ebook img

Hydrothermal Synthesis of Cellulose Nanocrystal-Grafted-Acrylic Acid Aerogels with PDF

15 Pages·2017·4.3 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Hydrothermal Synthesis of Cellulose Nanocrystal-Grafted-Acrylic Acid Aerogels with

polymers Article Hydrothermal Synthesis of Cellulose Nanocrystal-Grafted-Acrylic Acid Aerogels with Superabsorbent Properties XuehuaLiu1,RueYang2,MingcongXu1,ChunhuiMa1,WeiLi1,2,3,* ,YuYin1, QiongtaoHuang2,YiqiangWu3,JianLi1andShouxinLiu1,* 1 KeyLaboratoryofBio-BasedMaterialScienceandTechnologyofMinistryofEducation,NortheastForestry University,HexingRoad26,Harbin150040,China;[email protected](X.L.); [email protected](M.X.);[email protected](C.M.);[email protected](Y.Y.); [email protected](J.L.) 2 Post-DoctoralResearchCenter,YihuaLifestyleTechnologyCo.,Ltd.,Shantou515834,China; [email protected](R.Y.);[email protected](Q.H.) 3 SchoolofMaterialsScienceandEngineering,CentralSouthUniversityofForestryandTechnology, Changsha410004,Hunan,China;[email protected] * Correspondence:[email protected](W.L.);[email protected](S.L.); Tel./Fax:+86-451-82191204(W.L.);+86-451-82191502(S.L.) (cid:1)(cid:2)(cid:3)(cid:1)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7) Received:12September2018;Accepted:17October2018;Published:19October2018 Abstract: In this work, we applied a fast and simple method to synthesize cellulose nanocrystal (CNC) aerogels, via a hydrothermal strategy followed by freeze drying. The characteristics and morphologyoftheobtainedCNC-g-AAaerogelswereaffectedbythehydrothermaltreatmenttime, volumeofaddedAA(acrylicacid),andthemassfractionoftheCNCs. Theformationmechanism oftheaerogelsinvolvedfreeradicalgraftcopolymerizationofAAandCNCswiththecross-linker N,N(cid:48)-methylene bis(acrylamide) (MBA) during the hydrothermal process. The swelling ratio of the CNC-g-AA aerogels was as high as 495:1, which is considerably greater than that of other polysaccharide-g-AAaerogelssystems. Moreover,theCNC-g-AAaerogelsexhibitedanexcellent methylblue(MB)adsorptioncapacityandtheabilitytoundergorapiddesorption/regeneration. ThemaximumadsorptioncapacityoftheCNC-g-AAaerogelsforMBwasgreaterthan400mg/g. ExcellentregenerationperformancefurtherindicatesthepromiseofourCNC-g-AAaerogelsasan adsorbentforapplicationsinenvironmentalremediation. Keywords: cellulosenanocrystals;hydrothermal;aerogels;superabsorbent 1. Introduction Developmentsinindustryandcommercehaveraisedtheproblemofdyecontamination,whichis characterizedbyahighorganicmattercontent,resistancetobiodegradability,andcomplexbiological toxicity[1]. Dyecontaminationraisesseriousenvironmentalconcernwithpotentialdangerstofood safetyandaquaticlife[2]. Variousgroupshavetriedtodevelopmoreefficientmethodsofremoving dye pollutants. Dye pollution removal is conventionally achieved by photochemical degradation, membrane filtration, flocculation, biologicaloxidation, andchemical precipitation [3,4]. However, these technologies are complex and expensive; hence, the design and development of alternative low-costadsorbentshasbeenthefocusofmanystudies. Cellulose nanocrystals (CNCs) are a renewable material with properties including good biodegradability,mechanicalstrength[5],flexibility[6],easilymodified,andbiocompatibility[7,8]. Thehighstrength,dimensionalanisotropy,andnaturalsourcingofCNCs,haveattractedconsiderable Polymers2018,10,1168;doi:10.3390/polym10101168 www.mdpi.com/journal/polymers Polymers2018,10,1168 2of15 research interest for their use as functional and renewable reinforcing agents for polymer composites [9,10]. The rigid and flexible mechanical properties of CNCs show great potential for various applications and have motivated research on preparing CNC aerogels for different fields[11–13].ThefabricationofCNC-basedaerogelscanavoidissuesrelatedtocellulosegelshrinkage, capillarytension,andrupturingindryingprocessesowingtocapillarypressure[14]. Functionalized CNCaerogelscan exhibit multiple responsesaccordingtochangesin externalconditions, suchas temperature,pH,andpressure[15,16]. Thus,CNCaerogelscanbeusedinbiologicalapplicationsand asstrainedmaterials,adsorbentmaterials,hydrophobicmaterials,andconductivematerials. Thereare alsoidealmaterialsforapplicationsinenvironmentalmodification[17–19]. Highly porous CNC-based aerogels with many hydroxyl groups are widely regarded as superabsorbent materials [20]. The unique properties of these materials include high strength, high surface area, and tunable surface chemistry, which enable interactions with other polymers. Inparticular,functionalpolymericmaterials,containingastronghydrophilicgroupintroducedbygraft copolymerizationreactions,arewidelyusedinpolysaccharidereactionsystemsbecauseoftheirhigh efficiencyandcompatibility. CNC-basedaerogelscanbepreparedbyafreechaingraftpolymerization withpoly-methacrylicacid,whichismodifiedbyfunctionalizingthecarboxylicgroup[21].CNC-based aerogelscanalsobepreparedbyfreeradicalpolymerizationofpoly(N-isopropylacrylamide)(PNIPAM) and grafted by copolymerization of poly (acrylic acid) (PAA), to achieve functionalization by cooperativehydrogenbondinginteractionsbetweenPNIPAMorPAAandtheCNCs[16,22]. Moreover, CNCs,whicharegraft-copolymerizedwithAA(acrylicacid)givehydrogelswithaswellingratiofar greaterthanthatofotherpolysaccharidesystemscombinedwithAAhydrogels,atthesameinitial reactantratio[23,24]. Recently,hydrothermalprocedurestoproducehydrogelsfromcellulosicbiomasshavereceived attentionowingtotheirinherentadvantagesintermsofliquidchemicalreactionsandtheirsimplicity[25]. Compared with reactions at ambient temperature and pressure, the straight forward hydrothermal methoddevelopedhererequireslessreagentstopromotethereactiontocompletion. Ourgrouphas preparedfluorescentCNC/carbondothydrogelsbyaone-stephydrothermalmethod[26].Theshape andchemicalstructureoftheproductscanalsobecontrolledbythehydrothermalmethod.Hydrothermal methodsareconsideredtobehighlyeffectiveforfabricatingCNC-basedhydrogels[27,28].Theseresults encouragedustouseahydrothermalstrategytopromoteagraft-copolymerizedreactiontosynthesize aCNC-basedaerogelsuperabsorbent. Inthisstudy,weproposedasimplemethodtofabricateCNC-g-AAaerogelsviaahydrothermal treatmentfollowedbyfreezedrying. Weexaminedtheswellingperformanceoftheobtainedaerogels for the water absorption and the adsorption properties of the CNC-g-AA aerogels for methylene blue(MB). 2. MaterialsandMethods 2.1. Materials The CNCs were prepared from commercial bleached kraft softwood pulp (85% International StandardizationOrganizationbrightness)astherawmaterial,whichwasprovidedbyapaper-making factoryinHeilongjiang,China. Analytical-gradesulfuricacidwaspurchasedfromTianjinKermel ChemicalReagentCo.,Ltd. (Tianjin,China). Tetramethylethylenediamine(TMEDA),N,N(cid:48)-methylene bis(acrylamide)(MBA),andammoniumpersulfate(APS)werepurchasedfromAladdinReagentCorp China(Chengdu,SichuanProvince,China). TheAAandMBwerepurchasedfromTianjinFuchen ChemicalReagentFactory(Tianjin,China). Allchemicalreagentswereofanalyticalgrade. 2.2. PreparationofCNC-g-AAHydro/Aerogels AnaqueousCNCssuspensionwaspreparedbyasulfuricacidhydrolysismethod,aspreviously reported[29,30]. Bleachedkraftsoftwoodwasfirstmilledandthenpassedthrougha0.5-mmscreento Polymers2018,10,1168 3of15 Polymers 2018, 10, x FOR PEER REVIEW 3 of 15 ensureauniformparticlesize. Then,themilledpulpwashydrolyzedinsulfuricacid(64wt%;8.75mL oafcisdu (lf6u4r wicta %ci;d 8s.7o5lu mtioLn opf esurlgfurarmic aocfidp usloplu)atito4n5 p◦eCr gforram30 omf pinuwlpi)t hatv 4i5g o°rCo ufosrs 3ti0r rminign. wTihthe cveigllourloouses ssutisrprienngs. ioTnhew aceslltuhleonsed isluustepden, scieonnt riwfuags etdh,ewn adshileudte,da,n cdendtirailfyuzgeedd,a gwaainshstedd,i satinldle ddiwalaytzeerdu natgialitnhset edxistetirliloerdw waatteerrb uenctaiml tehen eeuxttrearliobre wfoaretefru brethcaermues ne.eutral before further use. TThhee CCNNCC--gg--AAAA hhyyddrrooggeellss wweerree pprreeppaarreedd bbyy aa ffrreeee rraaddiiccaall ggrraafftt ccooppoollyymmeerriizzaattiioonn ooff CCNNCCss aanndd AAAA iinn tthhee pprreesseennccee ooff aa ccrroossss--lliinnkkeerr ((MMBBAA)) aanndd aa rreeddooxxi ninitiitaiattoorrs syysstteemm( A(APPSS//TTMMEEDDAA)).. AA 1100 mmLL ppoorrttiioonn ooff tthhee pprreeppaarreedd CCNNCC ssoolluuttiioonn ((11..55 wwtt %%)) wwaass ppllaacceedd iinn aa 110000 mmLL tthhrreeee--nneecckkeedd flflaasskk,, wwhhiicchh wwaass tthheenn ppllaacceedd iinn aa 2255 ◦°CC wwaatteerr bbaatthh aanndd ssttiirrrreedd wwiitthh aa mmaaggnneettiicc ssttiirrrreerr.. AA 00..005500 gg ppoorrttiioonn ooff AAPPSS aanndd 00..005500 mmLL ooff TTMMEEDDAA,, aass aann iinniittiiaattoorr,, wweerree aaddddeedd ttoo tthhee ssoolluuttiioonn aanndd tthhee mmiixxttuurree wwaass ssttiirrrreedd ffoorr 1100 mmiinnt otog genenereartaeter ardaidciaclasl.sT. hTehreeraefatefrt,ear, car ocsrso-slisn-klienrk,eMr,B MAB(0A.0 (800.0g8)0a ngd) aancde rata cinervtaoilnu mvoeloufmAeA ofw AerAe awdedreed a,dfodlelodw, efodllboywceodn tbinyu coounstsintiurroinugs fsotirr2rinhg. Tfhoer r2e ahc.t iTohnes orleuatcitoinonw saosltuhteionnp lwacaesd tihnena Tpelflaocend-l iinne da sTteafilnolnes-lsinsteede lsatuationclelassv es(t1e0e0l mauLt)oacnladvhe ea(1te0d0 tomtLh)e danesdi rehdeatetemdp etroa ttuhree .dTehseirheydd rtoetmhepremraatlurreea. ctTiohne whyadsrpoethrfeorrmmael drefaocrtioans pweacsi fipcertfiomrme.edT hfoer oab stpaienceifdic gtiemlsew. Tehree owbatashineedd igneldsi wstielrleed wwasahteedr itno dreismtiollvede uwnarteearc ttoe dresmubosvtea nucnerse.acted substances. TThheerreeaafftteerr,, tthhee aass--pprreeppaarreedd hhyyddrrooggeellss wweerree ffrroozzeenn iinn lliiqquuiidd nniittrrooggeenn.. AAfftteerr ccoommpplleettee ffrreeeezziinngg,, tthhee ffrroozzeenn ssaammpplleess wweerree ssuubbjjeecctteedd ttoo ffrreeeezzee--ddrryyiinngg ((SScciieennttzz--1100NN,, NNiinnggbboo,, ZZhheejjiiaanngg PPrroovviinnccee,, CChhiinnaa)) ttoo oobbttaaiinn pprriissttiinnee CCNNCCss--gg--AAAA aaeerrooggeellss.. TThhee rreessuullttiinngg CCNNCC--gg--AAAA hhyyddrroo//aaeerrooggeellss aarree rreeffeerrrreedd ttoo aass CCNNCC--gg--AAAA--rr--mm--nn,, wwhheerree rr ddeennootteess tthhee AAAA ccoonntteenntt,, mm ddeennootteess tthhee hhyyddrrootthheerrmmaall tteemmppeerraattuurree,, aanndd nn ddeennootteess tthhee hhyyddrrootthheerrmmaall ttiimmee.. FFuurrtthheerrmmoorree,, wwee pprreeppaarreedd ppuurree hhyyddrroo//aaeerrooggeellss,, wwhheerree tthhee CCNNCCss ssoolluuttiioonn wwasasr eprelapcleadcewd itwhditihs tidlliesdtilwleadte rwuantdere rucnondderit ioconnsdoift2io.0nms LofA A2.,0a mhyLd rAotAhe, rma ahlytedmroptehreartmurael otefm12p0er◦aCtu,raen odf a12tr0e a°Ctm, eanntdt iam tereoaftm8ehnt( Dti-mg-eA oAf -82 -1h2 (0D-8-gh-AydAr-o2/-1a2e0ro-8g ehlys)d.roH/aereeriong,etlhs)e. sHweerelliinn,g thoef CswNeCll-ign-gA oAf -C2-N12C0--g8-AgeAl-p2e-r1f2o0r-m8 agnecl epeinrfdorismtiallnecdew ina tdeirstisillsehdo wwanteinr Fisi gshuorew1n. in Figure 1. FFiigguurree 11.. PPhhoottooggrraapphhss sshhoowwiinngg sswweelllliinngg aanndd ssiizzee--cchhaannggee ooff CCNNCC--gg--AAAA--22--112200--88 ggeell iinn ddiissttiilllleedd wwaatteerr oovveerr ttiimmee.. 2.3. CharacterizationofCNC-g-AAAerogels 2.3. Characterization of CNC-g-AA Aerogels FFTT--IIRR spsepcetcrtarao fCofN CC-Ng-CA-Ag-AaeAro gaeelsrowgeerlse mweearseu remdeoansuareFdo uroiner tar anFsofuorrimeri ntfrraanresdfosrpme ctirnofmraerteedr (sipS1ec0t,rNomicoelteetr, (TiSh1e0rm, NoiSccoileent,t iTfihce,rWmaolt hSacimen,tMifAic,, UWSaAlt)hoavme,r MthAe,r aUnSgAe)o ofv40e0r –t4h0e0 r0acnmge− 1ofi n40tr0a–n4s0m00is csmion−1 mino tdrea.nsFmorismsioonrp mhooldoeg.i cFaolrs tmudoirepsh,owloegeixcaalm sitnueddietsh, ewCeN eCx-agm-AinAeda etrhoeg eClsNwC-itgh-AaAsc aanernoigneglse lwecittrho na msciacnronsincogp eel(eScEtrMon, QmUicArNosTcAop2e0 0(,SFEEMI,,H QillUsbAoNroT,AO2R0,0U, SFAEI),. SHpielclsibmoernos, wOeRr,e UcoSaAte)d. Swpiethcigmoeldnsb ewfoerree ScEoaMteodb sweritvha tgioonlds. Tbehfeo1r3eC SCEPM/ MobAsSerNvMatRioanns.a lTyhsies o13fCth CePsa/MmpAlSes NwMasRp earnfoarlymseisd oatf rtohoem staemmppleersa twuares wpeitrhforamBerdu akte rroDomRX te-4m0p0esrpateucrtero wmiethte ar. BrSupkeecrt rDaRwX-e4r0e0 ascpqeuctirreodmewteitrh. Sape4c-tmram weMreA aScqpuriorebde wusitihn ga a4-cmomm bMinAatSi opnroobfeC uPs,iMngA aS c,oamndbihniagthio-np oowf CerPp, MrotAoSn, danecdo huipglhin-pgomweetrh pordost.oAn dtoectaoluopfli8n0g0 msceatnhsodwse. rAe atoctcaulm ofu 8la0t0e dscfaonrse wacehres aamccpulme.ulated for each sample. Polymers2018,10,1168 4of15 2.4. SwellingCharacterizationofCNC-g-AAAerogelsinDistilledWater The equilibrium swelling ratios of the CNC-g-AA aerogels were measured in distilled water atroomtemperature. AportionoftheCNC-g-AAaerogels(W )wasthenpreparedandimmersed 1 in an excess of distilled water to achieve a state of equilibrium swelling. The weight gain of the equilibriumsamples(W )wasmonitoredgravimetrically. Excesswateronthesurfaceofthehydrogels 2 wasremovedwithfilterpaper. Threereplicateswereperformedforeachcomposition. Theswelling ratiowascalculatedbythefollowingEquation: (w −w ) SR= 2 1 (1) w 1 2.5. AdsorptionStudies We selected the CNC-g-AA-2-120-8 aerogel for the adsorption experiments under different experimentalconditions.Allexperimentswereperformedinglassvialsplacedinacontrolled-temperature waterbathoscillatoroperatingat150rpm.TheMBsolutionsofdifferentconcentrationswereprepared withdistilledwater. ThepHofthedyesolutionswasadjustedwith0.01MHClorNaOH.Afterdye adsorptionequilibriumwasreached,wefilteredtheswollengelsandtheresidualconcentrationoffiltered MB solution was measured with a UV-vis spectrophotometer (Evolution 600, Thermo Scientific Inc., Madison,WI,USA)andcalculatedfromtheabsorptionintensityat664nm.TheamountofadsorbedMB wascalculatedbasedonthefollowingEquation: v q = (c −c ) (2) e 0 e m whereq (mg/g)istheamountoftheadsorbeddyeatequilibrium;c (mg/L)andc (mg/L)arethe e 0 e initialandresidualconcentrationsofthedyesolutionatequilibrium,respectively;V(L)isthevolume ofthedyesolution;andm(g)isthemassoftheadsorbentused. WeselectedCNC-g-AA-2-120-8aerogelforregenerationtestingunderconditionsofMBsolution of 20 mg/L, pH = 8.0, adsorbent mass is 0.0050 g. Here, HCl (1 mol/L) was used as the eluent. TheCNC-g-AA-2-120-8hydrogelwasloadedwithMBandtreatedwiththeeluent(50mL)for120min atroomtemperature. Thedesorbedadsorbentwaswashed,freeze-dried,andpreparedforthenext cycleofregenerationtesting. 3. ResultsandDiscussion 3.1. MorphologyofCNC-g-AAAerogels The SEM images of D-g-AA aerogel and CNC-g-AA-r-m-n aerogels (Figure 2) showed three- dimensional interconnected honeycomb open-cell structures. The cell wall surfaces of D-g-AA aerogel,withoutaddedCNCs,weresmooth(Figure2a,b). FortheaerogelswithaddedCNCs,the surface of the aerogel cell walls became wrinkled. Additionally, some web-like structures formed on the cell walls, which likely improved the accessibility of water into the cell. The effects of the hydrothermal treatment time might be related to the CNCs having many active –OH groups and modified–COOHgroupsontheirsurfaces,whichaffectedthepolymerizationofthecompositesand theformationofthethree-dimensionalpolymernetwork[31,32]. Forlongerhydrothermaltreatment times,-CO-NH-inMBAtendedtocombinewithcarboxylgroups,whichcontributedtotheformation of a three-dimensional honeycomb network [33]. This extended dislocation structure was caused by vacancy motion at the nanoscale in the mixed liquid crystal lattice, which is conducive to the formationofathree-dimensionalmacroporousstructureintheCNCsmixture[34,35]. Thistypeof chemicalmodificationcanincreasethehydrophilicityofCNCsandtheircompatibilitywithhydrophilic polymermatrices. Poresareregionswherewatercanpermeate,whichallowsinteractionsofexternal compoundswiththehydrophilicgroupsofthegraftcopolymers[36]. Polymers2018,10,1168 5of15 Polymers 2018, 10, x FOR PEER REVIEW 5 of 15 FFiigguurree 22.. SSEEMM iimmaaggeesso off( a(,ab,)bD) D-g--gA-AA-A2--122-102-80-a8e raoegreolg;e(cl;– f(c)–CfN) CCN-gC-A-gA-A-r-A12-r0--182a0e-8ro ageerlosgperlesp parreedpawreitdh wdiiftfhe redniftfAerAencto AntAen tcso(n1t,e2n,t3s, a(1n,d 24, m3,L a);n(dg –4j) mCNL)C; -(gg-–AjA) -C2N-1C20--gn-AaeAro-2g-e1l2s0w-nit haedrioffgeerlesn twhiythd rdotihffeerrmenatl htryedartmotehnetrmtimale tsre(a2t,m4,e8n,ta tnimde1s2 (h2), .4, 8, and 12 h). 3.2. FT-IRandNMRCharacterizationofCNC-g-AAAerogels 3.2. FT-IR and NMR Characterization of CNC-g-AA Aerogels FT-IRspectraofpureCNCs,D-g-AA-2-120-8aerogel,andCNC-g-AA-2-120-8aerogel,areshown FT-IR spectra of pure CNCs, D-g-AA-2-120-8 aerogel, and CNC-g-AA-2-120-8 aerogel, are inFigure3a.Inspectruma,peaksat1058,1427and3337cm−1areassociatedwithCNCs[37].Thepeaks shown in Figure 3a. In spectrum a, peaks at 1058, 1427 and 3337 cm−1 are associated with CNCs [37]. at3337and1026cm−1correspondtotheO–Hstretchingvibrationanddeformationvibrationpeaks, The peaks at 3337 and 1026 cm−1 correspond to the O–H stretching vibration and deformation indicatingstronghydrogen-bondinginteractionsofCNCs[38]. Theregionoflowintensitybands vibration peaks, indicating strong hydrogen-bonding interactions of CNCs [38]. The region of low between1058and1427cm−1 suggeststhepresenceofC–OandC–Hbonds[39]. Inspectrabandc, intensity bands between 1058 and 1427 cm−1 suggests the presence of C–O and C–H bonds [39]. In weassignthepeakat1550cm−1 tothestretchingvibrationofN–H.Thesharpbandat1705cm−1 spectra b and c, we assign the peak at 1550 cm−1 to the stretching vibration of N–H. The sharp band at isassignedtoasymmetricalstretchingvibrationofCOO−,whichindicatedthepresenceofCOO− 1705 cm−1 is assigned to a symmetrical stretching vibration of COO−, which indicated the presence of groupsintheCNC-g-AA-2-120-8aerogelnetwork. TheseresultsconfirmedthattheAAmonomers COO− groups in the CNC-g-AA-2-120-8 aerogel network. These results confirmed that the AA weresuccessfullygraftedontothebackboneofCNCsandconfirmedourinterpretationoftheformation monomers were successfully grafted onto the backbone of CNCs and confirmed our interpretation ofthethree-dimensionalnetworkstructure. of the formation of the three-dimensional network structure. To further illuminate the structure of CNC, D-g-AA and CNC-g-AA, the samples were To further illuminate the structure of CNC, D-g-AA and CNC-g-AA, the samples were characterized by 13C CP/MAS NMR spectroscopy (Figure 3b). The spectra of CNC displayed the characterized by 13C CP/MAS NMR spectroscopy (Figure 3b). The spectra of CNC displayed the typicalsignalsfromcellulose,whichwereassignedasfollows: theC1(104.7ppm),C2/C3/C5(71.9 typical signals from cellulose, which were assigned as follows: the C1 (104.7 ppm), C2/C3/C5 (71.9 and 74.9 ppm), C4 (89.1 ppm), and C6 (65.6 ppm) peaks correspond to the carbon atoms of the and 74.9 ppm), C4 (89.1 ppm), and C6 (65.6 ppm) peaks correspond to the carbon atoms of the glucopyranoseringsinthecrystallineregions,whereastheC4(84.7ppm)peakcorrespondstothosein glucopyranose rings in the crystalline regions, whereas the C4 (84.7 ppm) peak corresponds to theamorphousareas[40]. ForCNC-g-AA-2-120-8,thepeakat177.5ppmisassociatedwithcarbon those in the amorphous areas [40]. For CNC-g-AA-2-120-8, the peak at 177.5 ppm is associated with atoms of carboxylic acid groups, the peak at 61.9 ppm for N–CH –CH –O– which supports the carbon atoms of carboxylic acid groups, the peak at 61.9 ppm for N2–CH22–CH2–O– which supports occurrenceofgraftingreactionbetweenthehydroxylgroupsofCNCandMBA.So,itisapparentthat the occurrence of grafting reaction between the hydroxyl groups of CNC and MBA. So, it is thepoly(acrylicacid)chainshavebeensuccessfullycross-linkedonCNCinthepresenceoftheMBA apparent that the poly (acrylic acid) chains have been successfully cross-linked on CNC in the cross-linker[41]. presence of the MBA cross-linker [41]. Polymers 2018, 10, x FOR PEER REVIEW 6 of 15 Polymers2018,10,1168 6of15 Figure3. FT-IR(a)and13CNMR(b)spectraofCNC,D-g-AA-2-120-8aerogelsandCNCs-g-AA-2- Figure 3. FT-IR (a) and 13C NMR (b) spectra of CNC, D-g-AA-2-120-8 aerogels and 120-8aerogels. CNCs-g-AA-2-120-8 aerogels. 3.3. EquilibriumSwellingRatioinDistilledWater 3.3. Equilibrium Swelling Ratio in Distilled Water TheequilibriumswellingratiooftheCNC-g-AA-r-120-naerogelswasalsorelatedtoAAcontent andhyTdhreo tehqeurmiliablrriueamc tisownetlilmineg (Fraigtiuor eof4 at,hbe). CANsCth-eg-aAmAo-ur-n1t2o0f-na dadeerodgAelAs wwaass ianlcsroe arseeladtefrdo mto 1A.0A toco4.n0temnLt ,anthde hsywderlolitnhgerrmatailo roefacthtieonC NtimCe-g (-FAigAu-rre-1 42a0,-b8).a Aerso gtheels aimncorueanst eodf fardodmed1 7A4Ato w4a9s5 .inAcrsetahseed hyfrdormot h1e.0r mtoa l4r.0e amctLio, nthteim swewellaisngin rcarteiaos eodf tfhroem CN2Cto-g1-0AhA,-trh-e12s0w-8e lalienrgograetliso inocfrtehaesreeds ufrlotimng 1a7e4r otog e4l9s5. inAcrse athseed hfyrdormot4h6ertom4a7l 8r.eHacetinocne ,twimees weleacst eindctrheaesCedN Cfr-ogm-A 2A t-o2 -1102 0h-,8 taheer oswgeellslifnogr draettiaoi loefd tahnea rleyssuisltoinfg thaeeirrowgaetles rinancrdeaMseBda fdrsoomrp 4ti6o ntop 4r7o8p.e Hrteiensc.e, we selected the CNC-g-AA-2-120-8 aerogels for detailed anaTlyhseist iomf etshereirq wuiaretedr faonrdth MeBC NadCs-ogr-pAtAio-n2 -p1r2o0p-8eratnieds.D -g-AA-2-120-8aerogelstoreachequilibrium areshoTwhne intimFiegsu rree4qcu.iTrehde sfwore llitnhge raCtNioCo-fgt-hAeAC-2N-1C2-0g--8A Aa-nade roDg-egl-wAaAs-2a-lm12o0s-8t nianeerotigmeless atos grreeaatch aseqthuaitliobfrituhme Dar-eg -sAhAow-2n-1 i2n0 -F8igauerroe g4ecl. aTthaeb ssowrepltliionng eraqtuioil iobfr ituhme .CWNeCa-gtt-rAibAu-taeerthoigsedl iwffaesr eanlcmeotsot tnhiene intciomrpeso raast iognreoaft CaNs Cthsaitn otof tthhee gDel-gm-AatAri-x2,-w12h0i-c8h aperroomgoelt eadt tahbesfoorrpmtiaotnio neqoufialibproiruomus. Waned ahtotnriebyuctoem thbis mdoirfpfehroelnocgey .toT thhee CinNcoCrsposuraptpioonr teodf CthNeCpso ilnymto etrhne egtwelo mrkatarnixd, pwrhoivcihd epdrosmiteostefdo rththe efoinrmitiaattiioonn ooff a poployrmoeursi zaantdio nh,ownehyicchomopbe mneodrpuhpotlhoegyae. rTohgee lCsNtruCcst usurepapnodrttehdu tshceo pnotrliybmuteerd nteotwthoerakb asnordp ptiroonvcidapedac sitiytes anfodr stwhee lilninitgiartaioten ooff tphoelyhmyderriozgaetilosn[4, 2w].hiIcnha odpdeintieodn ,utph ethper easeerongceelo sftrCuNctCursei nantdh ethhuysd croongterlibmuatetrdix to intchree aasbesdortphteioanm coaupnatcsitoyf ahnydd srowpehlliilnicgg rraoteu posf ,twheh hicyhderongaebllse d[4f2a]s. tIenr aadndditeioasni,e trhdei pffruessieonnceo foaf qCuNeoCuss in sotlhuet ihoyndinrotogetlh emhaytrdixro igneclremaasterdix th[4e3 ,a4m4]o.unts of hydrophilic groups, which enabled faster and easier diffusion of aqueous solution into the hydrogel matrix [43,44]. Polymers 2018, 10, x FOR PEER REVIEW 7 of 15 Polymers2018,10,1168 7of15 Polymers 2018, 10, x FOR PEER REVIEW 7 of 15 Figure 4. (a) Swelling ratio of CNC-g-AA-r-120-8 aerogels with different AA contents; (b) Swelli ng rFaitgiou roef4 .C(Na)CS-wg-eAllAin-g2-r1a2t0i-ono faeCrNogCe-lgs -AhyAd-rro-1th2e0r-8maaellryo gterlesatwedit hfodri ffdeirfefnerteAntA tcimonetse; n(tcs); (Ab)dSsowrepltliionng Figure 4. (a) Swelling ratio of CNC-g-AA-r-120-8 aerogels with different AA contents; (b) Swelling craaptiaocoitfyC oNf CD--gg--AAAA--22--112200--n8 aaeerrooggeellssh aynddr oCthNeCrm-ga-lAlyAt-r2e-a1t2e0d-8fo aredrioffgeerlesn ctotmimpeasr;e(dc) wAidthso trhpet iaodnscoarppaticoitny ratio of CNC-g-AA-2-120-n aerogels hydrothermally treated for different times; (c) Adsorption toimfDe.- g-AA-2-120-8aerogelsandCNC-g-AA-2-120-8aerogelscomparedwiththeadsorptiontime. capacity of D-g-AA-2-120-8 aerogels and CNC-g-AA-2-120-8 aerogels compared with the adsorption 3.4. Ftiomrme.a tionMechanismofCNC-g-AAAerogels 3.4. Formation Mechanism of CNC-g-AA Aerogels 3.4. FAAor pmprraootpipooonss eMedde mcmheaecnchhisaamnn iiossftt iCicc NppaCatt-hhgw-wAaaAyy fAfooerrr tothgheeel fsfo orrmmaattiioonn ooff CCNNCC--gg--AAAA aaeerrooggeellss iiss sshhoowwnn inin FFigiguurree 55. . SulfateanionradicalsgeneratedfromAPSabstractedprotonsfrom–OHgroupsoftheCNCbackbone Sulfate anion radicals generated from APS abstracted protons from –OH groups of the CNC A proposed mechanistic pathway for the formation of CNC-g-AA aerogels is shown in Figure 5. toformalkoxyradicals,whichresultedinactivecentersontheCNCsbackbonethatradicallyinitiated backbone to form alkoxy radicals, which resulted in active centers on the CNCs backbone that Sulfate anion radicals generated from APS abstracted protons from –OH groups of the CNC polymerization. TheCNCsarerichin–OHgroups,whichinducestrongmolecularinteractionsinthe radically initiated polymerization. The CNCs are rich in –OH groups, which induce strong backbone to form alkoxy radicals, which resulted in active centers on the CNCs backbone that nanocompositesystem[45]. AfterAAisaddedtothenanocompositestheAAbecomesconjugated molecular interactions in the nanocomposite system [45]. After AA is added to the nanocomposites radically initiated polymerization. The CNCs are rich in –OH groups, which induce strong withtheCNCsandcontributesmoreeffectivebindingsites. Thepresenceofthecross-linkingreagent the AA becomes conjugated with the CNCs and contributes more effective binding sites. The molecular interactions in the nanocomposite system [45]. After AA is added to the nanocomposites (MBA) results in the formation of a copolymer network, which comprises a chemical cross-linked presence of the cross-linking reagent (MBA) results in the formation of a copolymer network, which the AA becomes conjugated with the CNCs and contributes more effective binding sites. The structure[46]. DuringthehydrothermaltreatmentoftheCNCswiththecomposites,thepresenceof comprises a chemical cross-linked structure [46]. During the hydrothermal treatment of the CNCs –pCreOseOn−ce, wofh tihche cisrofsosr-mlinekdinbgy rdeeapgreontto (nMatBioAn) orefs–uCltOs OinH thger foourpmsa,tlioocna loifz eas ctohpeonlyemgaetri vneetcwhoarrgke, wofhtichhe wcoimthp trhiese cso am cphoesmiteicsa, lt hcero pssre-lsiennkceed osft r–uCcOtuOre−, [w46h]i.c Dh uisr ifnogrm theed hbyyd droetphreortmonaal ttiroena tomf e–CntO oOf Hth eg rCoNupCss, polymernetworkandenhanceselectrostaticrepulsion,whichfavorsexpansionofthechainnetwork. localizes the negative charge of the polymer network and enhances electrostatic repulsion, which with the composites, the presence of –COO−, which is formed by deprotonation of –COOH groups, However, owingtothechemicalcompositionoftheCNCmolecules, theattached–OHfunctional favors expansion of the chain network. However, owing to the chemical composition of the CNC localizes the negative charge of the polymer network and enhances electrostatic repulsion, which groupsmightinducehydrogenbondformation,whichisanadditionalfactorthatimprovesadhesive molecules, the attached –OH functional groups might induce hydrogen bond formation, which is an favors expansion of the chain network. However, owing to the chemical composition of the CNC properties[47]. additional factor that improves adhesive properties [47]. molecules, the attached –OH functional groups might induce hydrogen bond formation, which is an additional factor that improves adhesive properties [47]. FFiigguurree 55.. MMeecchhaanniissttiicc ddiiaaggrraamm ooff CCNNCC--gg--AAAA aaeerrooggeell ffoorrmmaattiioonn.. 3.5. AdsorptionStudiesFigure 5. Mechanistic diagram of CNC-g-AA aerogel formation. 3.5. Adsorption Studies 33..55.. 1A.dSstourdpiteiosno SntuDdyieesA dsorption 3.5.1. Studies on Dye Adsorption TheeffectsofthesolutionpHoftheinitiallypreparedMBsolutionsonMBdyeremoval(%)and 3.5.1.T Shteu defiefesc otsn oDf yteh eA sdoslourtpiotino np H of the initially prepared MB solutions on MB dye removal (%) theresidualconcentration(C )oftheMBafteradsorptionbyourCNC-g-AA-2-120-8aerogels,are e asnhdo wtThnhe eirn eesFfifidegcuutasrl e oc6fo atn.hceHe nsetorrleau,ttiwioonen (upCsHee)d ooaff tt0hh.0ee 0 Mi5n0Bi-t giaafpltlyeor r ptairodenspoaorrfpettdhio eMnC BbN ys Cool-uugrt- iAConANs-C 2o--ng1 -2MA0-AB8 -ad2e-y1re2o 0gr-ee8ml aionevr5ao0lg e(m%lsL), are shown in Figure 6a. Here, we used a 0.0050-g portion of the CNC-g-AA-2-120-8 aerogel in 50 mL aonfda t6h0e mregs/idLuMal Bcosnocleuntitorant.ioWn h(Cene) tohfe thsoe luMtiBo nafpteHr awdasosrdpeticornea bsyed oufrro CmN8C.0-gt-oA3A.0-,2-t1h2e0r-a8 taioeroofgMelsB, of a 60 mg/L MB solution. When the solution pH was decreased from 8.0 to 3.0, the ratio of MB are shown in Figure 6a. Here, we used a 0.0050-g portion of the CNC-g-AA-2-120-8 aerogel in 50 mL of a 60 mg/L MB solution. When the solution pH was decreased from 8.0 to 3.0, the ratio of MB Polymers 2018, 10, x FOR PEER REVIEW 8 of 15 Polymers2018,10,1168 8of15 removal decreased from 98.4% to 20.6% and the Ce decreased from 0.8 to 39.7 mg/L. We attribute the low adsorption ability at low pH to the CNC-g-AA-2-120-8 aerogels being immersed in an acidic removaldecreasedfrom98.4%to20.6%andtheC decreasedfrom0.8to39.7mg/L.Weattribute e environment having a more positive net charge at its surfaces, which electrostatically repelled MB. thelowadsorptionabilityatlowpHtotheCNC-g-AA-2-120-8aerogelsbeingimmersedinanacidic To select a suitable amount of the adsorbent, different portions of (0.0010, 0.0020, 0.0030, 0.0040, environmenthavingamorepositivenetchargeatitssurfaces,whichelectrostaticallyrepelledMB. and 0.0050 g) of CNC-g-AA-2-120-8 aerogels were added to 50 mL of 60 mg/L MB solutions, and the Toselectasuitableamountoftheadsorbent,differentportionsof(0.0010,0.0020,0.0030,0.0040, MB removal results are shown in Figure 6b. The adsorption capacity for the MB dyes on and0.0050g)ofCNC-g-AA-2-120-8aerogelswereaddedto50mLof60mg/LMBsolutions,andtheMB CNC-g-AA-2-120-8 aerogels decreased from 719.8–244.7 mg/g as the dosage increased from 0.0010 to removalresultsareshowninFigure6b.TheadsorptioncapacityfortheMBdyesonCNC-g-AA-2-120-8 0.0050 g. However, the MB removal rate increased from 57.6% to 97.9% as the adsorbent dosage was aerogelsdecreasedfrom719.8–244.7mg/gasthedosageincreasedfrom0.0010to0.0050g. However, increased from 0.0010 to 0.0050 g. The adsorption reached a swelling equilibrium when the theMBremovalrateincreasedfrom57.6%to97.9%astheadsorbentdosagewasincreasedfrom0.0010 adsorbent dosage was 0.0040 g. We attribute this result to the greater surface area of the adsorbent to0.0050g. Theadsorptionreachedaswellingequilibriumwhentheadsorbentdosagewas0.0040g. and the availability of more active adsorptive sites as the amount of the CNC-g-AA-2-120-8 aerogel Weattributethisresulttothegreatersurfaceareaoftheadsorbentandtheavailabilityofmoreactive was increased. adsorptivesitesastheamountoftheCNC-g-AA-2-120-8aerogelwasincreased. The initial MB concentration and the contact time with the CNC-g-AA-2-120-8 aerogels affected TheinitialMBconcentrationandthecontacttimewiththeCNC-g-AA-2-120-8aerogelsaffected tthhee aaddssoorrppttiioonn ccaappaacciittyy aanndd rreemmoovvaall eeffffiicciieennccyy.. TThhee eexxppeerriimmeennttss wweerree ppeerrffoorrmmeedd aatt 2255 ◦°CC,, aatt ppHH == 88,, with different initial concentrations (20–100 mg/L) and different contact times (20–450 min). The withdifferentinitialconcentrations(20–100mg/L)anddifferentcontacttimes(20–450min).Theresults results are shown in Figure 6c. The adsorption capacity clearly increased from 96.98 to 415.13 mg/g areshowninFigure6c. Theadsorptioncapacityclearlyincreasedfrom96.98to415.13mg/gasthe as the initial MB concentration was increased from 20 to 100 mg/L. This result was attributed to the initialMBconcentrationwasincreasedfrom20to100mg/L.ThisresultwasattributedtotheinitialMB initial MB concentration providing the necessary driving force to surmount the resistance between concentrationprovidingthenecessarydrivingforcetosurmounttheresistancebetweentheaqueous the aqueous and solid phases and the increase of the initial MB concentration improved interactions andsolidphasesandtheincreaseoftheinitialMBconcentrationimprovedinteractionsbetweendye between dye molecules and adsorbents, which provided heterogeneous adsorption sites [48,49]. moleculesandadsorbents,whichprovidedheterogeneousadsorptionsites[48,49]. The effects of solution temperature on MB removal by CNC-g-AA-2-120-8 aerogels are shown TheeffectsofsolutiontemperatureonMBremovalbyCNC-g-AA-2-120-8aerogelsareshown in Figure 6d. The MB adsorption capacity of the CNC-g-AA-2-120-8 aerogels decreased slightly with inFigure6d. TheMBadsorptioncapacityoftheCNC-g-AA-2-120-8aerogelsdecreasedslightlywith iinnccrreeaassiinngg tteemmppeerraattuurree,, ffrroomm 1155 ttoo 5555 ◦°CC aatt tthhee ssaammee iinniittiiaall MMBB ccoonncceennttrraattiioonn.. TThhee MMBB aaddssoorrppttiioonn capacity slightly decreased from 97.74 to 96.57 mg/g as the solution temperature was increased from capacityslightlydecreasedfrom97.74to96.57mg/gasthesolutiontemperaturewasincreasedfrom 1155 ttoo 5555 ◦°CC aatt aa MMBB ccoonncceennttrraattiioonn ooff 2200 mmgg//gg.. TThhee MMBB aaddssoorrppttiioonn ccaappaacciittyy ddeeccrreeaasseedd ffrroomm 447744..2222 ttoo 467.31 mg/g at a MB concentration of 100 mg/g. The effects of temperature on MB adsorption might 467.31mg/gataMBconcentrationof100mg/g. TheeffectsoftemperatureonMBadsorptionmight be attributed to the exothermic nature of the adsorption reaction. [50] beattributedtotheexothermicnatureoftheadsorptionreaction.[50] FFiigguurree 66.. ((aa)) EEffffeeccttss ooff ssoolluuttiioonn ppHH oonn MMBB rreemmoovvaall,, ((bb)) eeffffeeccttss ooff aaddssoorrbbeenntt ddoossaaggeess oonn MMBB rreemmoovvaall,, ((cc)) eeffffeeccttsso offc ocnotnatcatctti mtiemaen danindi tiinalitMiaBl MsoBlu tsioolnutcioonnc ecnotnracetinotnraotnioMn Bonad MsoBrp atidosno,r(pdt)ioefnf,e c(tds)o effsfoelcutsti oonf steomluptieorna ttuermepoenraMtuBrere omno MvaBl aretmdioffvearle antt dinififteiarlenMt Binciotinacl eMntBr actoionnces.ntrations. Polymers 2018, 10, x FOR PEER REVIEW 9 of 15 3.5.2. Adsorption Kinetics The effects of the MB initial concentration and adsorption time on the CNC-g-AA-2-120-8 aerogels are shown in Figure 6c. The value of qe increased rapidly during the initial stage of adsorption and then increased further at a relatively slow adsorption rate, before finally reaching equilibrium after approximately 260 min when the initial concentration was 100 mg/L. At an initial concentration of 40 mg/L, the aerogel reached swelling equilibrium (qe) after 100 min, beyond which there was almost no increase in adsorption. A higher initial concentration of the solution required a longer equilibrium swelling time. We used a pseudo-first-order and pseudo-second-order equations to analyze the mechanism of the adsorption process. These can be expressed in linear form as: ln(q − q ) = lnq −k t, (3) e t e 1 t 1 t = (cid:3397) (4) qt K q(cid:2870) q (cid:2870) (cid:2915) (cid:2915) where qe (mg/g) is the adsorption capacity of the CNC-g-AA-2-120-8 aerogels at equilibrium, K1 (min−1) is the rate constant of the pseudo-first-order model, and K2 (g /mg min−1) is the rate constant ofP otlhyme eprss2e0u1d8,o1-0s,e1c16o8nd-order model. Equations (3) and (4) were used to fit the experimental data9, oafs1 5 shown in Figure 7a,b respectively. The kinetic parameters obtained are summarized in Table 1. For all CNC-g-AA aerogels, the calculated correlation coefficients (R2) were closer to unity for the 3.5.2. AdsorptionKinetics pseudo second-order kinetic model than for the pseudo first-order kinetic model. Therefore, these TheeffectsoftheMBinitialconcentrationandadsorptiontimeontheCNC-g-AA-2-120-8aerogels results indicated that the dye adsorption of the CNC-g-AA-2-120-8 aerogels was described well by a areshowninFigure6c. Thevalueofq increasedrapidlyduringtheinitialstageofadsorptionand pseudo-second-order kinetic model. e thenincreasedfurtheratarelativelyslowadsorptionrate,beforefinallyreachingequilibriumafter We used the intra-particle diffusion model Equation (5) to further determine the mechanism of approximately260minwhentheinitialconcentrationwas100mg/L.Ataninitialconcentrationof the nanocomposite gels for dye considering the diffusion of dye molecules: 40mg/L,theaerogelreachedswellingequilibrium(q )after100min,beyondwhichtherewasalmost e (cid:2869) noincreaseinadsorption. Ahigherinitialconqce=ntkrai(cid:2870)ti(cid:3397)onCo fthesolutionrequiredalongerequilibr(iu5)m (cid:2930) swelling time. We used a pseudo-first-order and pseudo-second-order equations to analyze the where Ki is the intra-particle diffusion rate constant (mg/g min1/2) and C is a constant related to the mechanismoftheadsorptionprocess. Thesecanbeexpressedinlinearformas: extent of the boundary layer effect. As shown in Figure 7c, the kinetic data also agreed well with the Elovich model, further indicating the heterogeneous chemisorption character of the ln(q − q ) = lnq −k t, (3) CNC-g-AA-2-120-8 aerogels. Moreover, eintra-tparticle ediffu1sion of dye molecules played an important role at the initial stage of adsorpttion, as1 suggetsted by the intra-particle diffusion model = + (4) fitting well with our experimental kinetic daqtta. K q2 q 2 e e where q (mg/g) is the adsorption capacity of the CNC-g-AA-2-120-8 aerogels at equilibrium, K Teable 1. Adsorption kinetic parameters for MB adsorption of CNC-g-AA-2-120-8 aerogels. 1 (min−1)istherateconstantofthepseudo-first-ordermodel,andK (g/mgmin−1)istherateconstant 2 of the pseudo-second-ordLeargemrgoredne-Fli.rsEt-Oqurdaetri oKninset(i3c )Maonddel (4) werPeseuusdeod-Setoconfidt-Othrdeere xKpineertiicm Meondtea l data, Ca0s (smhgo/Lw) n inqe,Fexipg (umrge/g7) a,b re𝐪s𝐞p𝟏 ectiveKly1. × T10h−3e (1k/minient) ic parRa2m eters𝐪o𝐞b𝟐t ainedKa2 ×re 10s−u4 (mg/mmga mriizne) d in TRa2 ble 1. 20 97.6388 96.9829 21.95 0.9240 98.1354 19.00 0.9999 ForallCNC-g-AAaerogels, thecalculatedcorrelationcoefficients(R2)wereclosertounityforthe 40 194.8410 194.1255 8.31 0.9489 196.8505 5.50 0.9992 pse6u0 dosecon29d1-.o04r7d0e rkin2e9t0i.c58m00 odelthan9.0f0o rthepse0u.9d59o1 first3-0o2r.1d1e48r kineticmo1.d50e l. Therefo0r.e9,97t2h ese res8u0l tsindica3t8e3d.01t4h0a tthe32d7y.9e17a3d sorption7.4o3f theCNC0.-9g91-0A A-234-11.22097-08 aerogelsw1.0a0s described0.w99e57ll by 100 473.2217 416.6342 12.42 0.8629 452.4887 0.35 0.9926 apseudo-second-orderkineticmodel. Figure 7. (a) Lagergren-first-order kinetic model, (b) pseudo-second-order kinetic model and (c)intra-particlediffusionmodelforadsorptionofMBontoCNC-g-AA-2-120-8aerogelsat25◦C. Table1.AdsorptionkineticparametersforMBadsorptionofCNC-g-AA-2-120-8aerogels. Lagergren-First-OrderKineticModel Pseudo-Second-OrderKineticMode qe,exp C0(mg/L) (mg/g) q K1×10−3 R2 q K2×10−4 R2 e1 (1/min) e2 (g/mgmin) 20 97.6388 96.9829 21.95 0.9240 98.1354 19.00 0.9999 40 194.8410 194.1255 8.31 0.9489 196.8505 5.50 0.9992 60 291.0470 290.5800 9.00 0.9591 302.1148 1.50 0.9972 80 383.0140 327.9173 7.43 0.9910 341.2970 1.00 0.9957 100 473.2217 416.6342 12.42 0.8629 452.4887 0.35 0.9926 Weusedtheintra-particlediffusionmodelEquation(5)tofurtherdeterminethemechanismof thenanocompositegelsfordyeconsideringthediffusionofdyemolecules: 1 qt =ki2 +C (5) Polymers 2018, 10, x FOR PEER REVIEW 10 of 15 Figure 7. (a) Lagergren-first-order kinetic model, (b) pseudo-second-order kinetic model and (c) intra-particle diffusion model for adsorption of MB onto CNC-g-AA-2-120-8 aerogels at 25 °C. 3.5.3. Adsorption Isotherm and Thermodynamics Polymers2018,10,1168 10of15 We determined the MB adsorption onto the CNC-g-AA-2-120-8 aerogels as a function of the equilibrium concentration of dye solution (Ce, mg/L). Langmuir and Freundlich isotherm equations wewreh eurseedK tois dtehteerinmtirnae-p tahret iicsloethdeifrfmus pioanrarmateetceorsn astnadn tli(nmeagr/ fgittmining 1b/a2)seadn donC thisea twcoon isstoatnhterremla mtedodteolsth e i aree xsthenotwonf tihne Fbioguunrde a8rya,lba.y Terheef foebctt.aiAnsedsh ioswotnheinrmFi gpuarream7ce,ttehres kairnee tsicudmamtaaarilzsoeda girne eTdawbleel l2w. iTthheth e LaEnlgomviuchir misoodtheel,rfmur rtheseurlitnsd siucagtginesgtethde ah seuterrpolguesn oefo uatsocmhesm oirs moroplteiocunlcehs aornac tthere oafdtshoerCbeNnCt -sgu-rAfaAc-e2, -t1h2e0 -8 effaeecrtos goefl sM.MB orreesoivdeura,li nvtarale-pnacretsi cwleedrief fcuosmionpaorfadbylee mtoo tlheceu mlesolpelcauyleadr adniaimmpetoerrt;a nhternoclee, atthteh eLiannitgiamlustiarg e isootfhaedrmsosr pdteisocnr,ibaesss umgogneosltaeydebr yadthseoripnttiroan-p. aTrhtiec lLeadnigffmusuioirn ismoothdeerlmfi tmtinogdewl eilsl vwailtihd ofuorr emxponeroilmayeenrt al adksoinrepttiicodna otna.to a surface with a finite number of identical and equivalent sites and can be expressed in the following linear form: 3.5.3. AdsorptionIsothermandThermodynamics C 1 C (cid:2915) (cid:2915) = (cid:3397) (6) We determined the MB adsorption qontoqthekCNCq-g-AA-2-120-8 aerogels as a function of the (cid:2915) (cid:2923) (cid:2896) (cid:2923) equilibriumconcentrationofdyesolution(C ,mg/L).LangmuirandFreundlichisothermequations where qm is the maximum dye adsorption ontoe adsorbent (mg/g) and KL is the Langmuir adsorption wereusedtodeterminetheisothermparametersandlinearfittingbasedonthetwoisothermmodels equilibrium constant (L/g). The Freundlich isotherm model is an empirical equation that is regularly areshowninFigure8a,b. TheobtainedisothermparametersaresummarizedinTable2. TheLangmuir applied to multilayer adsorption, with a non-uniform distribution of adsorption heat and affinities isothermresultssuggestedasurplusofatomsormoleculesontheadsorbentsurface,theeffectsof over the heterogeneous surface of absorbent. It can be expressed in the following linear form: MBresidualvalenceswerecomparabletothemoleculardiameter; hence,theLangmuirisotherms 1 describesmonolayeradsorption. TheLangmuirisothermmodelisvalidformonolayeradsorption L q =L k (cid:3397) L C (7) (cid:2924) (cid:2915) (cid:2924) (cid:2890) n (cid:2924) (cid:2915) onto a surface with a finite number of identical and equivalent sites and can be expressed in the followinglinearform: Table 2. Adsorption isotherm paramCeete=rs for1 MB+ adCsoerption of CNC-g-AA aerogels. (6) q q k q Langmuir e m L m Frendlich whereq isthemaximumdyeadsorptionontoadsorbent(mg/g)andK istheLangmuiradsorption m T L equilibriumco(n℃st)a nt(KLL/ (gL)/.mTgh)e Frqemuanx (dmlicgh/gi)s otheRrm2 modelKisF anempnir icalequRa2 tionthatisregularly appliedtomultilayeradsorption,withanon-uniformdistributionofadsorptionheatandaffinities 15 0.3467 724.6377 0.9903 169.8320 1.5524 0.9731 overtheheterogeneoussurfaceofabsorbent. Itcanbeexpressedinthefollowinglinearform: 25 0.3200 735.2941 0.9914 176.3358 1.5596 0.9635 35 0.2773 757.5758 0.9925 148.2559 1.5818 0.9731 1 45 0.2628 751.L87n9q7e =L0n.9k9F1+2 n1L5n3C.2e657 1.5139 0.9771 (7) 55 0.2681 729.9270 0.9980 150.1148 1.4996 0.9823 FigFuigreu r8e. (8a.)( La)anLgamngumiru ainrdan (db)( bFr)eFurneudnlidchli cishoitshoetrhmersm fosrf othret haedsaodrspotripotnio onf MofBM bBy bCyNCCN-gC--AgA-A-2A--122-01-280 -8 aeraoegroelgse alst adtifdfeifrfeenret ntetmtepmepraetruartuesr.e s. Three therTmaboledy2.nAamdsiocr pptaioranmiseottheresrm mpuasrta mbee tceorsnfsoidrMerBeda ddsuorrpintigo nstoufdCiNesC o-gf -aAdAsoareprotgioenls .processes, namely, enthalpy (∆H), and entropy (∆S). The values of ∆H and ∆S can be obtained by the van ’t Hoff Langmuir Frendlich equation as follows: T(◦C) KL(L/mg) qmax(mg/g) R2 KF n R2 15 0.3467 724.6377 0.9903 169.8320 1.5524 0.9731 25 0.3200 735.2941 0.9914 176.3358 1.5596 0.9635 35 0.2773 757.5758 0.9925 148.2559 1.5818 0.9731 45 0.2628 751.8797 0.9912 153.2657 1.5139 0.9771 55 0.2681 729.9270 0.9980 150.1148 1.4996 0.9823

Description:
Biocompatible, Underwater Superhydrophilic and Multifunctional Biopolymer Membrane for Efficient. Oil-Water Separation and Aqueous Pollutant
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.