ebook img

Hyperon-nucleon Scattering In A Covariant Chiral Effective Field Theory Approach PDF

0.18 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Hyperon-nucleon Scattering In A Covariant Chiral Effective Field Theory Approach

Hyperon-nucleon Scattering In A Covariant Chiral Effective Field Theory Approach ∗ Kai-WenLi 7 SchoolofPhysicsandNuclearEnergyEngineeringandInternationalResearchCenterfor 1 NucleiandParticlesintheCosmos,BeihangUniversity,Beijing100191,China 0 E-mail: [email protected] 2 r Xiu-LeiRen a M SchoolofPhysicsandStateKeyLaboratoryofNuclearPhysicsandTechnology,Peking University,Beijing100871,China 3 E-mail: [email protected] 1 Li-ShengGeng ] h SchoolofPhysicsandNuclearEnergyEngineeringandInternationalResearchCenterfor t - NucleiandParticlesintheCosmos,BeihangUniversity,Beijing100191,China l c BeijingKeyLaboratoryofAdvancedNuclearMaterialsandPhysics,BeihangUniversity, u Beijing100191,China n E-mail: [email protected] [ 2 BingweiLong v CenterforTheoreticalPhysics,DepartmentofPhysics,SichuanUniversity,29Wang-Jiang 2 7 Road,Chengdu,Sichuan610064,China 2 E-mail: [email protected] 6 0 . Arecentlyproposedcovariantchiraleffectivefieldtheoryapproachisappliedtostudystrangeness 1 0 S= 1hyperon-nucleoninteractionsatleadingorder.12lowenergyconstantsareintroducedby 7 − Lorentzinvariance,whichisdifferentfromtheheavybaryonapproach,whereonlyfiveappear. 1 : The Kadyshevskyequationis employedto iterate the chiralpotentials. A quite satisfactory de- v i scriptionofthe36hyperon-nucleonscatteringdataisobtainedwithχ2 17,whichiscomparable X ≃ withthenext-to-leadingorderheavybaryonapproach.Theresultshintatamoreefficientwayto r a constructthechiralpotentials. The26thInternationalNuclearPhysicsConference 11-16September,2016 Adelaide,Australia ∗ Speaker. (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommons Attribution-NonCommercial-NoDerivatives4.0InternationalLicense(CCBY-NC-ND4.0). http://pos.sissa.it/ Hyperon-nucleonScatteringInACovariantChiralEffectiveFieldTheoryApproach Kai-WenLi 1. Introduction Baryon-baryon interactions play a crucial role in hypernuclear physics. During the past 20 years, chiral effective field theory (χEFT), first proposed by Weinberg [1, 2], has made great progressinderivingnucleon-nucleon(NN)[3,4,5],hyperon-nucleon(YN)[6,7],hyperon-hyperon[8, 9,10]interactions. Nevertheless, current χEFT studies on baryon-baryon interactions, referred to as the heavy baryon(HB)approach,arebasedonanon-relativistictheoreticalframework,whichcannotbeused forrelativistichypernuclearfew-andmany-bodycalculations. Inaddition,theHBapproachisvery sensitive to ultraviolet cutoffs, known as the renormalization group invariance problem [11, 12]. Recently, Epelbaum and Gegelia proposed a new χEFT approach [13, 14] (referred to as the EG approach)fortheNN interaction. Atleadingorder(LO),thepotentialisthesameasthatoftheHB approach but the scattering equation changes tothe Kadyshevsky equation. Itis shown that inthe strangeness S= 1YN system [15], the description of the scattering data with the EG approach − remainsquantitatively similartotheHBapproach, onlythecutoffdependence ismitigated. A new covariant power counting is recently proposed to study the NN [16] andYN [17] sys- temsinχEFT,whichispartlymotivatedbythesuccessesofcovariantchiralperturbation theoryin heavy-light andonebaryonsystems[18,19,20,21]. Atthepotentiallevel,thebaryonsaretreated inacovariant waytomaintain allthesymmetries andanalyticities. Inthepresent work, wereport onthestudyofthestrangeness S= 1ΛN ΣN systeminthiscovariantχEFTapproach atLO. − − 2. Formalism Thedetails canbefound inRefs. [16,17]. Inthefollowing webriefly explain theprocedures in obtaining the chiral potentials, calculating the scattering equation, and performing the fits. We startfromthecompleteDiracspinorsothatLorentzinvariance isretained, 1 ε B uB(p,s)=Np σp χs, Np= , (2.1) ε·B ! r2MB whereε =E +M andE = p2+M2,whilethesmallcomponentofu isomittedbyemploy- B B B B B B ing anon-relativistic reductionqinthe HBapproach. Here naivedimensional analysis isapplied in obtaining the Feynman diagrams atLO,which consist of nonderivative four-baryon contact terms and one-pseudoscalar-meson exchanges. Specifically, following Refs. [6, 15], there are 3 for the formerand7forthelatterinthestrangeness S= 1ΛN ΣN system,asshowninFigure.1. − − Λ N Σ N Σ N Λ N N Λ Σ N N Σ Σ N N Σ η K π K π,η K Λ N Λ N Σ N Λ N Λ N Λ N Λ N Σ N Σ N Figure1:Nonderivativefour-baryoncontacttermsandone-pseudoscalar-meson-exchangediagramsforthe ΛN ΣN system. Thesolid linesdenoteincomingandoutgoingbaryons,andthe dashedlinesdenotethe − exchangedpseudoscalarmesons. 1 Hyperon-nucleonScatteringInACovariantChiralEffectiveFieldTheoryApproach Kai-WenLi The relevant chiral Lagrangians in this framework consist of the nonderivative four-baryon contact termsandthemeson-baryon interactions C1 C2 L1 = i tr(B¯ B¯ (ΓB) (ΓB) ), L2 = i tr(B¯ (ΓB) B¯ (ΓB) ), CT 2 a b i b i a CT 2 a i a b i b C3 L3 = i tr(B¯ (ΓB) )tr(B¯ (ΓB) ), (2.2) CT 2 a i a b i b D F L(1) =tr B¯ iγ Dµ M B B¯γµγ u ,B B¯γ γ [u ,B] , (2.3) MB µ − B − 2 5{ µ }− 2 µ 5 µ ! (cid:0) (cid:1) where tr indicates trace in flavor space; Γ are the elements of the Clifford algebra, andCm (m= i i 1,2,3) are the low energy constants (LECs) corresponding to independent four-baryon operators. Inaddition, DµB=∂ B+[Γ ,B],Γ = 1 u†∂ u+u∂ u† ,u =i(u†∂ u u∂ u†)andu2=U = µ µ µ 2 µ µ µ µ − µ exp i√2φ , where f is the pseudoscalar meson decay constant in the chiral limit. The matrices f0 0 (cid:2) (cid:3) B an(cid:16)d φ c(cid:17)ollect the octet baryons and pseudoscalar mesons. In numerical calculations, we use D+F =1.26, F/(F+D)=0.4 and f =93 MeV [7]. Potentials for the Feynman diagrams in 0 Figure.1arederivedfromtheaboveLagrangians. StrictSU(3)symmetryisimposedonthecontact terms thus 12 independent LECsremain: CΛΛ,CˆΛΛ,CΣΣ,CˆΣΣ,CΛΛ,CˆΛΛ,CΣΣ,CˆΣΣ,CΛΣ,CˆΛΣ, 1S0 1S0 1S0 1S0 3S1 3S1 3S1 3S1 3S1 3S1 CΛΛ, CΣΣ . SU(3) symmetry is only broken by the mass difference of the mesons in the one- 3P1 3P1 pseudoscalar-meson exchanges. Thepotentialscorresponding totheFeynmanndiagramsshownin Fig.1canbeexpressed inthefollowingway: VCBT1B2→B3B4 =Ci(u¯3Γiu1)(u¯4Γiu2), (2.4) (u¯ γµγ q u )(u¯ γνγ q u ) VOBM1BE2→B3B4 =−NB1B3φNB2B4φ 3 5q2µ 1q2 4m25 ν 2 IB1B2→B3B4, (2.5) 0− − wherethesubscriptsCTandOMEdenotethecontacttermandone-pseudoscalar-meson exchange, respectively. N istheSU(3)coefficientandI theisospinfactor. Ddetailscanbefound BBφ B1B2 B3B4 → inRefs.[6,16,17]. TheKadyshevsky equation isusedtoiteratethepotentials duetotheinfrared enhancement in two-baryon propagations followingRef.[15]: Tνν′,J(p,p;√s)=Vνν′,J(p,p)+ ∑ ∞dp′′p′′2 2µν2′′ Vρνρν′′′′,J(p′,p′′)Tρν′′′ρ′ν′′,J(p′′,p;√s) , ρρ′ ′ ρρ′ ′ ρ ,ν Z0 (2π)3 p 2+4µ2 q2 +4µ2 p 2+4µ2 +iε ′′ ′′ ′′ ν′′ ν′′ ν′′− ′′ ν′′ (cid:0) (cid:1)(cid:16)q q (2.6) (cid:17) where √s is the total energy of the baryon-baryon system in the center-of-mass frame, q is ν ′′ the relativistic on-shell momentum. The labels ρ and ν denote the partial waves and particle channels, respectively. Relativistic kinematics is used for the relation of the laboratory momenta and the center-of-mass momenta. Wesolve theKadyshevsky equation in particle basis inorder to accountforthephysicalthresholdsproperly. TheCoulombforceistreatedwiththeVincent-Phatak method [22]. Toregularize the integration in the high-momentum region, the chiral potentials are multipliedwithanexponential formfactor f (p,p)=exp (p/Λ )4 (p/Λ )4 .Oneshould ΛF ′ − F − ′ F h i 2 Hyperon-nucleonScatteringInACovariantChiralEffectiveFieldTheoryApproach Kai-WenLi Table1: Low-energyconstants(inunitsof104GeV 2)atΛ =600MeVinthecovariantχEFTapproach. − F LECs CΛΛ CΣΣ CΛΛ CΣΣ CΛΣ CˆΛΛ 1S0 1S0 3S1 3S1 3S1 1S0 0.0223 0.0528 0.0032 0.0842 0.0232 3.9185 − − LECs CˆΣΣ CˆΛΛ CˆΣΣ CˆΛΣ CΛΛ CΣΣ 1S0 3S1 3S1 3S1 3P1 3P1 4.0681 0.4190 0.4132 0.7326 0.2044 0.2616 − note that although the potentials are fully covariant, the scattering amplitude isnot because of the useoftheKadyshevsky equationandthecutoffregularization. The LECscan be pinned down by fitting to the 36YN scattering data, as it has been done in Ref. [7]. In actual calculations we introduce the following constraints, i.e. the Λp 1S , 3S and 0 1 Σ+p3S scattering lengths. TheΛhypertriton isnottakenintoaccount because wearenotableto 1 perform 3-bodycalculations atpresent. 3. Results anddiscussion ThefitwasdonebyvaryingthecutoffvalueΛ aroundtheρmesonmass. Cutoffdependence F of the χ2 in describing the 36 YN data is shown in Figure. 2, in comparison with other χEFT approaches. It can be seen that the LO covariant χEFT approach yields a smaller χ2 value and a milder cutoff dependence of the χ2, compared with the LO HB and EG approaches. They are similar to the next-to-leading (NLO) HB approach, which has 23 LECs, however. Nevertheless, renormalization group invariance is still not achieved, as exhibited by the variation of χ2 with the cutoff (more clearly shown in the insert). The minimum value of the χ2 is 16.7, located at 100 20 The LO HB approach 19 The NLO HB approach 80 18 The LO EG approach Covariant EFT approach 17 60 16 15 500550600650700750800850 F (M eV) 40 20 0 500 550 600 650 700 750 800 850 F (MeV) Figure2:χ2asafunctionofthecutoffintheLO(bluedottedline)[6],NLO(orangedashed-dottedline)[7] HBapproach,theLOEGapproach(reddashedline)[15]andtheLOcovariantχEFTapproach(greensolid line). Λ =600 MeV, and the corresponding LECs are listed in Table 1. Note that the LECsin the Λp F 1S partial wave cannot be precisely determined for the Λ hypertriton binding energy is not used 0 3 Hyperon-nucleonScatteringInACovariantChiralEffectiveFieldTheoryApproach Kai-WenLi as a constraint. We show only a typical case here. Moreover, the description of the experimental dataareshowninFig.3. TheLOHBapproach[6]andtwophenomenological models[23,24]are p - p p - p p - n p - n p - p 300 250 300 500 300 Sechi-Zorn et al. Eisele et al. Engelmann et al. Engelmann et al. Eisele et al. 250 Alexander et al. 200 250 400 250 Hauptman et al. b) 200 Kadyk et al. 200 m 150 200 300 ( 150 150 100 150 200 100 100 50 50 100 100 50 0 0 50 0 0 100 300 500 700 900 140 150 160 170 180 100 120 140 160 100 120 140 160 140 150 160 170 Plab (MeV/c) Plab (MeV/c) Plab (MeV/c) Plab (MeV/c) Plab (MeV/c) Figure 3: Cross sectionsin the HB approach(blue dottedlines) [6] and covariantχEFT approach(green solidlines)atLOasfunctionsofthelaboratorymomentumatΛ =600MeV.Forreference,theNSC97f[23] F (red dash-dottedlines) and Jülich 04 [24] (orangedashed lines) results are also shown. The experimental dataarethesameasRef.[15]. taken asreferences. Clearlythecovariant χEFTapproach canbetter reproduce thedata compared withtheLOHBapproach, especially fortheΛp ΛpandΣ+p Σ+preactions. → → The improvements in our new scheme mainly come from the contact terms. In the LO HB approach, contact terms only contribute to central and spin-spin potentials, and they only appear in S-waves. In our new scheme, tensor, spin-orbit, asymmetric spin-orbit and quadratic spin-orbit terms also appear in the contact interactions. These terms are momentum dependent and improve thedescription. TheseareparalleltotheNN case. Detaileddiscussions canbefoundinRef.[16]. 4. Summary Wehave applied anewcovariant chiral effective fieldtheory approach tothestrangeness S= 1 ΛN ΣN system at leading order. Starting from the covariant chiral Lagrangians, the full − − baryon spinor isretained tocalculate thepotentials. Assuch, Lorentz invariance ispreserved. We usestrictSU(3)symmetryinthecontacttermsthusonly12lowenergyconstants areindependent. SU(3) symmetry is broken in the one-pseudoscalar-meson exchanges due to the mass difference of the exchanged mesons. The Kadyshevsky equation is employed to iterate the chiral potentials. A very satisfactory description of the 36 hyperon-nucleon scattering data is obtained, as well as a mitigated cutoff dependence. Our approach yield results similar to the next-to-leading order heavy baryon approach but with11fewerlowenergy constants. Ithintsatamoreefficient wayto construct thebaryon-baryon potentials. Acknowledgements This work is partly supported by the National Natural Science Foundation of China under Grants No. 11375024, No. 11522539, and No. 11375120, the China Postdoctoral Science Foun- dation under GrantNo. 2016M600845, andtheFundamental Research FundsfortheCentral Uni- versities. 4 Hyperon-nucleonScatteringInACovariantChiralEffectiveFieldTheoryApproach Kai-WenLi References [1] S.Weinberg,Phys.Lett.B251,288(1990). [2] S.Weinberg,Nucl.Phys.B363,3(1991). [3] P.F.BedaqueandU.vanKolck,Ann.Rev.Nucl.Part.Sci.52,339(2002)[nucl-th/0203055]. [4] E.Epelbaum,H.W.HammerandU.-G.Meißner,Rev.Mod.Phys.81,1773(2009)[arXiv:0811.1338 [nucl-th]]. [5] R.MachleidtandD.R.Entem,Phys.Rept.503,1(2011)[arXiv:1105.2919[nucl-th]]. [6] H.Polinder,J.HaidenbauerandU.-G.Meißner,Nucl.Phys.A779,244(2006)[nucl-th/0605050]. [7] J.Haidenbauer,S.Petschauer,N.Kaiser,U.-G.Meißner,A.NoggaandW.Weise,Nucl.Phys.A915, 24(2013)[arXiv:1304.5339[nucl-th]]. [8] H.Polinder,J.HaidenbauerandU.-G.Meißner,Phys.Lett.B653,29(2007)[arXiv:0705.3753 [nucl-th]]. [9] J.HaidenbauerandU.-G.Meißner,Phys.Lett.B684,275(2010)[arXiv:0907.1395[nucl-th]]. [10] J.Haidenbauer,U.-G.MeißnerandS.Petschauer,Nucl.Phys.A954,273(2016)[arXiv:1511.05859 [nucl-th]]. [11] G.P.Lepage,nucl-th/9706029. [12] B.LongandU.vanKolck,AnnalsPhys.323,1304(2008)[arXiv:0707.4325[quant-ph]]. [13] E.EpelbaumandJ.Gegelia,Phys.Lett.B716,338(2012)[arXiv:1207.2420[nucl-th]]. [14] E.Epelbaum,A.M.Gasparyan,J.GegeliaandH.Krebs,Eur.Phys.J.A51,71(2015) [arXiv:1501.01191[nucl-th]]. [15] K.-W.Li,X.-L.Ren,L.S.GengandB.Long,Phys.Rev.D94,014029(2016)[arXiv:1603.07802 [hep-ph]]. [16] X.-L.Ren,K.-W.Li,L.S.Geng,B.-W.Long,P.RingandJ.Meng,arXiv:1611.08475[nucl-th]. [17] K.W.Li,X.L.Ren,L.S.GengandB.W.Long,arXiv:1612.08482[nucl-th]. [18] L.S.Geng,J.MartinCamalich,L.Alvarez-RusoandM.J.VicenteVacas,Phys.Rev.Lett.101, 222002(2008)[arXiv:0805.1419[hep-ph]]. [19] X.-L.Ren,L.S.Geng,J.MartinCamalich,J.MengandH.Toki,JHEP1212,073(2012) [arXiv:1209.3641[nucl-th]]. [20] L.S.Geng,M.AltenbuchingerandW.Weise,Phys.Lett.B696,390(2011)[arXiv:1012.0666 [hep-ph]]. [21] L.S.Geng,Front.Phys.(Beijing)8,328(2013)[arXiv:1301.6815[nucl-th]]. [22] C.M.VincentandS.C.Phatak,Phys.Rev.C10,391(1974). [23] T.A.Rijken,V.G.J.StoksandY.Yamamoto,Phys.Rev.C59,21(1999)[nucl-th/9807082]. [24] J.HaidenbauerandU.-G.Meißner,Phys.Rev.C72,044005(2005)[nucl-th/0506019]. 5

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.