ebook img

Hyperbolic Differential Equations PDF

242 Pages·1953·17.893 MB·English
by  LerayJ.
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Hyperbolic Differential Equations

l la • HyperbolDiicf fereEnqutaitailo ns by JeanL eray • 0 TabloefC ontents Firsptar t- Linehaypre rboelqiuca tiwointcsho nstant coefficiesnymbtosl icca lcuwliutssh e vervaalr iables � Introduction 2 P• Bibliography P•4 Chap.I The symboclailcc ulus §1. FouriaenrdL aplatcrean sforms P•7 §2. Definitanido mna ipnr operotfit ehses ymboclailcc ulus P• 16 §.3. Exan;>les 24 p. Chap• II Symbolipcr odubcyt f unctoifo np� a ! ! ••• §1. Preliminary 26 p. 2 2 Symbolicp rodubcyat f unctioofnp + ••• + P_.L p. 27 12 2 2 §J. Symbolipcr odubcyat fu nctioofn-p 1 + p2 + ••• + P_.e, p. 35 Chap•II I Symbolicp rodubcyta (p)w,h ere /3 a a isa polynoanmdi a(l3 complenxum bert;h ec ase • (.> • - 1 • §1. Ther eaplr ojecotfit ohnea lgebrmaain�i fao(l�d 0an d thec orn- ) • . • plemeLln(ta )o ft hec losuorfie t sp rojection P•4 6 §2. Thed irecctoonre ( a)o f (a)an d itsd uaCl( a). P•5 6 I 6 §J. Thec onvdeoxm ain( a, , b)s ucthh atth eo perator /1 (3 a f.> b(p)(ap)i sb oundefdo rp 6 (a, b)w herbeis pao lynompi.6a 1l e a (3, §4. Thee lemenstoalryu tion 66 p. §5.C onclusions 6 c p. 9 . lb. -1 Caphter Symbolicp rodubcyta (p)w,h ean( pi)sa IV homogepnoeloyunsom ial P•7 0 §1.T heex terdiiofrf erecnatlicaull us p. 10 §2.H ergloftozr•msu la P•1 5 §.3 Thcea se:e vemn , 1 (Herglotz) 80 l. - 1. > p. §.4 Thcea se:o ddm, 1( Petrowsky) P•8 3 1. -.}_ > §5.T hgee necraasle p/ 90 §6. le:t hwea veeqsu ation P•9 9 Exanp Second Linehaypre rboelqiuca tionvsa riacboleef ficients � - � Introduction P•1 04 Bibliography 108 p. Caph.V Theex istoefng cleo bsaoll utoinoa nv se ctspoarc e IntrodutcoCt hiapoV. n 110 p. §1.T hmea triBcd eesf innionrgfm oswr h iacg hi vmeant rix A ish ermitian 113 p. §2.T hoep eraBtd oerfsi nnionrgfm oswr h itchhhe e rmitian part of givoepne raAt iosbr o unded p.120 a §3.A priobroiun fdo trh leo cal soolftu htheiyp oenrsb oelqiuca tiPo•n1 28 §u.Exi stentchee orems p.132 Caph•V IT hien verosfae hyp se rboloipce raotnao r vec�sopra ce IntrodutcoCt hiapoY.nI 139 p. §1.T he conessh eweshteosps aert ahtseeh eeotfas g ivceonn e P• J40 §2.T hheyp erboolpiecr aotfoo rrsdm- e1rw hopsreo ducatg ivbeyn hyperbopoelriacto ofor r dmeh ra asp osithievrem iptairatn. P• lW! t.3 Thien verosfae r se gulhayrpleyr boopleirca tor p.156 §4.E missanidod ne penddeonmcaei n P•1 71 §5.T heem issfiroonin sta l ocust roafj ectories 177 p. le. Caph.V II Thien verosfae shyp erbopoelriact oonar manifold - §1.H yperboopleircaan tdoe rmsi ssion P•1 87 §2.T hien verosfae h syp erboopleirca tor P•1 $2 §3.T heel emenstoalruyt ions p.( 198 §.4 Cauchy's problem P•2 02 ChapVtIeIrI H yperbosylsitce ms - §1.N otatanidor ne sults P• 2C6 §2.T he porfto hopefr ecesdtiantge ments P•2 11 ThiPradr -tN on-lienqeuaart� i osnyss tems -- - Introduction 220 p. §1.P riemlinaQ.irays:i -lienqeuaarta inosdny ss tems P•2 20 §2.N on-lienqeuaart ions P• 232 §3.N on-lisnyesatre ms P• 237 2. Since Hadgamear hdi sY ;::!.e in -t.:h1:e'P erbolic a7 lectt'..:'CS 19�0 a.'!:>out. equationosf be�pr.l :bl:::.::H:e�r1gcldoSc t�b:��y,; 1cbPre,t rowsky;· at1y order haYe Bureau, Gf.:.·c:Th.e!'lyg ,,u svea:ir iobu1s.i t int.e:-ec-::.::.ng M0 Rie.:31 end methods and eir reaultser e inpo:-tar:;� inc!)r.plete. ... th t The pa=to f o� to t�ee quationws.!. . c"'.iohn struit. . firs:. lo(;7 ._u-os is :•elate� inprovesth eir ed Green!s mc"':.!'lods:- Rc.C:.:-.::r. "'.'. d C..'1.:1 Bli:cci.u \W t-he i'o:-mula.i of a duaU.":.y a bot:nr..'2-7v �ue pobl intoth e proo.b.l, by means i� t.�c;:::-:::'c-:'f."a. r om finding a particu�a�· thitsr ansformed . oi' oc:·:.�.: .-� r-:·:··.:1 a g:..·.·c!'l �:.ngula!":!.ty; probleme asayn d p!".:"'·:·.-··:.c.:- i::porta.."lwth etn� c ·1s he::� t>.is =�::.·:'.<.::1 :.s 2':1.. d He r1got Z .t Pet ro, .,.? s ky a.'1.d c-�_-• ...• .·..... ....... :;,..., ,',"-'""",. ._�_ ..._.c ._• ._,· ,_,._ _.• pendevnatr iabanlde s g�vzs t�1eF ourieanrd the c.��-,::.�:.::1:-::.0:::::, t-:·:::l.::1 :.'::..r-e to Heavisciadlec ulus, :.o L..."".;)laote� a.."1Sfo::":!l.:ltic� onevar i• t�at in r�y t�e -�-o- ........,.� abl(eas a of factt o t:::-c.::'.�0::'T.".atiot:!lo r..atter t:!.me) a.�d ��e Fc'.lr::.er t.:':'J :;r't.Ce); - worlcil It is not astonishing that Garding obtained more conplete results by applying the Laplace transformation at once to all the variables. But he did not express all the results this transformation gives; for instance: he uses the director cones of the convex domains without studying r- /:J.., these inportant convex domains he defines some operators by means of 6; the Laplace transformation and the others by means of the Riesz•s analytical prolongation, whereas it is convenient to define and to study these operators all together by means of the Laplace transformation. We do not transform any boundary problem; but by the Laplace transform­ ation Chapter I defines and studies throughout the symbolic calculus of several variables; this calculus enables us to solve the Cauchy's boundary value problem for differential equations (and would also enable one to solve equations containing both derivatives and .finite differences) see Chap. VII, a §41 no. and Chap. VIII, no. 107•108•109 113. Chapter II gives in particular a new, general and concise expJtession 2 2 2 o a a the inverse of • and of its powers. ot �oXi �ox - , • • - � 2 ax Chapter III studies the inverse of any polynomial of ��' i;c u., • Chapter assuming that this polynomial is homogeneous, achieves J:V1 Herglote•Petrowsky•s calculation of its elementary solution, 4, Bibliography 1.Differeenqtuiaatli ons [1]F lB.u reLa'ui,In tegdrsea etI qiuoant iloinI nse aaiwer deI esr "i vpeaerst ielles dus ecoonrdd erted ut ypehy perbolnioqrum(eam l� oires del as ocireoty�a dleess ciendceLe ise gveo,l3 .11 9381 3-6.7 ) P• [ FlBur.e auE,s ssauril •iI ntegdreaestI q iuoant ioI ns lidneeraI iivreeess aux 2) partie(lNle'emso piurbelspi a�lrs• Acadr�oiyead lee BelgiCqluaes,ds eeSs c ienvcoels1.,5 1,9 3p6,,1 -11$). Less olut�ilo�nmse ntdaeiesrq eusa tliionnesa aiuxr es d�rivp�aerst ie(lilbcisd .). Sur l'if ntegdreaestI q iuoant liioI nnesa aiwerd eIe sr Ii vees partie(lAlceasd r&moiyea dleeB elgiBuqlulee,t in classe deSsc ienvcoels2.,2 1,9 3611 56-174). p. FlB, ureaul,e p robldeeCm aeu chyl epesoq uura tliionnesa ires \ I I (j) Sur auxd I erI ivpearetsi eltloetsa lenheynpte rbo\l uniques a nombirmpea idre v ariabilneds� pend(anAtceas dranoiyea le deB elgiBaqlulee,t cilna sdseeSs c ienvcoels33,,, 1947, 587-670). P• []4 GirdinLgi,n ehyarp erboplaritci dailf fereenqtuiaatli ons with t, constcaonetf fic(iAecnmttaast hv.o,l8 .5 1,9 51,1 -62). p, [5] HadamaLredc,t uroenCs a uchpyr'osb ilnel mi nepaarrt idailf ferential. J, equati(oYnasl1,e9 ,2 1). Lep ro\ bleCmaeu cdehyetl ees/ q uataiweo dnIes r Ii vpearetsi elles lin�aires hy(pHeerrmbao1nl9ni3,q2 u)e.s - 5. [6)P. Humbert and Nachlan (and Colombo), Fomulaire pour le calcul sym­ bolique, Le calcul symbolique et ses applications la � physique mathemJ atique, HeIm orial des Scionces matheIm atiques; vol. 1001,9 4v1ol;. 1051,9 47. (7) G.H erglotz, Uber die Integration linearer, partielles Differential­ gleichangen mit konstanten Koeffizienten (Bericht Uber die Verhandlungen der S�chsischen Akademie Wissenschaften zu Leipsig, Math-Phys. Klasse, vol. 78119 26,9 3-126; p. 287-3vo1l.8 B;o, 1928,6 9-116). P• P• [8] I,Pe trowsky Uber das Cauchysche Problem fUr Systeme von partiellen 1 D�ffe rentialgleiohungen1 Recueil math. (Mat. Sbornik) 2,vo l. 441,9 3718 15-868. P• [9]I, Petro1'rsky, the diffusion of waves and the lacunas for hyperbolic On equations, id., vol. 59119 4P5• ,2 8-3970. (10M], Riesz1 L'inteIg rale de Riemann-Liouville et le probleme Cauchy, de Aota math�, vol. 811,9 49,1 -22). P• 2.Basic theories Boehner, Volesungen Uber Fouriersche Integrale (Leipzig, 19)2; [if] Sa Chelsea, 1948). Bochner and Chandrasokha.ren, Fourier tra.."'ls.forms (Anuls Math. flJJ S, of 1 Prineeton). w. T. Boehner and Hartin, Several complex variables (Princeton1 £1') S, 1948). T,C arleman1 InteIg rale de Fourier {Uppsala, 1944). r�1 - 6. (17] G. Doetsch, Theorie und Andwendung der Laplace-Transformation, {Springer, 1937) Handbuch der Laplace-transformation (Birkh�er, 1950) [18] Hardy, Proc. London math. soc., vol. 14 (1915); vol. 27 (1927) p. 401 Thorin, Meddelanden fr Lunds Univ. math. sernin., Thesis, 1948 � [19] Lefschetz, L'analysis situs et la geometrie algebrique, (Gauthier­ s. Villars, 1923) [20] Riesz, Acta Math., vol. 41, 1918, 71 F. p. [21] L. Schwartz, Th6orie des distributions, vol. 1 et (Hermann, 1951) 2 sumem d in the Annales Univ. Grenoble, vol. 21, 1945, up p. 57-74; 23, 19h7' 1 7-24 Four&s-Bruhat, Co�tes rendus Acad. Sciences, vol. �86, 1953 Y. [22] Titchmarsh, Introduction to the theory of Fourier integrals (OKford, 1937) [2 Weil, t•int6grat1on dans les groupes topologiques et ses applications ] A. 3 (Her , 19uO) mann [24) D. v.W idder, The Laplace tJ"anstorm (Prinoeton) [2S] Wiener, The Fourier integral and certain of its aplp ications (Cam­ Ne bPidge, l9JJ) [26] H. Villat, Leeons sur le Calcul �oJ.ique (.taites la Serbonne; 1· 1 paraitre). - (. CHAPTER I THE SYlIDOLIC CALCliLIJS:.:. ·· .. §1. Fourier and Laplace transforms (This whole §1 is classical: see Bochner's books [lJ] and (14).) 1. Fourier transforms. (See the bibliography: [13), [15], [21), [22], [23 ], [25].) and ::.. be� vector spaces of�� finite dimension � X over the field of real numbers. Supnose they are dual: there is given -l . - a bilinear function x • of x and e X ? e :::._, ? the values of wM.ch are real and which satisfies: if x for some • ? = 0 x and all then x O; if x for some and all x, then '? , = • � = 0 / o. (See: Bourbaki, Algebra lin:a.ire.) 7 • The coordinates xl' .. .,.., x (, of x and ? l • • • ?-t of ? are real numbers and will be so chosen that Let f(x), g(x) be functions Hith complex values,. defined on let/;( ? X; )1 ( ) be functions with com�lex values� defined on ::;:: f(x)g(x) is the <f ? p roduct of f (x) and g(x); f(xf.tg(x) = f .X. .f f(x-y)g(y)dy1 •••d y-/!, ie the con­ volution of f(x) and g(x). We use the norms 1 J/f(x) Iqf � [J.x.f/f(x){qdx1 ..... dx !. Jq for q = l or 2 q • and f(x)/J Sup. f(x) I• II / = / C0 x - We then have 2 (l.i) (l/f// ) :: /Jf1.l ///f// . 2 00 It is easy to prove the following: 1 If f 1< + ro and g 111 < + , then f�fg 111 f 111 g 111 < + and 11 I !/ oo i I :: 11 // oo ; Thus, by use of the convolution, the f(x) such that f 11 < + constitute 1 // oo a ring and the f(x) such that f 11 < + ro constitute a vector space over Ii 2 this ring. f (x) 111< + ro, then its Fourier transform [f (x)] is tho continu­ 11 t If ous and bounded function ) , which is given by the formula [exp. />( ' A ] : • e A (1.2) 7°'[f(x)] = />( ) • /.X./f(x) exp.(-21Yi x .? ) dxi ••• dx-l. ? It can be !)roved that, if II f 111 and II � 111< + oo, then r [g*f] = '!' [g] • [f], afterwards that f(x) 111>< if [f]: enables r If 1( 2 = ' )I� 2 I> = r tJi1s one to define [f ] whenever f < + Plancherel proved the following r II JI 2 oo. regarding this extension: �[f] is an isometric linear mapping of the Hilbert space of all func- -- -- --- � f( x) � � II f 112 < + ro � � Hilbert � of all functions JJJ$1?�< + (thus it is� unitary mapping.) �mapping />( "?) � � oo � given Er 1(.2w)he nev'2e r f 111� JfI 11 < + its inverse� � U 2 oo ; given !?z -1 (l._a) r [p(' )) • f(x) ::z f.:;fp(' ) exp.(2 77' i x • ' ) d' 1 ••• d-l. whenever 111� 11 < + � //I> /J /> 2 oo •

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.