ebook img

Hyper-eccentric structural genes in the mitochondrial genome of the algal parasite Hemistasia ... PDF

29 Pages·2016·2.46 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Hyper-eccentric structural genes in the mitochondrial genome of the algal parasite Hemistasia ...

GBE Hyper-Eccentric Structural Genes in the Mitochondrial Genome of the Algal Parasite Hemistasia phaeocysticola Akinori Yabuki1,*, Goro Tanifuji2,3, Chiho Kusaka1, Kiyotaka Takishita1, and Katsunori Fujikura1 1JapanAgencyforMarine-EarthScienceandTechnology(JAMSTEC),Yokosuka,Kanagawa,Japan 2GraduateSchoolofLifeandEnvironmentalSciences,UniversityofTsukuba,Tsukuba,Ibaraki,Japan 3Presentaddress:DepartmentofZoology,NationalMuseumofNatureandScience,Tsukuba,Ibaraki,Japan D o *Correspondingauthor:E-mail:[email protected]. w n Accepted:August 20, 2016 loa d e Datadeposition:ThisprojecthasbeendepositedatGenBank/EMBL/DDBJundertheaccessionDRA003989(PacBiosequencingdataforthe d mtDNAofHemistasiaphaeocysticola)andLC114081-LC114090&LC120367-LC120387(themitochondrialgenomicDNAandcDNAsequences fro m obtainedbytheSangermethod). h ttp s ://a c Abstract a d e m Diplonemidmitochondriaareconsideredtohaveveryeccentricstructuralgenes.Codingregionsofindividualdiplonemidmitochon- ic .o drialgenesarefragmentedintosmallpiecesandfoundondifferentcircularDNAs.ShortRNAstranscribedfromeachDNAmolecule u p maturethroughauniqueRNAmaturationprocessinvolvingassemblyandthreetypesofRNAediting(i.e.,UinsertionandA-to-Iand .co m C-to-Usubstitutions), although themolecular mechanism(s) of RNA maturation and the evolutionary history of these eccentric /g b structuralgenesstillremaintobeunderstood.Sincethegenefragmentationpatternisgenerallyconservedamongthediplonemid e /a speciesstudiedtodate,itwasconsideredthattheirstructuralcomplexityhasplateauedandfurthergenefragmentationcouldnot rtic occur.Here,weshowthemitochondrialgenestructureofHemistasiaphaeocysticola,whichwasrecentlyidentifiedasamemberofa le -a novellineageindiplonemids,bycomparisonofthemitochondrialDNAsequenceswithcDNAsequencessynthesizedfrommature b s mRNA. The genes of H. phaeocysticola are fragmented much more finely than those of other diplonemids studied to date. tra c Furthermore,inadditiontoallknowntypesofRNAediting,itissuggestedthatanovelprocessingstep(i.e.,secondaryRNAinsertion) t/8 isinvolvedintheRNAmaturationinthemitochondriaofH.phaeocysticola.Ourfindingsdemonstratethetremendousplasticityof /9/2 8 mitochondrialgenestructures. 7 0 /2 Key words: gene fragmentation, RNA processing, mitochondrial genome, diplonemids, Euglenozoa. 6 6 9 8 5 0 b Introduction y g u e Gene coding regions are often interrupted. Introns are the Diplonemidsareunicellularflagellatesthatarefree-livingor s primary structural interrupters of coding region, such as parasitize algae and invertebrates (Lukesˇ et al. 2015). While t on spliceosomal introns, group I and II introns, and archaeal thediversityofdiplonemidsremainsincompletelyunderstood 28 M introns (Moreira et al. 2012). On the other hand, some (Lara et al. 2009; de Vargas et al. 2015), the fragmented a genes of microbial eukaryotes, such as ciliates and apicom- genesfoundinthediplonemidmitochondrialgenomeshave rch 2 plexans, are further fragmented and found at multiple loci beenstudiedintensively;theircomplexandunusualstructures 0 1 in genomes. These fragmented genes may result in discon- haveattractedattentioninthefieldofnotonlyorganellege- 9 tinuous products that work as subunits or split proteins nomics,butalsoRNAprocessing.Themitochondrialgenomes (Heinonen et al. 1987; Edqvist et al. 2000; Feagin et al. of diplonemidsstudiedto date, namely Diplonema spp. and 2012). Among the known gene structures, the most com- Rhynchopus euleeides, comprise multiple mini-circular chro- plex and unusual are considered to be those of the mito- mosomes~5–12kb(Burgeretal.2012).Althoughitstillre- chondrial genome of diplonemids (Euglenozoa), a sister mains unknown how many genes there are in the group of kinetoplastid flagellates (Marande et al. 2005; mitochondrial genomes of diplonemids, the coding regions Vlcek et al. 2011). of all genes studied to date including the rRNA genes are (cid:2)TheAuthor2016.PublishedbyOxfordUniversityPressonbehalfoftheSocietyforMolecularBiologyandEvolution. ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAttributionNon-CommercialLicense(http://creativecommons.org/licenses/by-nc/4.0/),whichpermits non-commercialre-use,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited.Forcommercialre-use,[email protected] 2870 GenomeBiol.Evol.8(9):2870–2878. doi:10.1093/gbe/evw207 AdvanceAccesspublicationAugust25,2016 GBE Hyper-EccentricStructuralGenesintheMitochondrialGenomeoftheAlgalParasiteHemistasiaphaeocysticola fragmentedintosmallpiecescalled“modules”;nononfrag- steps for the removal of the 50 phosphates and the 50 cap mentedversionofthegenehasbeenfound(Vlceketal.2011; structure were skipped in cDNA synthesis using the Valachetal.2014).Forexample,theprotein-codingregionof GeneRacerKit. cox1 is fragmented into nine pieces, and its fragmentation patternisgenerallyconservedamongthediplonemidspecies Sequencingofcox1cDNAandChromosomesPossessing studied to date (Marande and Burger 2007; Kiethega et al. cox1Modules 2011); the number of modules and fragmented positions Polymerasechainreaction(PCR)wasperformedusingHotStar foundincox1aregenerallythesameamongfourdiplonemid Taq(Qiagen),andPCRproductswereclonedintothepCR2.1 species sequenced to date. Each module is independently vector usingaTOPO TACloning Kit(LifeTechnologies). The transcribed, and primary transcripts undergo secondary as- cloneswerecompletelysequencedonbothstrands.Thepar- D o sembly into a single RNA (Marande et al. 2005; Marande w tial sequence of cox1 cDNA was amplified from the synthe- n andBurger2007;Kiethegaetal.2013). lo sized cDNA using the dip cox1 F and dip cox1 R primer set a ThreetypesofRNAediting[i.e.,uridine(U)insertionandA- (supplementary table S1, Supplementary Material online). ded to-IandC-to-Usubstitutions] arealsoinvolvedinthemRNA Amplification consisted of 35 cycles of denaturing at 94(cid:2)C fro maturation process before the end products of assembled for30s,annealingat52(cid:2)Cfor30s,andextensionat72(cid:2)C m h RNA sequences are translated to the proper amino acid se- for 1 min. Based on this partial sequence, we designed six ttp s quences (Marande and Burger 2007; Kiethega et al. 2013; primers (p1–p6) (supplementary table S1, Supplementary ://a Moreira et al. 2016). As misassembled mRNA, in which the c Material online), and the complete cDNA sequence of a d short RNAs are assembled in incorrect order, has not been e mature cox1 mRNA was amplified using these primers and m documented, this RNA maturation process is considered to adapterprimersfromthecDNAsynthesizedbytheGeneRacer ic.o progress quite accurately (Burger et al. 2012). However, the u kit.ThePCRprogramforfull-lengthcox1cDNAconsistedof p underlying molecular mechanism(s) remain(s) unknown. 35cyclesofdenaturingat94(cid:2)Cfor30s,annealingat55(cid:2)C .co m Althoughitisunclearhowandwhytheseunusualgenestruc- for30s,andextensionat72(cid:2)Cfor2min.ThePCRconducted /g b tures were established, they have been suggested to be a with genomic DNA and three combinations of outward e/a resultofconstructiveneutralevolution;ithasalsobeensug- primer sets (i.e., p1 and p2, p3 and p4, and p5 and p6) for rtic gestedthattherearenofunctionaladvantagesofgenefrag- theamplificationofchromosomalsequencesconsistedoftwo le-a mentation (Flegontov et al. 2011). Furthermore, because of continuoussteps:(1)threecyclesofdenaturingat94(cid:2)Cfor30 bs thesharedmannerofgenefragmentationamongdiplonemid s,annealingat58(cid:2)Cfor30s,andextensionat72(cid:2)Cfor2.5 trac speciesexaminedtodate,thecomplexityoftheirgenestruc- min;(2)32cyclesofdenaturingat94(cid:2)Cfor30s,annealingat t/8 /9 ture may have plateaued during evolution and further gene 55(cid:2)Cfor30s,andextensionat72(cid:2)Cfor2.5min.ThePCRto /2 8 fragmentation may have not occurred in this lineage confirm the sequence variation and existence of immature 70 (Flegontovetal.2011). mRNA was conducted with the primer set, “cox1 FULL F” /26 6 Hemistasiaphaeocysticolawasrecentlyidentifiedasarep- and“cox1FULLR”;theprogramincluded25cyclesofdena- 98 resentativeofalargeenvironmentalcladewithindiplonemids, turing at 94(cid:2)C for 30 s, annealing at 55(cid:2)C for 30 s, and 50 b and its phylogenetic position is distinct from that of other extensionat72(cid:2)Cfor2min.TheacquiredcDNAsequences y g diplonemidswhosemitochondrialgenestructureshavebeen were manually aligned and the structure of the cDNA se- ue s analyzed (Yabuki and Tame 2015). In the present study, we quencesthatwerederivedfrompossibleimmatureandmis- t o show the hyper-eccentric degree of the mitochondrial gene assembled cox1 mRNA (i.e., LC114084–LC114087) was n 2 8 structureofH.phaeocysticolawithcomparisontomitochon- predicted by comparison with the cDNA sequence derived M drialgenesinotherdiplonemids.Wealsodiscussthepossibil- frommaturemRNA(i.e.,LC114081). arc h ityofauniqueRNAmaturationprocessandtheevolutionary 2 0 constraintonthegenestructureinH.phaeocysticolamtDNA. SouthernHybridizationAnalysis 19 Total genomic DNA from H. phaeocysticola was prepared Materials and Methods using a standard cetyltrimethylammonium bromide (CTAB) protocol (Doyle and Doyle 1990). Southern hybridization DNAandRNAExtractionandcDNAPreparation probes targeting the shared region, the distinct noncoding Total genomic DNA and RNA were extracted from ~100 ml region of the chromosomes possessing modules 13-1 and samplesof2-week-oldcultures(NIES-3356)usingtheDNeasy 13-2, were amplified using the following primers: “CONS Plantminikit(Qiagen)andTRIzol(LifeTechnologies),respec- probe F,” “CONS probe R,” “M13-1 probe F,” “M13-1 tively. cDNA was synthesized from DNase-treated RNA by probeR,”“M13-2probeF,”and“M13-2probeR”(supple- SuperScript II (Life Technologies) using random hexamers or mentary table S1, Supplementary Material online). The PCR by the GeneRacer Kit (Life Technologies). As the RNA tran- productswereclonedintothepGEMT-easyvector(Promega) scribedinmitochondriadoesnothavea50 capstructure,the and used as templates for digoxygenin (DIG)-labeled probe GenomeBiol.Evol.8(9):2870–2878. doi:10.1093/gbe/evw207 AdvanceAccesspublicationAugust25,2016 2871 GBE Yabukietal. synthesis according to the manufacturer’s instructions (PCR sequencesweresearchedforusingthecompletecDNAse- DIG labeling kit, Roche Diagnostics). The 200 ng of total quencesofeachgeneasaqueryusingblastn.Thebound- DNAperlanewereappliedforelectrophoresisandtransferred ary positions between neighboring modules were toapositivelychargednylonmembranebycapillarytransfer. estimated by eye. The coding regions that could not be SouthernhybridizationwascarriedoutinDIGEasyHybbuffer detectedevenbyblastnwiththeoptionforshortsequence (RocheDiagnostics)withtwoml/mlDIG-labeledprobesover- search (i.e., “-task blastn-short”) were left as missing re- nightat37(cid:2)C.Themembraneswererinsedtwicefor10min gionsinthisstudy,buttheundetectedregionscomposedof at room temperature in low-stringency buffer (0.1% SDS, onlyTresidueswereregardedasthesitesforuridine-inser- 2(cid:3)SSC),followedbytwo15-minrinsesat65(cid:2)Cinhigh-strin- tion RNA editing. The G/T content of each missing region gency buffer (0.1% SDS, 0.5(cid:3)SSC). Hybridization signals was calculated manually. It was here assumed that each D were detected according to standard procedures in the DIG missing region exists as a single module in the mitochon- ow n detectionkit(RocheDiagnostics). drialgenomeandtentativemodulenumberswereassigned lo a tothem,respectively. de d MitochondrialGenomeSequencing fro m The mitochondrial chromosomes were independently ampli- Results h fied from the total DNA using two primer sets—“CONS. fR ttp s andCONS.rF1”and“CONS.fRandCONSrF2”—toreduce PreliminarySurveyofcox1-CodingChromosomesand ://a theriskofbiasedamplification.Notethattheseprimerswere DetectionoftheGeneral“Core” ofMitochondrial ca d designedtooutwardlyannealwithinthesharedregionthatis Chromosomes e m possiblyconservedamongallchromosomes(seebelow).Each ic ThepartialcDNAofthematurecox1mRNAofH.phaeocys- .o amplificationconsistedof40cyclesofdenaturingat94(cid:2)Cfor ticola was obtained by reverse-transcription polymerase up 30s,annealing,andextensionat72(cid:2)Cfor3.5min.ThePCR chain reaction (RT-PCR) using “dip cox1 F” and “dip cox1 .com products contained sequences of various length and more R”(supplementarytableS1,SupplementaryMaterialonline). /gb than 100 clones were randomly sequenced to check that e No product with the same primers was amplified from ge- /a the amplification was successful (it should be noted that nomicDNA. ThecompletecDNAsequenceofmaturecox1 rtic thesecloneswerenotsequencedcompletely).ThePCRprod- le mRNAwasthendeterminedby50and30RACE(depositedin -a uctsweredividedintotwogroups:1-2and2-20kb,andthen b directlyutilizedasinitialmaterial(withoutanyfragmentation GenbankasLC114081)(fig.1A).Theaminoacidsequence stra was translated from this cDNA sequence under the rule of c process) for the sequence library of PacBio RSII. Hence, two t/8 genetic code table 4 (i.e., The Mold, Protozoan, and /9 librarieswereconstructedusingtheSMRTbellTemplatekit1.0 Coelenterate Mitochondrial Code and the Mycoplasma/ /28 (Pacific Biosciences). The mitochondrial genome library con- 7 Spiroplasma Code), but not under the standard code table 0 struction and sequencing by PacBio RSII (Pacific Biosciences) /2 (http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi, 66 were performed at the Dragon Genomics Center (TAKARA 9 lastaccessed7September2016).Itwasalsoconfirmedthat 8 Bio).Thelibrariesconstructedfromthe1-2-and2-20-kbPCR 50 theaminoacidsequencesofcox1inthisstudyclusterwith b productsweresequencedbyoneandtwoSMRTcells,respec- y otherdiplonemidcox1sequenceswith100%supportinthe g tively. The circular consensus sequencing (CCS) reads were u phylogenetic tree (supplementary material, Supplementary es generatedfromrawreadsbytheDragonGenomicsCenter. Materialonline). t o n Five mitochondrial chromosomes that possess modules 28 CompletecDNASequencingofcob,cox2,andnad7 M numbered 7, 12 (two types), and 13 (two types) were ac- a Theprimersfor30and50RACEweredesignedonthebasisof quiredbythegenomicPCRconductedusingoutwardprimers rch themodulesequencesofcox2,cob,andnad7detectedinthe annealingtovariousfragmentsofthededucedcodingregion 20 1 preliminary mitochondrial genome sequencing (supplemen- (fig. 1A and B). The mitochondrial chromosome sequences 9 tary tableS1, SupplementaryMaterial online), andthe com- contained homo-polymeric repeats at numerous sites. Two plete cDNA sequences were amplified. Each PCR run typesofmitochondrialchromosomespossessingmodule13, consistedof35cyclesofdenaturingat94(cid:2)Cfor30s,anneal- whichwere2,682and3,185bp,werecompletelysequenced ingat55(cid:2)Cfor30s,andextensionat72(cid:2)Cfor2min. by primer walking and deposited in Genbank as LC114082 and LC114083, respectively. The circular architecture of the IdentificationofModuleRegionsforEachMitochondrial module 13 chromosome was confirmed by PCR with the Gene inward primer set (i.e., fig. 1B, inw. “m13 F and inw. m13 To identify the modules of each mitochondrial gene, BLAST R” in supplementary table S1, Supplementary Material 2.2.28+(ftp://ftp.ncbi.nih.gov/blast/executables/blast+/2.2.28/, last online). All mitochondrial chromosomes sequenced herein accessed9April2015)wasutilized. A local BLAST database contained nearly identical 500-bp sequences at the 50 up- was constructed from the provided CCS reads. Module stream region of each module; these sequences were 2872 GenomeBiol.Evol.8(9):2870–2878. doi:10.1093/gbe/evw207 AdvanceAccesspublicationAugust25,2016 GBE Hyper-EccentricStructuralGenesintheMitochondrialGenomeoftheAlgalParasiteHemistasiaphaeocysticola D o w n lo a d e d fro m h ttp s ://a c a d FIG.1.—Summaryofpreliminarysurveysofcox1-codingchromosomes.(A)CompletecDNAsequenceofmaturecox1mRNA.Theannealingpositions em oftheprimersandthemoduleregionsidentifiedinthepreliminarysurveysareshownwiththecDNAsequence.(B)Schematicrepresentationofcircular ic .o chromosomespossessingmodules7,12,and13.Solidlinescorrespondtotheregionsthatwereactuallysequenced.Theregionsshownbydashed-linesstill u p remaintobesequenced.Onthephysicalmapofthechromosomespossessingmodule13,thepositionsofprobes(i.e.,M13-1andM13-2)thatcan .c o distinguisheachchromosomearealsoshown.SR,sharedregion;m7,module7;m12,module12;m13,module13.(C)Southernhybridizationresults.Left, m /g middle,andrightcolumnscorrespondtotheresultsobtainedusingthespecificprobesforthesharedregion,M13-1,andM13-2,respectively. b e /a rtic designated“sharedregions(SRs)”(fig.1B).Southernhybrid- request). Homo-polymeric repeats were also recognized in le -a izationanalysisusingthesharedregions(withoutanyrestric- eachCCSreadatnumeroussites. bs tion enzyme digestion) showed multiple signals (fig. 1C). tra c While the band patterns and intensities of the M13-1 and t/8 M13-2 probe signals were different from one another, cox1GeneStructureandSequenceVariations /9/2 8 those signals corresponded to the portion of the signals of Seventeen fragments corresponding to most of the protein- 70 /2 sharedregionprobe(fig.1C). codingregionofcox1wereretrievedfromtheCCSdata,but 6 6 9 seven small regions were missing (fig. 2A). Including these 8 5 regions, the H. phaeocysticola cox1 protein-coding region 0 b AmplificationandSequencingofMitochondrialDNA y was found to be fragmented into at least 24 modules g u SequencesamplifiedbyPCRwiththeoutwardprimersofthe (fig.2A).Theboundarypositionbetweenthemodulescould e s sharedregion(i.e.,“CONS.fRandCONS.rF1”and“CONS. be elucidated clearly, except in a few exceptional cases. For t o n fRandCONS.rF2”insupplementarytableS1,Supplementary example, as the boundary between modules 7 and 8 over- 2 8 Material online) included partial sequences of cox1, cox2, lappedbyoneTresidue,nopreciseboundarywasrecogniz- M a cox3, cob, atp6, and nad7 (data not shown). PCR products able (fig. 2B). Five sites for U-insertion type of RNA editing rc h obtained using the shared region primers were divided into were predicted (i.e., between modules 11 and 12, modules 20 1 twofractionsonthebasisoflength,forexample,1-2and2- 12and13,modules19and20,andmodules20and21,and 9 20kb,togeneratetwodifferentDNAlibrariestoobtaincom- attheendofmodule24:fig.2A,CandD).Theexactnumber prehensivesequencedata(seebelow). ofUresiduesinsertedbetweenmodules12and13aswellas Thelibraryconstructedfrom1-to2-kbPCRproductswith modules19and20couldnotbeelucidated,becauseitwas sharedregionprimerswassequencedbyoneSMRTcell,and unclear whether the last T residues on modules 12 and 19 227,054subreadsyielding12,992CCSreadswereobtained. wereindeedpartofmodulesornot(fig.2CandD).ThefiveT The second library consisting of 2-20-kb PCR products was residues between modules 12 and 13 in H. phaeocysticola sequenced by two SMRT cells, and 127,303 and 157,557 were in the same position as an RNA editing site of subreads, yielding 9,581 and 11,542 CCS reads were ob- Diplonemapapillatumcox1,inwhichsixuridinesareinserted tained, respectively. The raw sequence data were deposited (fig. 2A). The eight boundaries between D. papillatum cox1 inGenbankasDRA003989.TheCCSreadswereanalyzedin moduleswereexactlysharedwithcox1ofH.phaeocysticola the subsequent analyses (CCS reads are provided upon (fig.2A). GenomeBiol.Evol.8(9):2870–2878. doi:10.1093/gbe/evw207 AdvanceAccesspublicationAugust25,2016 2873 GBE Yabukietal. A U x8 U x5? “m16” m19 U x4?U x11 m21U x3? “m10” m15 “m18” “m22” Hp “m4” “m6” cox1 m1m3 m5 m7 m8 m9 m12m13m14 m17 m20 m23m24AA・・AA “m2” m11 (LC114081) Dp cox1 m1 m2 m3 m4 m5 m6 m7 m8 m9 AA・・AA U x6 B * * cDNA(LC114081) GTTAAGTGTCGATTGCTTCATCATAGCGTTACATGCTGTAGGTCTATCATC D o cDNA(LC120367) GTTAAGTGTCGATTGCTTCATCATAGCGTTACATGCTGTAGGTCTATCATC w cDNA(LC120370) GTTAAGTGTCGATTGCTTCATCATAGCGCTACATGCAGTAGGTCTATCATC nlo cDNA(LC120379) GTTAAGTGTCGATTGCTTCATCATAGCGTTACATGCTGTAGGTCTATCATC a d cDNA(LC120382) GTTAAGTGTCGATTACTTCATCATAGCGTTACATGCTGTAGGTCTATCATC e cDDNNAA (mL7C120383) GGTTTTAAAAGGTTGGTTCCGGAATTTTGGCCTTTTCCAATTCCAATTAgAaCtGgTtTcAcCaAtTaGtCaTtGcTcAaGtGaTtCaTtAgTgCaAcTaCt d fro DNA m8-1 ctacctcaatgcccttatgccagTAGCGTTACATGCTGTAGGTCTATCATC m DNA m8-2 gtgctctgacgtcctatccacagTAGCGCTACATGCAGTAGGTCTATCATC h ttp s C ://ac * * * a cDNA(LC114081) CGTCCTACAGCATAGTGGCAATTTTTGCTTGTTCAACGTCCTCGGCATGGT de cDNA(LC120367) CGTCCTACAACACAGTGGCAATTTTTGCTTGTTCAACGTCCTCGGCATGGT m cDNA(LC120369) CGTCCTACAGCATAGTGGCAATTTTTGCTTGCTCAACGTCCTCGGCATGGT ic cDNA(LC120370) CGTCCTACAACACAGTGGCAATTTTTGTCTGTTCAACGTCCTCGGCATGGT .ou ccDDNNAA((LLCC112200337712)) CCGGCTCCCCTTAACCAAAGCCAACTAAGGTTGGGGCTAAAATTTTTTTTTTGGCCTTTTGGTTTTCCAAAACCGGTTCCCCTTCCGGGGCCAATTGGGGTT p.co cDNA(LC120386) CGTCCTACAACACAGTGGCAATTTTTGCTTGTTCAACGTCCTCGGCATGGT m DNA m12-1 CGTCCTACAGCATAGTGGCAATatcggcatatagcatatatgtcgatattg /gb DNA m12-2 CGTCCTACAACACAGTGGCAATattgaggtatagcatatacctcgatattg e DDNNAA mm1133--12 gtaatgatggggctagggttaatcggaaggggttcctcgtagtagttgttgtGGTCCTTTGGTTTTCCAAAACCGGTTCCCCTTCCGGGGCCAATTGGGGTT /artic le -a b DccDDNNAA((LLCC111240038716)) TTCCCCAAAACCGGGGAATTTTCCTTAATTGGTTTTAACCGGAATTTTTTTTGGCCGG*TCCCAATTACCCTTCTCCTTGGAGTTAACCTTAAGGGGCCAACC stract/8 cDNA(LC120378) TCCAACGGATTCTATGTTACGATTTTGCGTCATCCTTCTGGTACTAGGCAC /9/2 DNA m19 TCCAACGGATTCTATGTTACGATgtacctctacccccccccccagccggct 8 DNA m20-1 tgctaccccgcaatgtcacccccgtaGCGTCATACTCCTGATACTAGGCAC 70 DNA m20-2 atgctaccccgtgatgtcaccccgtaGCGTCACACTGCTGATACTAGGCAC /2 6 DNA m20-3 atgctaccccgtcatgccattgagtaGCGTCATCCTTCTGGTACTAGGCAC 6 9 8 5 FIG.2.—SummaryofgenefragmentationpatternofHemistasiaphaeocysticolacox1.(A)Fragmentationpatternofcox1ofHemistasiaphaeocysticola 0 b (Hp)andcomparisonwiththatofDiplonemapapillatum(Dp).TheRNAeditingsitesatwhichuridineresiduesareinsertedareshownbyblackverticalbarsin y g thesequence(e.g.,betweenm11andm12),andthenumberoftheinserteduridinesisindicatedwiththearrowateachsite.Regionsthatstillremaintobe ue s detectedinthemitochondrialDNAsequencesareshownasthedashed-lineboxes,andtheirtentativemodulenumbersareshownindoublequotation t o n marks.Verticaldouble-headedarrowsshowtheboundarypositionssharedbetweenH.phaeocysticolaandD.papillatum.(B–D)Junctionregionsofmodules 2 7and8,modules12and13,andmodules19and20.Modulesequencesingenomicdataareshowninbold.Theoverlappingresidueisshowninwhitetext 8 M onblackbackground,andpossiblesitesforU-insertionaremarkedbyblackdots.Thesitesatwhichthenucleotidepolymorphismcanberecognizedare a rc highlightedingray.ThesitesatwhichthenucleotidepolymorphismisrecognizedinonlycDNAsequencesareadditionallymarkedbysingleasterisks.The h 2 accessionnumbersofcDNAsequencesareshowninbracketsandthenumbersshownwiththemitochondrialDNAsequences(e.g.,m8-1andm8-2) 0 1 correspondtothesequencenumbersprovidedinthesupplementarymaterial,SupplementaryMaterialonline. 9 Among the 17 identified modules in H. phaeocysticola werealsorecognizedinthecDNAsequencesamplifiedwith cox1, sequence variation was found in 12 modules. Among theprimerset,“cox1FULLF”and“cox1FULLR.”Sequencing thevariations,therewerealsononsynonymoussubstitutions. of 34 clones yielded 25 different sequences (deposited in Forexample,fourdifferentvariantsofmodule20wereiden- Genbank as LC114084–LC114087 and LC120367– tified in the mitochondrial DNA sequences (fig. 2E, supple- LC120387). Although eight cDNA sequences could not be mentary material, Supplementary Material online), three of translated to amino acid sequences (see below), the other whicharenonsynonymoussubstitutions.Theselectedrepre- sequences were also different from one another at the sentative sequences of each module in which the variations amino acid level (supplementary material, Supplementary were found are provided in the supplementary material, Materialonline).Furthermore, severalsinglenucleotidepoly- Supplementary Material online. The sequence variations morphismsfoundincDNAsequencescouldnotbeconfirmed 2874 GenomeBiol.Evol.8(9):2870–2878. doi:10.1093/gbe/evw207 AdvanceAccesspublicationAugust25,2016 GBE Hyper-EccentricStructuralGenesintheMitochondrialGenomeoftheAlgalParasiteHemistasiaphaeocysticola A C ** ** ** *** **** * * **** truncated “m2” “m22” cDNA(LC114081) ATGTTGGTGGTTTTAGGTTTTTTTTGAACGTGCAACGCTAAGGTCATTGGATTCGTATATTTAG cDNA(LC120367) GGGTTTTAGGTTTTTTTTGAACGTGCAACGCTAAGGTCATTGGATTCGTATATTTAG cDNA(LC120368) TAGTTTTAGGTTTTTTTTGAACGTGCAACGCTAAGGTCATTGGATTCGTATATTTAG LC114084 m1 m23m24 cDNA(LC120382) p r i m e r TGGTTTTGGGTTTTTTTTAAACGTGCAACGCTAAGGTCATTGGATTCGTATATTTAG cDNA(LC120383) (c ox 1 FU LL F )TGGTTTTGGGTTTTTTTTGAACGTGCAACGCTAAGGTCATTGGATTCATATATTTGG cDNA(LC120384) TGGTTTTGGGTTTTTTTTGAACGTGCAACGCTAAGGTCATTGGATTCGTATATTTGG cDNA(LC120386) TGGTTTTGGGTTTTTTTTGAACGTGCAACGCTAAGGTCATTGGATTCGTATATTTAG GTATATTTAGTTTTTGGTGTGGTGTTGGTGGGGTTGGTCCTT DNA m1-1 ATGTCAATAGCCTCAGGTCCTCTTTGAACGTGCAACGCTAAGGTCATTGGATTCGTATATCTAG DNA m1-2 ATGTCAATAGCCTCAGGTCCCTTTTGAACGTGCAACGCTAAGGTCATTGGATTCGTATATCTAG m1 truncated “m22” m23 DNA m1-3 ATGTTAGTAGTCCCAGGTCCCTTTTGAACGTGCAACGCTAAGGTCATTGGATTCGTATATCCAG “m2” B D truncated of “m2” truncated “m18” cDNmAis ascincge sresgioionn nsu amnbde rs sequences T & G / N (%) LC114085 m1 mm1290 m23m24 “m2” LLLCCC111112440003886167 TCTTTTTTTTTTTTTGGGGGGTTTGGGTTTGGGGGGTGGGGGTTTTTTTTT 111767///111777 (((19100400.1%%%))) m21“m22” Dow LC114084 TTTTTGG---------- 7/7 (100%) n GTATATTTAGTTTTTGGCTGGTGTTTTGGTTGTTTTGTTTTTGTTGATAGGTG lo “m4” LLLCCC111122400033868185 CCCTTTGGGCCCTTTGGGGGGGGGTTTGGGAAACCCAAACCCGGGCCCAAAGGGTTTTTTCCCTTTAAATCCAAAAAACCCGCGTTTGGGTTTTTTAAAAAATTTCCCAAACCCCCCAAAGGGTTT 222120///444222 (((554027%..46%%))) m1 tru“nmc2a”ted truncated “m18” m19 aded LC114081 TTGGTTGCTACCACTAGGGTTTTTGTTGTTGGTAGGGAGCGGGGTATTTGATGAGG 43/56 (76.8%) E fro LC120368 TTGGTTGCTACCACTAGGGTTTTTGTTGTTAGTAGGGAGCGGGGTATTTGATGAGG 42/56 (75%) m “m6” LLLLCCCC111122220000333367789150 TTTTTTTTGGGGGGGGTTTTTTTTGGGGCCCCTTTTAAAACCCCCCCCAAAACCCCTCTTAAAAGGGGGGGGGGGGTTTTTTTTTTTTTTTTTTTTGGGGTTTTTTTTGGGGTTTTTTTTGGGAGGGGTTTCGAAAGGGGGGGGGGGGAAAAGGGGCCCCGGGGGGGGGGGGGGGGTTTTAAAATTTTTTTTTTTTGGGGGAAATTTTGGGGAAAAGGGGGGGG 44442342////55556666 ((((77775685%..%88%%)))) LC1140“8m62”m1 mmtr12u90ncatemd2 “3mm1284” https LC120384 TTGGTTGCTACCACTAGGGTTTTTGTTGTTGGTAGGGAGCGGGGTACTTGATGAGG 42/56 (75%) m21“m22” ://a LC114081 GTTTTTTGACTGCGCGTCC 13/19 (68.4%) ca “m10”LC120373 GTTTTTCGACTGCGCGTCC 12/19 (63.2%) TATTTAGCTTTTGGTGTGGTGTTTGGGGTTTTGGTTGTGTTGTTTTTATTGATAG d LC120379 GTTTTTTGATTGCGCGTCC 14/19 (73.7%) m1 “m2” truncated “m18” m19 em “m16”LC114081 TTTTTGTGGGTTTGGGTTTTT 21/21 (100%) ic .o LC114081 GGGAGCAGTTTTTGGTGTTTTGGTTGGTGTTTTGGTTGTTTTGTTTTTG 46/49 (93.9%) u “m18”LLLCCC111222000333667783 GAAGGGGGGAAAGGGCCCAAAGGGTTTTGGTTTTTTTTTGGGGGGTTTGGGTTTTTTTTTTTTGGGGGGTTTTTTGGGGGGTGGGGGTTTTTTTTTTTTGGGGGGTTTTTTGGGTTTTGGTTTTTTGGGTTTTTTTTTTTTTTTGAA 444554///444999 (((998119...888%%%))) F LC114087m1m3“?” m5 m7 m8 p.com LLLCCC111211044300888475 GA-GG-GG-AA-GG-CC-AA-GG-TT-TG-TT-TT-TT-GG--GAT-TG-G-TT-TTT-TT-TG-G-GGTCTTTCGGGGGGTGTGGGTTTTTTTTTTTTGGGGGGTTTTTTGGGTTTTGTTTTTTTGGGTTTTTTTTTTTTTTTGGG 442545///442996 (((989196...882%%%))) “m2” m“m116” “m16” m19 “m22” /gbe LC114086 -------------------------GGGGTTTTGGTTGTGTTGTTTTTA 23/24 (95.8%) m9 m12m13m14 m17 m20 m23m24 /a “m22”LC114081 TGTGGTGTTGGTG 13/13 (100%) “m10” m15 “m18” m21 rtic le -a FIG.3.—(A)MultiplealignmentofcDNAandgenomicsequencesofmodule1ofcox1.Thesitesatwhichthenucleotidepolymorphismcanbe bs recognizedarehighlightedingray.ThesitesatwhichthenucleotidepolymorphismisrecognizedononlycDNAsequencesaremarkedbysingleasterisks,and tra c thesitesatwhichallnucleotidesareinconsistentbetweencDNAandgenomicsequencesaremarkedbydoubleasterisks.(B)Multiplealignmentsofthe t/8 cDNAsequencesoftheregionsthatstillremaintobedetectedinthemitochondrialDNAsequences.G/Tresiduesareshowninwhitetextonblack /9 /2 background.TheG/Tcontentandpercentageofeachsequencearealsoshownintherightcolumn.(C–E)cDNAsequencesofpossibleimmaturecox1mRNA 8 7 0 lackingtheinternalregion.(F)cDNAsequenceofpossiblemisassembledcox1mRNA,inwhichmodule4isreplacedwithanunknownsequence. /2 6 6 9 8 in these genomic sequences (figs. 2 and 3A) and all cDNA sequence(fig.3F).AstopcodonwasfoundinsideLC120371. 5 0 sequencescorrespondingtothemodule1regionwereincon- ThethreeothercDNAsequences(i.e.,LC120375,LC120380 b y sistentwiththegenomicsequencesatseveralsites(fig.3A).At andLC120382)lackedoradditionallypossessedoneTresidue g u e these inconsistent sites, G and T in cDNA sequences were incontinuousTregions. s t o replacedwithAandCinthegenomicsequences,respectively. n 2 Seven unidentified regions in cDNA sequence were rela- 8 GeneStructuresofcob,cox2,andnad7 M tivelyT/G-rich(fig.3B).Inparticular,theT/Gcontentof“mod- a ules 2, 16, 18, and 22” exceeded 90% (fig. 3B). Sequence ThecompletecDNAsequencesofmaturecob,cox2,andnad7 rch variationswerealsorecognizedincDNAdataforthesemiss- mRNAweredeterminedbyRT-PCRand30/50 RACEmethods, 20 1 ing regions, except “modules 16 and 22” (fig. 3B). Among andtheirsequencesaredepositedinGenbankasLC114088, 9 eightcDNAsequencesthatcouldnotbetranslatedtoamino LC114089, and LC114090, respectively (fig. 4). These se- acid sequences, internal region was missing in three se- quencescouldalsobetranslatedtoaminoacidsequencesby quences (i.e., LC114084–LC114086: fig. 3C, D and E); for geneticcodetable4.Mostofthemodulesofeachgenewere example,the30 endoftruncatedmodule2wasdirectlycon- identifiedinthemitochondrialDNAsequencesandthemissing nectedwiththe50 endofmodule22inLC114084(fig.3C). regionsexhibitedhighG/Tcontentsaswasthecaseforcox1 While both LC114085 and LC114086 contained truncated (fig. 4). Each gene was fragmented more finely than in module 18, the length of and truncated position in module D. papillatum, and the boundaries between D. papillatum 18differed(fig.3DandE).Inonesequence(i.e.,LC114087), modulesweremostlysharedinH.phaeocysticola,exceptone only module 4 was replaced with the unknown sequence, position in each gene (e.g., the boundary position between which could not be identified in the mitochondrial DNA modules5and6incobofH.phaeocysticola;fig.4).RNAedit- data, and the codon-frame was shifted from this unknown ingsitesforU-insertionwerealsofoundincob,cox2,andnad7 GenomeBiol.Evol.8(9):2870–2878. doi:10.1093/gbe/evw207 AdvanceAccesspublicationAugust25,2016 2875 GBE Yabukietal. shifted by 8 bp U x1 U x5 55/57 89/145 29/33 Hp m5 “m9” m13“m14” cob m1 m2 m3 m6 m7 m8 “m11” m12 m15 AA・・AA (LC114088) “m4” m10 46/65 Dp cob m1 m2 m3 m4 m5 m6 AA・・AA U x3 shifted by 2 bp (at least) 10/10 U x4 U x4 U x13 D o coHxp2 m1 “mm34” m5 m6 m7 m8m9m10 AA・・AA wnlo m2 a (LC114089) d e d Dp fro cox2 m1 m2 m3 m4 AA・・AA m h 7/12 7/7 3/3 11/“1m212” U x3 7/8 shifted by 3 bp U x6 ttps://a Hp 48/93 “m5” “m7” “m9” m13 “m18” cad nad7 “m1” m6 m8 m11 m14 m15 m16m17 m19 m20 m21 m22 AA・・AA em (LC114090) m“m23” m4 m10 ic.o 5/9 u p Dp .c nad7 m1 m2 m3 m4 m5 m6 m7 m8 m9 AA・・AA om /g b e FIG.4.—Fragmentationpatternsofcob,cox2,andnad7ofHemistasiaphaeocysticola(Hp)andcomparisonwiththoseofDiplonemapapillatum(Dp). /a RNAeditingsitesatwhichuridineresiduesareinsertedareshownbyblackverticalbars,andthenumberofinserteduridineresiduesisindicatedwiththe rtic le arrowateachsite.Missingregionsareshownasdashed-lineboxes,andtheirtentativemodulenumbersareshownindoublequotationmarks.Vertical -a b double-headedarrowswithsolidlinesshowtheboundarypositionssharedbetweenH.phaeocysticolaandD.papillatum.TheG/Tcontentsofeachmissing s regionareshownintheboxes. tra c t/8 /9 /2 asincox1.TheRNAeditingsitefoundattheterminalregionof 2011), no other multi-copy modules have been reported in 8 7 0 cobinD.papillatumwasnotfoundinH.phaeocysticola(fig.4). other diplonemids. In addition, sequence variation within a /2 6 Thegenefragmentationpatternsaswellasthepositionand given module has not been reported in other diplonemids. 6 9 8 numberofUresiduesinsertedbyRNAeditingaresummarized Furthermore, the mitochondrial chromosomes of H. phaeo- 5 0 in figure 4; it should be noted that this schematic summary cysticola are smaller than those of other diplonemids, b y mightnotbepreciselycorrectbecauseofoverlappingneighbor although only two chromosomes (i.e., LC114082 and g u e module sequences at several boundary positions (e.g., be- LC114083) were sequenced completely in the present s t o tweenmodules7and8ofcob;seesupplementarymaterial, study. Other chromosomes of H. phaeocysticola amplified n 2 Supplementary Material online). Sequence variations in the by module-specific outward primers and incompletely se- 8 M moduleswerealsorecognizedbycomparisonwiththegeno- quenced were also shown to be smaller than 5 kb (fig. 1B). a rc micsequencesofthethreegenes,aswithcox1,andtheirse- Other chromosomal features—the existence of a shared h 2 lected representative sequences are also provided in the region and many homo-polymeric repeats—are shared with 0 1 supplementarymaterial,SupplementaryMaterialonline. otherdiplonemids. 9 As the existence of such a shared region has also been reported in the chromosomes of other diplonemids (Vlcek Discussion etal.2011;Kiethegaetal.2013),thisisnotauniquefeature The four genes examined here are fragmented into small of H. phaeocysticola. However, this feature is useful for se- pieces in the mitochondrial genome of H. phaeocysticola, quencingthemitochondrialgenomeofH.phaeocysticola,be- and no nonfragmented versions of the genes were found. cause comprehensive mitochondrial genome amplification Thesefeaturesareconsistentwiththoseofotherdiplonemids. can be expected by PCR with outward primers annealing Furthermore, many modules had multiple copies whose se- within the shared region. In fact, the modules of other quencesdifferedfromoneanother,eventhoughtheycorre- genes (i.e., cob, cox2, nad7, and more) were recovered spondtothesamecodingregion.Althoughmodule9ofcox1 from the amplified sequences in the preliminary analyses. ofD.papillatumwasfoundintwochromosomes(Vlceketal. Thus, this approach allowed us to selectively amplify the 2876 GenomeBiol.Evol.8(9):2870–2878. doi:10.1093/gbe/evw207 AdvanceAccesspublicationAugust25,2016 GBE Hyper-EccentricStructuralGenesintheMitochondrialGenomeoftheAlgalParasiteHemistasiaphaeocysticola Complexity of Mt gene structure possibly reached to the plateau and did not increase so much from this point. Diplonema D Rhynchopus i C p l The evolutionary constraint on o n the complex gene structure e B′ changed at this branching point. m e D E a ow B n lo a d e Hemistasia d fro Further fragmented genes were established. m A (e.g., 24 pieces of cox1, 10 pieces of cox2) http s D Gene fragmentation continued and RNA editing sites increased. ://a c a d Kinetoplastids em ic B′ .o u Euglenids p .c o m FIG.5.—SchematicsummaryoftheevolutionaryhistoryleadingtotheeccentricstructuralgenesfoundinHemistasiaphaeocysticolamitochondriabased /gb onthefindingspresentedinthisstudyandpreviousstudies(Flegontovetal.2011;Doba´kova´ etal.2015;YabukiandTame2015).(A)Emergenceofthe e/a fragmented genes in the mitochondrial genome. (B) Emergence of U-insertion and C-to-U types of RNA editing. This evolutionary event may have rtic independentlyoccurredinthelineagesleadingtokinetoplastidsanddiplonemids,respectively(shownasB0).(C)EmergencesofA-to-Isubstitutiontype le -a ofRNAediting.MostofgenestructuresfoundinDiplonemaandRhynchopuswereestablishedinthecommonancestorofalldiplonemids.(D)Emergenceof b s U-deletiontypeofRNAediting.(E)EmergenceofthesecondaryRNAinsertionintothepre-assembledRNA. tra c t/8 /9 /2 8 7 0 mitochondrial genome of H. phaeocysticola and sequence it Seven small fragments of cox1 could not be identified in /2 6 broadlyanddeeplyusingPacBioRSII(PacificBiosciences). themitochondrialDNAsequences(fig.2A).Althoughthepos- 6 9 8 Module identification based on a BLAST search showed sibilitythatsomechromosomeswerenotamplifiedwiththe 5 0 thatcox1ofH.phaeocysticolaisfragmentedintoatleast24 PCRconditionsusedinthepresentstudyand/orthatthese- b y pieces(fig.2A).AsthreeothergenesofH.phaeocysticolaare quencingdepthwasinsufficientcannotberuledoutcomple- g u e also fragmented >two times finer than the corresponding tely,weareinclinedtoconsiderthattheymaynotbeencoded s t o genes in D. papillatum, this hyper-fragmentation is possibly directlyinthegenomeand/ormaybefurtherfragmentedinto n 2 ageneralfeatureofthemitochondrialgenesofH.phaeocys- muchsmallerpieces.Theseunidentifiedregionsarepredom- 8 M ticola.Thegenesfoundinthemicronucleargenomesofthe inantlycomposedofTandGresidues(fig.3B)andseveralC a rc hypotrichous ciliates are also discontinuous and highly inter- andAresiduesinthegenomicsequencesarereplacedwithT h 2 rupted,butthesearejoinedbyDNAsplicingduringmacronu- and G residues in cDNA sequences, respectively (fig. 3A). If 0 1 cleardevelopmentandonlythenoninterruptedgenesofthe theseinconsistenciesbetweencDNAandgenomicsequences 9 macronuleargenome aretranscriptionallyactive (Landweber representtheexistenceofC-to-UandA-to-G(orI,becauseI’s et al. 2000; Swart et al. 2013). Hence, the mitochondrial inRNAarereadasG’sbyreversetranscriptase)typesofRNA genesfoundinH.phaeocysticolamaybethemoststructurally editing,thegenomicsequencescorrespondingtosomeofthe eccentric transcriptionally active genes known to date. unidentified regions are different from the cDNA sequences Furthermore, U-insertion RNA editing in the mitochondrial and therefore they still remain to be identified. Indeed, the transcripts of H. phaeocysticola was also predicted to occur existenceofC-to-UandA-to-ItypesofRNAeditinghasbeen more frequently compared with homologs in other diplone- confirmed in D. papillatum recently (Moreira et al. 2016). mids:forexample,H.phaeocysticolahasmorethantwoRNA Hence,itisreasonabletoconsiderthatthesameRNAediting editingsitesonanaveragepermitochondrialgene,whereas mayalsooccurinthemitochondrionofH.phaeocysticola. one editing site wasfound incox1, cox2andcobandnone Furthermore, the cox1 cDNA sequences that possess the wasfoundinnad7inD.paillatum(Moreiraetal.2016). truncatedmodule sequences(fig. 3C, D and E) suggest that GenomeBiol.Evol.8(9):2870–2878. doi:10.1093/gbe/evw207 AdvanceAccesspublicationAugust25,2016 2877 GBE Yabukietal. modules2and18(andsomeothermissingregions)maybe Literature Cited furtherfragmentedintomuchsmallerpieces.Forexample,a BurgerG,JacksonCJ,WallerRF.2012.Unusualmitochondrialgenomes fragmentofjust7bpfoundintruncatedmodule2(LC114084 and genes. In: Bullerwell CE, editor. Organelle genetics. Berlin: andLC114085)mayindependentlyexistinthemitochondrial Springer.p.41–77. genome and such very short sequences are very difficult to deVargasC,etal.2015.Eukaryoticplanktondiversityinthesunlitocean. Science348:1261605. identify using BLAST. Sequences corresponding to further Doba´kova´E,FlegontovP,Skalicky´T,LukesˇJ.2015.Unexpectedlystream- fragmentedmodulescouldactuallybefoundinthemitochon- lined mitochondrial genome of the euglenozoan Euglena gracilis. drialDNAsequencedatabytextsearch,althoughitisdifficult GenomeBiolEvol.7:3358–3367. todistinguishwhethertheseshortsequencesareindeedmod- DoyleJJ,DoyleJL.1990.IsolationofplantDNAfromfreshtissue.Focus ulesorjustspurioussimilarity. 12:13–15. D The cox1 cDNA sequences lacking internal regions (i.e., Edqvist J, Burger G, Gray MW. 2000. Expression of mitochondrial ow protein-coding genes in Tetrahymena pyriformis. J Mol Biol. n LC114084–LC114086: fig. 3C, D and E) may also provide lo 297:381–393. a hintsabouttheRNAmaturationprocessinH.phaeocysticola d FeaginJE,etal.2012.ThefragmentedmitochondrialribosomalRNAsof e d mitochondria. Neighbor modules are assembled accurately Plasmodiumfalciparum.PLoSOne7:e38320. fro step-by-stepinDiplonemaandRhynchopus,andthistypeof FlegontovP,GrayMW,BurgerG,LukesˇJ.2011.Genefragmentation:a m i(qmBuumerngaceteursreeotobarslem.r2vise0ad1ss2eh)m.erIbfeletrhdeepserienqstueeenrnntcaaelnhreaignsitonenermvelaercdbkieainetgenrcsetoapxgo1ertseoed-f Heink5cooe7nyd:e2intn2og5Tm–Ys2ei,t3go2Smc.chehonnntasdr,reiaselMpgNaer,naotYemoduenbegyvoPaluGtt,iroaGnnrsiafneyrEMuRgWNleA.no1gz9eo8na7e?.,CRsuperearcrriGfaynengteehtde. https://aca RNA maturation, it would be interesting and important to two parts of a discontinuous large subunit ribosomal RNA in de m understandtheRNAmaturationprocessofH.phaeocysticola. Tetrahymenapyriformismitochondria.JBiolChem.262:2879–2887. ic Forinstance,ifsomeinternalregionsareinsertedsecondarily KiethegaGN,TurcotteM,BurgerG.2011.Evolutionarilyconservedcox1 .ou intopre-assembledmRNA,theRNAmaturationprocessmay trans-splicingwithoutcis-motifs.MolBiolEvol.28:2425–2428. p.c KiethegaGN,YanY,TurcotteM,BurgerG.2013.RNA-levelunscrambling o differ at least in part between H. phaeocysticola and other m of fragmented genes in Diplonema mitochondria. RNA Biol. /g diplonemids. The finding of the sequence in which only 10:301–313. be m(i.eo.d,uLlCe11440w87a:sfigre.p3laF)cemdaywailtshostuhpepourtnkthneowexnistesenqceueonfcea LandawnebeexrtreLmF,eKlyuoscTraCm,bCleudrtisgEeAne..20P0ro0c. ENvoaltultioAncaadndScaisseUmbSly Aof. /article sequence-insertionstepintheRNAmaturationprocess. 97:3298–3303. -a b Lara E, Moreira D, Vereshchaka A, Lo´pez-Garcı´a P. 2009. Pan-oceanic s AlmostallmoduleboundarypositionsfoundinDiplonema distribution of new highly diverse clades of deep-sea diplonemids. tra c and Rhynchopus are shared in the homologous genes of EnvironMicrobiol.11:47–55. t/8 H.phaeocysticola.Thismeansthatmostofthegenestructures LukesˇJ,FlegontovaO,Hora´kA.2015.Diplonemids.CurrBiol.25:R702– /9 /2 foundinDiplonemaandRhynchopuswereestablishedintheir R704. 8 7 commonancestorandthatlittlefurthergenefragmentation MarandeW,BurgerG.2007.MitochondrialDNAasagenomicjigsaw 0/2 puzzle.Science318:415-415. 6 occurred in the lineage leading to Diplonema and 6 Marande W, Lukesˇ J, Burger G. 2005. Unique mitochondrial genome 9 8 Rhynchopus.Ontheotherhand,genefragmentationcontin- structureindiplonemids,thesistergroupofkinetoplastids.Eukaryot 50 uedinthelineageleadingtoH.phaeocysticola.Thisindicates Cell4:1137–1146. by thatthecomplexityofthegenestructuremayhaveplateaued MoreiraS,BretonS,BurgerG.2012.Unscramblinggeneticinformationat g u inthelineageleadingtoDiplonemaandRhynchopusaspre- theRNAlevel.WileyInterdiscipRevRNA3:213–228. es Moreira S, Valach M, Aoulad-Aissa M, Otto C, Burger G. 2016. Novel t o viouslysuggested(Flegontovetal.2011),butnotintheline- n modesofRNAeditinginmitochondria.NucleicAcidsRes.44:4907– 2 age leading to H. phaeocysticola. In other words, further 8 4919.doi:10.1093/nar/gkw188. M fragmentation was tolerated in the ancestor leading to Swart EC, et al. 2013. The Oxytricha trifallax macronuclear genome: a a rc H.phaeocysticola(fig.5). complex eukaryotic genome with 16,000 tiny chromosomes. PLoS h Biol.11:e1001473. 20 1 ValachM,MoreiraS,KiethegaGN,BurgerG.2014.Trans-splicingand 9 Supplementary Material RNAeditingofLSUrRNAinDiplonemamitochondria.NucleicAcids Supplementarymaterialand tableS1areavailableatGenome Res.42:2660–2672. VlcekC,MarandeW,TeijeiroS,Lukesˇ J,BurgerG.2011.Systematically BiologyandEvolutiononline(http://www.gbe.oxfordjournals. fragmented genes in a multipartite mitochondrial genome. Nucleic org/). AcidsRes.39:979–988. Yabuki A, Tame A. 2015. Phylogeny and reclassification of Hemistasia Acknowledgments phaeocysticola (Scherffel) Elbra¨chter & Schnepf, 1996. J Eukaryot Microbiol.62:426–429. ThisworkwassupportedbygrantsfromtheJSPSawardedto A.Y.(26840133)andK.T.(25650132). Associateeditor:SandraBaldauf 2878 GenomeBiol.Evol.8(9):2870–2878. doi:10.1093/gbe/evw207 AdvanceAccesspublicationAugust25,2016

Description:
mini-circular chromosomes approximately 5–12 kbp (Burger et al. 2016). As misassembled mRNA, in which the short RNAs are assembled in incorrect complete cDNA sequence of mature cox1 mRNA was amplified using these
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.