineering,andAnalytics, OlafMersmann THKöln InstituteforDataScience,Engineering, Gummersbach,Germany andAnalytics THKöln DualeHochschuleBaden-Württemberg Gummersbach,Germany Ravensburg Ravensburg,Germany ISBN 978-981-19-5169-5 ISBN 978-981-19-5170-1 (eBook) https://doi.org/10.1007/978-981-19-5170-1 ©TheEditor(s)(ifapplicable)andTheAuthor(s)2023.Thisbookisanopenaccesspublication. OpenAccessThisbookislicensedunderthetermsoftheCreativeCommonsAttribution4.0International License(http://creativecommons.org/licenses/by/4.0/),whichpermitsuse,sharing,adaptation,distribu- tionandreproductioninanymediumorformat,aslongasyougiveappropriatecredittotheoriginal author(s)andthesource,providealinktotheCreativeCommonslicenseandindicateifchangeswere made. Theimagesorotherthirdpartymaterialinthisbookareincludedinthebook’sCreativeCommonslicense, unlessindicatedotherwiseinacreditlinetothematerial.Ifmaterialisnotincludedinthebook’sCreative Commonslicenseandyourintendeduseisnotpermittedbystatutoryregulationorexceedsthepermitted use,youwillneedtoobtainpermissiondirectlyfromthecopyrightholder. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore Foreword Hyperparameter tuning? Is this relevant in practice? Is it not rather an academic gimmick?Thatthelatterisnotthecasehasbeenknownformanyyears.Ontheother hand,itismostlyunclearwhatexactlythislookslikeinpractice.Whichprocedures depend on which hyperparameters? How sensitive are the procedures to different settings of their hyperparameters? And does that in turn depend on which data constellations are available? How can users develop a good feeling for being on therighttrackwhentuning?Answerstothesequestionsarenotonlyexpectedwhen it comes to optimally performing tuning per se, but also when it comes to making the tuning process transparent, i.e., answering the question why, after all, this and notthathyperparameterconstellationwaschosen. Thisbookdeliversanswerstotheabovequestions,someofwhichwerecompiled as part of a study funded by the Federal Statistical Office of Germany. The contributed case studies and associated scripts also enable practitioners to repro- duce the described tuning procedures and apply them themselves. The presented insights, cross-references, experiences, and recommendations will contribute to a better understanding of hyperparameter tuning in machine learning and to gain transparency. Wiesbaden,Germany FlorianDumpert March2022 v Contents 1 Introduction .................................................. 1 EvaBartz PartI Theory 2 Tuning:Methodology .......................................... 7 ThomasBartz-Beielstein,MartinZaefferer,andOlafMersmann 2.1 IntroductiontoHyperparameterTuning .................... 7 2.2 PerformanceMeasuresforHyperparameterTuning .......... 11 2.2.1 Metrics ......................................... 11 2.2.2 PerformanceMeasures ........................... 12 2.2.3 MeasuresforClassification ........................ 13 2.2.4 MeasuresforRegression .......................... 14 2.3 HyperparameterTuning .................................. 15 2.4 ModelSelectionandAssessment .......................... 19 2.5 TunabilityandComplexity ............................... 20 2.6 TheBasicHPTProcess .................................. 21 2.7 PracticalConsiderations .................................. 23 2.7.1 SomeThoughtsonCrossValidation ................ 23 2.7.2 ReplicabilityandStochasticity ..................... 24 2.7.3 ImplementationinR ............................. 24 3 Models ....................................................... 27 ThomasBartz-BeielsteinandMartinZaefferer 3.1 MethodsandHyperparameters ............................ 27 3.2 k-NearestNeighbor ...................................... 29 3.2.1 Description ..................................... 29 3.2.2 Hyperparametersofk-NearestNeighbor ............ 30 3.3 RegularizedRegression(ElasticNet) ....................... 32 3.3.1 Description ..................................... 32 3.3.2 HyperparametersofElasticNet .................... 33 3.4 DecisionTrees .......................................... 36 vii viii Contents 3.4.1 Description ..................................... 36 3.4.2 HyperparametersofDecisionTrees ................ 36 3.5 RandomForest ......................................... 40 3.5.1 Description ..................................... 40 3.5.2 HyperparametersofRandomForests ............... 40 3.6 GradientBoosting(xgboost) .............................. 45 3.6.1 Description ..................................... 45 3.6.2 HyperparametersofGradientBoosting ............. 46 3.7 SupportVectorMachines ................................. 53 3.7.1 Description ..................................... 53 3.7.2 HyperparametersoftheSVM ...................... 53 3.8 DeepNeuralNetworks ................................... 58 3.8.1 Description ..................................... 58 3.8.2 HyperparametersofDeepNeuralNetworks ......... 59 3.9 SummaryandDiscussion ................................. 66 4 HyperparameterTuningApproaches ............................ 71 ThomasBartz-BeielsteinandMartinZaefferer 4.1 HyperparameterTuning:ApproachesandGoals ............. 71 4.2 SpecialCase:MonotonousHyperparameters ................ 73 4.3 Model-FreeSearch ...................................... 76 4.3.1 ManualSearch .................................. 76 4.3.2 UndirectedSearch ............................... 77 4.3.3 DirectedSearch ................................. 78 4.4 Model-BasedSearch ..................................... 78 4.5 SequentialParameterOptimizationToolbox ................. 79 4.5.1 spotasanOptimizer ............................. 81 4.5.2 spot’sInitialPhase ............................... 83 4.5.3 TheFunctionspotLoop ......................... 88 4.5.4 EnteringtheMainLoop .......................... 89 4.5.5 FinalSteps ...................................... 100 4.6 Kriging ................................................ 100 4.6.1 TheKrigingModel .............................. 101 4.6.2 KrigingPrediction ............................... 102 4.6.3 ExpectedImprovement ........................... 103 4.6.4 InfillCriteriawithNoisyData ..................... 104 4.6.5 spot’sWorkhorse:Kriging ........................ 105 4.6.6 krigingLikelihood ............................... 111 4.6.7 Predictions ..................................... 113 4.7 ProgramCode .......................................... 114 5 RankingandResultAggregation ............................... 121 ThomasBartz-Beielstein, OlafMersmann, andSowmyaChandrasekaran 5.1 ComparingAlgorithms ................................... 121 5.2 Ranking ............................................... 122 Contents ix 5.3 RankAggregation ....................................... 127 5.4 ResultAnalysis ......................................... 131 5.5 StatisticalInference ..................................... 132 5.6 Definitions ............................................. 133 5.6.1 HypothesisTesting ............................... 133 5.6.2 Power .......................................... 136 5.6.3 p-Value ........................................ 136 5.6.4 EffectSize ...................................... 137 5.6.5 Sample Size Determination and Power Calculations .................................... 138 5.6.6 Issues .......................................... 140 5.7 Severity ................................................ 143 5.7.1 Motivation ...................................... 143 5.7.2 Severity:Definition .............................. 144 5.7.3 TwoExamples .................................. 146 5.7.4 Discussionofthe80%Threshold .................. 150 5.7.5 ACommentontheNormalityAssumption .......... 150 5.8 Severity:ApplicationinBenchmarking ..................... 151 5.8.1 ExperimentI:Rosenbrock ........................ 152 5.8.2 ExperimentII:Freudenstein-Roth .................. 156 5.8.3 Experiment III: Powell’s Badly Scaled Test Function ....................................... 156 5.9 SummaryandDiscussion ................................. 160 PartII Applications 6 HyperparameterTuningandOptimizationApplications .......... 165 ThomasBartz-Beielstein 6.1 SurrogateOptimization .................................. 165 6.2 HyperparameterTuninginMachineandDeepLearning ....... 168 6.3 HPTSoftwareTools ..................................... 171 6.4 SummaryandDiscussion ................................. 172 7 HyperparameterTuninginGermanOfficialStatistics ............ 177 FlorianDumpertandElenaSchmidt 7.1 OfficialStatistics ........................................ 177 7.2 MachineLearninginOfficialStatistics ..................... 180 7.3 ChallengesinTuningfortheFederalStatisticalOffice ........ 180 7.4 DealingwiththeChallenges .............................. 184 8 CaseStudyI:TuningRandomForest(Ranger) .................. 187 ThomasBartz-Beielstein, SowmyaChandrasekaran, FrederikRehbach,andMartinZaefferer 8.1 Introduction ............................................ 188 8.2 DataDescription ........................................ 190 x Contents 8.2.1 TheCensusDataSet ............................. 190 8.2.2 getDataCensus:GettingtheDatafromOML ..... 194 8.3 ExperimentalSetupandConfigurationoftheRandom ForestModel ........................................... 197 8.3.1 getMlConfig: Configuration of the ML Models ......................................... 197 8.3.2 ImplementationDetails:getMlConfig ........... 198 8.4 ObjectiveFunction(ModelPerformance) ................... 203 8.4.1 PerformanceMeasures ........................... 203 8.4.2 HandlingErrors ................................. 204 8.4.3 ImputationofMissingData ....................... 205 8.4.4 getObjf:TheObjectiveFunction ................. 205 8.5 spot:ExperimentalSetupfortheHyperparameterTuner ..... 207 8.6 Tunability .............................................. 210 8.6.1 Progress ........................................ 210 8.6.2 evalParamCensus: Comparing Default andTunedParametersonTestData ................. 211 8.7 AnalyzingtheRandomForestTuningProcess ............... 213 8.8 Severity:ValidatingtheResults ........................... 217 8.9 SummaryandDiscussion ................................. 217 8.10 ProgramCode .......................................... 218 9 CaseStudyII:TuningofGradientBoosting(xgboost) ............ 221 ThomasBartz-Beielstein, SowmyaChandrasekaran, andFrederikRehbach 9.1 Introduction ............................................ 221 9.2 DataDescription ........................................ 222 9.3 getMlConfig:ExperimentalSetupandConfiguration oftheGradientBoostingModel ........................... 222 9.3.1 getMlrTask:ProblemDesignandDefinition oftheMachineLearningTask ..................... 223 9.3.2 getModelConf Algorithm Design—HyperparametersoftheModels ........... 223 9.3.3 getMlrResample:TrainingandTestData ........ 225 9.4 ObjectiveFunction(ModelPerformance) ................... 225 9.5 spot:ExperimentalSetupfortheHyperparameterTuner ..... 225 9.6 Tunability .............................................. 226 9.6.1 Progress ........................................ 226 9.6.2 evalParamCensus: Comparing Default andTunedParametersonTestData ................. 228 9.7 AnalyzingtheGradientBoostingTuningProcess ............ 229 9.8 Severity:ValidatingtheResults ........................... 232 9.9 SummaryandDiscussion ................................. 233 9.10 ProgramCode .......................................... 233 Contents xi 10 CaseStudyIII:TuningofDeepNeuralNetworks ................. 235 ThomasBartz-Beielstein, SowmyaChandrasekaran, andFrederikRehbach 10.1 Introduction ............................................ 235 10.2 DataDescription ........................................ 238 10.2.1 getDataCensus: Getting the Data fromOpenML ................................... 238 10.2.2 getGenericTrainValTestData:Split DatainTrain,Validation,andTestData ............. 238 10.2.3 genericDataPrep:Spec ...................... 239 10.3 Experimental Setup and Configuration of the Deep LearningModels ........................................ 244 10.3.1 getKerasConf: keras and Tensorflow Configuration ................................... 244 10.3.2 getModelConf:DLHyperparameters ............ 246 10.3.3 TheNeuralNetwork ............................. 247 10.4 funKerasGeneric:TheObjectiveFunction .............. 251 10.5 spot:ExperimentalSetupfortheHyperparameterTuner ..... 251 10.6 Tunability .............................................. 254 10.6.1 Progress ........................................ 255 10.6.2 evalParamCensus: Comparing Default andTunedParametersonTestData ................. 257 10.7 AnalysingtheDeepLearningTuningProcess ............... 258 10.8 Severity:ValidatingtheResults ........................... 261 10.9 SummaryandDiscussion ................................. 262 10.10 ProgramCode .......................................... 265 11 CaseStudyIV:TunedReinforcementLearning(inPYTHON) ...... 271 MartinZaeffererandSowmyaChandrasekaran 11.1 Introduction ............................................ 272 11.2 MaterialsandMethods ................................... 272 11.2.1 Software ....................................... 272 11.2.2 TaskEnvironment:InvertedPendulum .............. 273 11.2.3 LearningAlgorithm .............................. 274 11.3 SettinguptheTuningExperiment ......................... 274 11.3.1 File:run.py ..................................... 274 11.3.2 TunedParameters ................................ 275 11.3.3 FurtherConfigurationofSPOT .................... 276 11.3.4 Post-processingandValidatingtheResults .......... 277 11.4 Results ................................................ 278 11.5 Severity:ValidatingtheResults ........................... 279 11.6 SummaryandDiscussion ................................. 281

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.