ebook img

Hypergroup Theory PDF

294 Pages·2021·3.763 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Hypergroup Theory

s. e cl arti s s e c c A n e p O or pt f e c x e d, e mitt er p ot n y ctl omstri HYPERGROUP worldscientific.cd distribution is THEORY w.an we wus m e- R oaded fro2/02/22. wnln 0 ory DoETH) o TheH ( up RIC groZU perY yG HO L O N H C E T F O E T U T TI S N L I A R E D E F S S WI S y b 1122664455__99778899881111224499338899__TTPP..iinndddd 11 1100//1122//2211 44::1188 PPMM s. Other World Scientific Titles by the Author e cl arti s s e c c A n pe Polygroup Theory and Related Systems O or ISBN: 978-981-4425-30-8 pt f e c ex Nearrings, Nearfields and Related Topics d, mitte ISBN: 978-981-3207-35-6 er p ot A Walk Through Weak Hyperstructures: Hv-Structures n ctly ISBN: 978-981-3278-86-8 omstri worldscientific.cd distribution is w.an we wus m e- R oaded fro2/02/22. wnln 0 ory DoETH) o TheH ( up RIC groZU perY yG HO L O N H C E T F O E T U T TI S N L I A R E D E F S S WI S y b YYuummeenngg -- 1122664455 -- HHyyppeerrggrroouupp TThheeoorryy..iinndddd 11 1199//1111//22002211 55::3311::3300 ppmm s. e cl arti s s e c c A n e p O or pt f e c ex HYPERGROUP d, e mitt er p ot y n THEORY ctl omstri worldscientific.cd distribution is w.an we wus m e- R oaded fro2/02/22. Bijan Davvaz wnln 0 Theory DoH (ETH) o VioletaY aLzde Uonivreersiaty, nIraun-Fotea up RIC Alexandru Ioan Cuza University of Iasi, Romania groZU perY yG HO L O N H C E T F O E T U T TI S N L I A R E D E F S S WI S y b NEW JERSEY • LONDON • SINGAPORE • BEIJING • SHANGHAI • HONG KONG • TAIPEI • CHENNAI • TOKYO 1122664455__99778899881111224499338899__TTPP..iinndddd 22 1100//1122//2211 44::1188 PPMM s. Published by e cl arti World Scientific Publishing Co. Pte. Ltd. ss 5 Toh Tuck Link, Singapore 596224 e c c USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 A en UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE p O or pt f e c x e d, e mitt er p ot n y British Library Cataloguing-in-Publication Data ctl A catalogue record for this book is available from the British Library. omstri worldscientific.cd distribution is w.an we wus HYPERGROUP THEORY m e- oaded fro2/02/22. R CAelloelcp rtyirgroihngtihsc t r o©ers em2r0ev2ce2hd a.b nTyih cWiaslo ,br iolndoc kSlu,c doieirnn pgtia fiprchts oP ttuohbceloriepsohyfii,nn mgg ,aC ryeo cn. ooPrttd ebi.ne L grt eodpr. r aondyu cinedfo irnm aantiyo nfo srtmor oarg eb ya nadn yr emtreieavnasl, wnln 0 system now known or to be invented, without written permission from the publisher. ory DoETH) o TheH ( up RIC groZU For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance perY Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy yG is not required from the publisher. HO L O N H C TE ISBN 978-981-124-938-9 (hardcover) F ISBN 978-981-124-939-6 (ebook for institutions) O E ISBN 978-981-124-940-2 (ebook for individuals) T U T TI S N L I For any available supplementary material, please visit A https://www.worldscientific.com/worldscibooks/10.1142/12645#t=suppl R E D E F S Desk Editor: Liu Yumeng S WI S by Printed in Singapore YYuummeenngg -- 1122664455 -- HHyyppeerrggrroouupp TThheeoorryy..iinndddd 22 1199//1111//22002211 55::3311::3300 ppmm November29,2021 14:48 ws-book9x6 ”HypergroupTheory” pagev s. e cl arti s s e c c A n e p O or ept f Preface c x e d, e mitt er p ot n y ctl omstri Hypergrouptheory isafieldof algebrathat appearedin the1930s and was worldscientific.cd distribution is ittbnhuotertrynhodG7tu0hacseleooadirnse.dbtyiTecsahapleleFyctrhieaaennlolcdyrhyafmofhtraaetsrthhtkehenmeomaw9tu0nilsctivitatahnurediMoteuhaseoroftpryeay,rpiciposoldnsicstsauiodtdfieioreflnedodsuoriannisnahvelilanwrcgioo:2nu0tttshihnefiec4enel0tdnsss-,, w.an we of knowledge: various chapters of mathematics, computer science, biology, wus m e- physics, chemistry, sociology. R oaded fro2/02/22. bothThtoistbhoeotkhecoornettiincaulespatrhteasnedrietos tohfemaopnpoligcraatpiohnss.in the field, dedicated wnln 0 The book presents an updated study of hypergroups, being structured ory DoETH) o omna1in2:csheamptiheryspsetragrrtoiunpgsw, ihtyhptehregrporuepsesn,tcaltaisosnesofofthseubbhaysipcenrgortoiounpss,intythpeesdoo-f up TheRICH ( hanomdocmomorpplehtiesmhsy,pbeurgtraolusposk.eyAndoettioanilse:dcsatnuodnyiciasldheydpiceargterodutpos,tjhoeincospnanceecs- pergroY ZU tions between hypergroups and binary relations, starting from connections yG establishedbyRosenbergandCorsini. Varioustypesofbinaryrelationsare HO L O highlighted, in particular equivalence relations and the corresponding quo- N H tient structures, which enjoy certain properties: commutativity, cyclicity, C E solvability. A special attention is paid to the fundamental β relationship, T OF whichleadstoagroupquotientstructure. Inthefinitecase, thenumberof E T non-isomorphicRosenberghypergroupsofsmallordersismentioned. Also, U T thestudyofhypergroupsassociatedwithrelationsisextendedtothecaseof TI S hypergroups associated to n-ary relations. Then follows an applied excur- N L I sionofhypergroupsinimportantchaptersinmathematics: lattices,Pawlak A R approximation, hypergraphs, topology, with various properties, characteri- E D E zations,variedandinterestingexamples. The bibliographypresentedisan F S S WI S y b v November29,2021 14:48 ws-book9x6 ”HypergroupTheory” pagevi vi Hypergroup Theory s. e cl arti updated one in the field, followed by an index of the notions presented in s s ce the book, useful in its study. c A n The book is addressed to specialists in the field, doctoral students, but e p also to mathematics enthusiasts. O or pt f e c x d, e Bijan Davvaz e mitt Department of Mathematics, Yazd University, er Yazd, Iran p ot n ctly Violeta Leoreanu-Fotea omstri Faculty of Matematics, worldscientific.cd distribution is Alexandru Ioan Cuza University of Iasi, Romania w.an we wus m e- R oaded fro2/02/22. wnln 0 y DoTH) o orE up TheRICH ( groZU perY yG HO L O N H C E T F O E T U T TI S N L I A R E D E F S S WI S y b November29,2021 14:48 ws-book9x6 ”HypergroupTheory” pagevii s. e cl arti s s e c c A n e p O or ept f Contents c x e d, e mitt er p ot n y ctl omstri worldscientific.cd distribution is P1.refS1a.ce1emihyHpyeprgerroouppersations and hypergroupoids . . . . . . . . . . . v11 ww.e an 1.2 Semihypergroups . . . . . . . . . . . . . . . . . . . . . . 6 wus m e- oaded fro2/02/22. R 2. H2.y1pergHryouppersgroups and some examples . . . . . . . . . . . . . . 1155 wnln 0 2.2 Conjugacy class and character hypergroups . . . . . . . . 17 y DoTH) o 2.3 Hv-groups as a generalization of hypergroups . . . . . . . 20 orE group TheZURICH ( 3. S3.u1bhypCelrogsreodu,pinsvertible, ultraclosed and conjugable 23 perY subhypergroups . . . . . . . . . . . . . . . . . . . . . . . 23 HyOG 3.2 Hypergroups induced by quasiordered groups . . . . . . . 27 L O 3.3 Subhypergroups in a partially ordered algebra. . . . . . . 29 N H C E 4. Homomorphisms and Isomorphisms 35 T F O 4.1 Homomorphisms . . . . . . . . . . . . . . . . . . . . . . . 35 E T U 4.2 Homomorphisms of hypergroupoids associated with T TI L-maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 S N 4.3 Isomorphisms of hypergroups associated with L-maps . . 48 L I A R E 5. Fundamental Relations 51 D E F 5.1 The β relation on semihypergroups. . . . . . . . . . . . . 51 S S WI 5.2 Complete parts . . . . . . . . . . . . . . . . . . . . . . . 53 S y b vii November29,2021 14:48 ws-book9x6 ”HypergroupTheory” pageviii viii Hypergroup Theory s. e cl arti 5.3 Abelian groups derived from hypergroups . . . . . . . . . 60 s s ce 5.4 Cyclic groups derived from hypergroups . . . . . . . . . . 64 c A n 5.5 Solvable groups derived from hypergroups . . . . . . . . . 71 e Op 5.6 The relation δn and multisemi-direct hyperproducts of pt for hypergroups . . . . . . . . . . . . . . . . . . . . . . . . . 78 e 5.7 Multisemi-direct hyperproduct of hypergroups . . . . . . 82 c x e d, mitte 6. More about the Corresponding Quotient Structures 89 ot per 6.1 The relation ζe . . . . . . . . . . . . . . . . . . . . . . . . 89 n 6.2 Transitivity condition of ζ . . . . . . . . . . . . . . . . . 92 y e ctl 6.3 ζ∗-strong semihypergroup and a characterization of a worldscientific.comd distribution is stri 666...546 dT(cid:2)Geeh-rrpoeiavurrepetdsslaζditne∗ieo-r(snisvtereτomde∗nifg)rh.osyme.pme.sirthg.ryro.ponueg.rplgy.sroU..u-..pre..gu...l...ar...r...ela...t...io...ns... .... .... .... .... .... 1100990665 w.an wwuse 7. Join Spaces, Canonical Hypergroups and Lattices 115 m e- R wnloaded fron 02/02/22. 777...123 JJToohiiennhssppypaacceeerssgradoneutdpeorcmiadninoHendLic,Hably.hAlyaptnteiercwgerspour.opo.sf..of.. V..a..rl..et.. .. .. .. .. .. 111251 ory DoETH) o 7.4 TchhaerajoctinersizpaatcioenHL.,H. . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 113307 up TheRICH ( 77..65 TThhee eExutleenr’ssiotnotoiefnctanfuonncictaiolnhyinpecragnroonuipcablyhycapneorgnriocaulps . . 139 groZU hypergroup. . . . . . . . . . . . . . . . . . . . . . . . . . 146 perY yG 7.7 The Euler’s totient function in i.p.s. hypergroups . . . . . 151 HO L O N H 8. Rosenberg Hypergroups 155 C E T 8.1 On Rosenberg hypergroups . . . . . . . . . . . . . . . . . 155 F O 8.2 Complete hypergroups and Rosenberg hypergroups . . . . 157 E T U 8.3 Weak mutually associativity for Rosenberg’s hypergroups 160 T TI 8.4 Binary relations and reduced hypergroups . . . . . . . . . 163 S N 8.5 Reduced hypergroups associated with binary relations . . 165 L I RA 8.6 The hypergroups IHρ∩σ, IHρ∪σ, IHρσ as reduced DE hypergroups . . . . . . . . . . . . . . . . . . . . . . . . . 167 E F 8.7 The cartesian product of the reduced hypergroups . . . . 169 S S WI 8.8 Enumeration of finite Rosenberg hypergroups . . . . . . . 171 S y b November29,2021 14:48 ws-book9x6 ”HypergroupTheory” pageix Contents ix s. e cl arti 9. Hypergroups and n-ary Relations 177 s s e cc 9.1 n-ary relations . . . . . . . . . . . . . . . . . . . . . . . . 177 A n 9.2 Hypergroupoids associated with n-ary relations . . . . . . 181 e p O 9.3 Hypergroupoids associated with ternary relations . . . . . 187 or pt f 9.4 Connections with Rosenberg’s hypergroupoid . . . . . . . 188 ce 9.5 Hypergroups associated with n-ary relations. . . . . . . . 190 x e d, 9.6 An example of reduced hypergroup. . . . . . . . . . . . . 193 e mitt er 10. Approximations in Hypergroups 195 p not 10.1 Pawlak approximations . . . . . . . . . . . . . . . . . . . 195 y ctl 10.2 Lower and upper approximations in a hypergroup . . . . 198 omstri 10.3 Rough subhypergroups . . . . . . . . . . . . . . . . . . . 199 w.worldscientific.cand distribution is 11. 11L01..i41nksNHbeyeiptgwehrebgeornrahpHohyospd.eor.gpre.arpa.th.osr.san..d..H..y..pe..rg..r..ou..p..s .. .. .. .. .. .. .. .. .. .. 222000772 wwuse 11.2 Hyperoperations associated with hypergraphs and with m Re- binary relations . . . . . . . . . . . . . . . . . . . . . . . 209 oaded fro2/02/22. 11.3 uRseilnagtiaonnsehqipuibvaeltewneceenrhelyaptieorngra.p.hs.a.nd. .hy.p.er.gr.ou.p.s.by. . . 214 wnln 0 11.4 A special hyperoperation on hypergraphs . . . . . . . . . 221 y DoTH) o 11.5 Rough hypergroups of hypergraphs. . . . . . . . . . . . . 227 orE up TheRICH ( 12. Topological Hypergroups 239 groZU 12.1 Topological spaces . . . . . . . . . . . . . . . . . . . . . . 239 perY 12.2 Topological hypergroupoids . . . . . . . . . . . . . . . . . 244 yG HO 12.3 Topological hypergroups . . . . . . . . . . . . . . . . . . 256 L O 12.4 Topological complete hypergroups . . . . . . . . . . . . . 264 N H C TE Bibliography 277 F O E Index 287 T U T TI S N L I A R E D E F S S WI S y b November29,2021 14:48 ws-book9x6 ”HypergroupTheory” page1 s. e cl arti Chapter 1 s s e c c A Semihypergroups n e p O or pt f e c x e d, e mmitt cientific.coctly not per mT[1h1a5eth]ceaomnndcaethpicatisaonbfsea.elngInesbtaruadciilceadhssyiipncaetlrhsaetlrgfuoecbltlrouawriecisnsgwtrdauseccitanudtrreeos,datuhncededcnooimnwpa1do9sa3iy4tsiobbnyyoMmfaatrwntyyo w.worldson is stri etiloemneonfttswios aelnemeleenmtesnits,awsheitle. iInnatnhiaslcghebapratiecrhwyepienrtsrtorudcutcueret,hethneoctoiomnpoofsia- wuti hypergroupoid and a semihypergroup. We present some examples to show wb wnloaded from Re-use and distri t1h.1at hHowyptheersoepsetrruacttiournessaanppdeahryipnenragtruoruapl ophidesnomena. Theory Do02/02/22. WDeefibneigtiinonwit1h.1t.heLedtefiHnitbioenaonfoanh-eympeprtgyrosuept.oidA. mapping ◦ : H ×H → p n ergrouATA o Pca∗ll(eHd)a, whyhpeerreoPpe∗r(aHtio)ndeonnoHtes. Tthheefacomuiplyleo(fHa,ll◦n)oisn-ceamllpedtyashuybpseertgsroofupHoi,di.s ypG HR VE Intheabovedefinition,ifAandB aretwonon-emptysubsetsofH and OR x∈H, then we denote T E (cid:2) M A◦B = a◦b, x◦A={x}◦A and A◦x=A◦{x}. O R a∈A F b∈B O Y In [57], several examples are provided from different biological points T SI of view, and it is shown that the theory of hyperstructures exactly fits the R VE inheritance issue. One of the interesting examples is ABO Blood Group NI Inheritance. U y b Example 1.1 ABO Blood Group Inheritance. In 1900, the Austrian physician Karl Landsteiner realized that human blood was of different 1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.