ebook img

HYDROTHERMAL ALTERATION OF CARBONACEOUS MUDSTONES HOSTING THE ESKAY PDF

195 Pages·2015·5.91 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview HYDROTHERMAL ALTERATION OF CARBONACEOUS MUDSTONES HOSTING THE ESKAY

HYDROTHERMAL ALTERATION OF CARBONACEOUS MUDSTONES HOSTING THE ESKAY CREEK AU DEPOSIT, BRITISH COLUMBIA by Tom Meuzelaar A thesis submitted to the Faculty and Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Geology). Golden, Colorado Date _____________________ Signed: ________________________ Tom Meuzelaar Signed: ________________________ Dr. Thomas Monecke Thesis Advisor Golden, Colorado Date _____________________ Signed: ________________________ Dr. Paul Santi Professor and Head Department of Geology and Geological Engineering ii ABSTRACT The Jurassic Eskay Creek deposit in northwestern British Columbia represents an unusual volcanic-hosted massive sulfide deposit that is characterized by a high precious metal content, enrichment of the epithermal-style suite of elements, a complex sulfide and sulfosalt ore mineralogy, and a relatively low temperature of ore deposition. The stratiform ore lenses of the deposit are hosted by carbonaceous mudstones that only show cryptic alteration. An integrated approach consisting of mineralogical and geochemical analysis, multivariate statistical data reduction, mass transfer analysis, and equilibrium geochemical modeling was adopted to identify alteration vectors to ore that can be used to identify synvolcanic precious and base metal deposits hosted by fine-grained, carbonaceous mud-stones. Despite the fairly extensive previous research carried out on the Eskay Creek deposit, the nature of hydrothermal alteration of the carbonaceous mudstone host has not been previously investigated. The present thesis addresses this critical knowledge gap. The research provides new critical insights into the nature and evolution of the hydrothermal fluids involved in formation of the Eskay Creek deposit and the development of the alteration halo surrounding the deposit. The results indicate that the integration of field observations, detailed micro-analysis, multivariate data reduction and geochemical modeling is an effective, integrated and innovative approach for studying petrographically challenging geologic materials. Textural evidence suggests that the carbonaceous mudstone is a complex rock type. The mineralogical composition of this fine-grained rock can be related to primary processes including deposition, diagenetic modification, hydrothermal alteration, and low-grade metamorphic recrystallization. Hydrothermal alteration patterns in the mudstones include a silicified core with peripheral chlorite and white mica formation and albite destruction, as well as extensive carbonate alteration. Ankerite represents the most common hydrothermal carbonate mineral and is frequently associated with kaolinite. Locally, potassium feldspar alteration of the mudstone is strongly developed. Major element mass transfer can be related to the changes in mudstone mineralogy. Additional vectors to ore include increases in the iron, magnesium, and manganese contents in iii carbonate minerals proximal to ore. Iron enrichment in chlorite occurs distally in the hanging-wall, while proximal chlorite is enriched in magnesium. Hydrothermally formed pyrite is arsenic enriched. Base metal enrichments in proximal samples are associated with sulfide minerals, while distal samples may contain anomalous base metal contents related to the presence of organic material. Mineral stability constraints suggest that the observed alteration of the host mudstone must have occurred from slightly acidic to alkaline fluids that have been highly equilibrated with the host rocks. Modeling suggests that the base metal sulfides, precious metal-bearing phases, and hydrothermal clay and carbonate minerals likely do not represent co-precipitates, but must have formed at different physicochemical conditions during the evolution of the hydrothermal system. The primary controls on the distribution of mineral phases in the deposit are CO fugacity (which controls the acidity and ionic 2 strength of solutions), temperature, and protolith wall-rock chemistry. Seawater must have contributed the magnesium to proximal carbonates and chlorite alteration, while the wall rock, in particular feldspars and detrital clays, represent the likely source for the calcium required for carbonate formation. The results of the present study demonstrate that low-temperature (<200ºC) hydrothermal alteration, diagenesis, and a low-grade metamorphic overprint resulted in the formation of broadly comparable mineral assemblages. This finding has important implications to mineral exploration as minerals of the dolomite-ankerite solid solution represent the only rock-forming minerals directly indicative for a hydrothermal overprint of the carbonaceous mudstone that can be identified tens to hundreds of meters from ore. iv TABLE OF CONTENTS ABSTRACT ....................................................................................................................... iii TABLE OF CONTENTS .....................................................................................................v LIST OF FIGURES ......................................................................................................... viii LIST OF TABLES ...............................................................................................................x LIST OF ABBREVIATIONS ............................................................................................ xi ACKNOWLEDGEMENTS ............................................................................................. xvi CHAPTER1: INTRODUCTION .........................................................................................1 1.1 Exploration in Geologically Complex Environments ...........................................1 1.2 Eskay Creek Sulfide and Sulfosalt Deposit ..........................................................2 1.3 Previous Research .................................................................................................4 1.4 Thesis Organization ..............................................................................................5 1.5 References .............................................................................................................8 CHAPTER2: MINERALOGY AND GEOCHEMISTRY ................................................13 2.1 Abstract ...............................................................................................................13 2.2 Introduction .........................................................................................................15 2.3 Geological Setting ...............................................................................................16 2.3.1 Regional Geology .....................................................................................16 2.3.2 Stratigraphy of the Mine Succession ........................................................17 2.3.3 Ore Zones ..................................................................................................21 2.4 Materials and Methods ........................................................................................22 2.5 Analytical Results ...............................................................................................26 2.5.1 Mineralogical Composition of Carbonaceous Mudstone .........................26 2.5.2 Major Element Composition of Carbonaceous Mudstone ........................36 2.5.3 Trace Element Composition of Carbonaceous Mudstone ........................38 2.5.4 Rare Element Geochemistry of Carbonaceous Mudstone ........................44 2.6 Statistical Analysis ..............................................................................................49 2.6.1 Principal Component Analysis .................................................................49 v 2.6.2 Pearce Element Ratios ..............................................................................51 2.6.3 PCA Factor Groups and Loadings Scores ................................................52 2.7 Discussion ...........................................................................................................62 2.7.1 Mudstone Compositional Variations ........................................................62 2.7.2 Styles of Hydrothermal Alteration ............................................................64 2.7.3 Alteration Halo Model ..............................................................................68 2.7.4 Implications to Gold Enrichment in Submarine Hydrothermal Systems..69 2.7.5 Implications to Exploration.......................................................................71 2.8 Conclusions .........................................................................................................73 2.9 Acknowledgements .............................................................................................74 2.10 References ...........................................................................................................75 CHAPTER3: CORRELATIVE MICROSCOPY ..............................................................83 3.1 Abstract ...............................................................................................................83 3.2 Introduction .........................................................................................................84 3.3 Geological Setting ...............................................................................................86 3.4 Materials and Methods ........................................................................................91 3.5 Results .................................................................................................................92 3.5.1 Mudstone Petrography ..............................................................................92 3.5.2 Optical Cathodoluminescence Microscopy ..............................................96 3.5.3 Scanning Electron Microscopy .................................................................98 3.5.4 Electron Microprobe Analysis of Carbonate Minerals ...........................100 3.5.5 Electron Microprobe Analysis of Illite and Chlorite ..............................100 3.5.6 Transmission Electron Microscopy of Illite ...........................................101 3.6 Discussion .........................................................................................................112 3.6.1 Primary Mudstone Composition .............................................................112 3.6.2 Devitrification of Volcanic Glass ...........................................................112 3.6.3 Feldspar Alteration..................................................................................114 3.6.4 Carbonate Alteration ...............................................................................116 3.6.5 Silicification ............................................................................................117 3.6.6 Processes of Sulfide Mineral Formation .................................................117 3.6.7 Diagenetic and Low-Grade Metamorphic Overprint ..............................119 vi 3.7 Conclusions .......................................................................................................121 3.7 Acknowledgements ...........................................................................................122 3.8 References .........................................................................................................124 CHAPTER4: GEOCHEMICAL MODELING ................................................................129 4.1 Abstract .............................................................................................................129 4.2 Introduction .......................................................................................................130 4.3 Geological Background ....................................................................................132 4.4 Methods.............................................................................................................135 4.4.1 H S Solubility .........................................................................................136 2 4.4.2 CO Solubility .........................................................................................138 2 4.4.3 The Role of Boiling ................................................................................142 4.4.4 Equilibrium Assumption .........................................................................143 4.4.5 Thermodynamic Models for Carbonate Minerals ...................................144 4.5 Results ...............................................................................................................144 4.5.1 Reaction with Mudstone of Rhyolitic Provenance .................................144 4.5.2 Reaction with Mudstone of Bimodal Provenance ..................................147 4.5.3 Mixing with Seawater .............................................................................153 4.6 Discussion .........................................................................................................157 4.6.1 Modern Day Vent Analogues .................................................................157 4.6.2 Comparison of Model Results to Observed Alteration Mineralogy .......159 4.6.3 Eskay Creek Alteration Model................................................................161 4.7 Conclusions .......................................................................................................164 4.8 Acknowledgements ...........................................................................................165 4.9 References .........................................................................................................166 CHAPTER5: CONCLUSIONS .......................................................................................171 APPENDIX: SUPPLEMENTARY ELECTRONIC FILES ............................................177 vii LIST OF FIGURES Figure 1-1 Bedrock terrane map of British Columbia ......................................................3 Figure 2-1 Geological map of Iskut River area and Eskay Creek deposit ......................18 Figure 2-2 Geological map of Eskay Creek anticline .....................................................19 Figure 2-3 East-west cross-section of western limb of the Eskay Creek anticline .........20 Figure 2-4 Plan view of the spatial distribution of ore zones .........................................23 Figure 2-5 Histograms depicting occurrence of rock-forming minerals ........................27 Figure 2-6 Geological section of 21C zone: quartz, plagioclase, and microcline ..........32 Figure 2-7 Geological section of 21C zone: illite and chlorite .......................................33 Figure 2-8 Geological section of 21C zone: carbonates and pyrite ................................35 Figure 2-9 Harker diagrams: mudstone major element content .....................................37 Figure 2-10 Mudstone epithermal element concentrations ..............................................40 Figure 2-11 Mudstone base metal concentrations ............................................................41 Figure 2-12 Mudstone organophile element concentrations ............................................43 Figure 2-13 Chondrite-normalized REE plots: least and weakly altered samples ...........45 Figure 2-14 Chondrite-normalized REE plots: variable altered samples .........................46 Figure 2-15 Log ratios of Al O and TiO over Au ..........................................................52 2 3 2 Figure 2-16 Component and mineral mass loss and gains ...............................................53 Figure 2-17 Trace element scatter plots............................................................................57 Figure 2-18 Whole rock and mineral abundance scatter plots .........................................59 Figure 3-1 Geological map of Iskut River area and Eskay Creek deposit ......................87 Figure 3-2 Geological map of Eskay Creek anticline .....................................................88 Figure 3-3 Plan view of the spatial distribution of ore zones .........................................90 Figure 3-4 Microphotographs of carbonaceous mudstones ............................................94 Figure 3-5 Optical catholuminescence images of carbonaceous mudstones ..................97 Figure 3-6 Back-scatter electron microscope images of carbonaceous mudstones ........99 Figure 3-7 Electron microprobe analyses of carbonate minerals .................................101 Figure 3-8 Compositional variations of chlorite as function of distance to ore ...........106 Figure 3-9 Low magnification TEM image showing large, defect-free illite...............107 Figure 3-10 Low magnification TEM image show thin, elongated illite .......................108 viii Figure 3-11 Low-magnification TEM image showing cross-cutting illite crystals ........109 Figure 3-12 Compositional variations in illite ................................................................110 Figure 4-1 Geological map of Iskut River area and Eskay Creek deposit ....................133 Figure 4-2 East-west cross-section of western limb of Eskay Creek anticline .............135 Figure 4-3 Comparison of published CO solubility data ............................................141 2 Figure 4-4 Effects of changing fluid salinity on CO solubility ...................................142 2 Figure 4-5 Equilibration with mudstones of rhyolitic provenance- fluid pH ...............147 Figure 4-6 Equilibration with mudstones of rhyolitic provenance- mineral stability ..148 Figure 4-7 Equilibration with mudstones of bimodal provenance- mineral stability ...151 Figure 4-8 Seawater mixing - mineral stability ............................................................155 Figure 4-9 Compositions of modern seafloor hydrothermal vent fluids ......................158 ix LIST OF TABLES Table 2-1 Composition of representative carbonaceous mudstone samples .................28 Table 2-2 PCA Results ..................................................................................................55 Table 3-1 Representative electron microprobe analyses of carbonate minerals .........102 Table 3-2 Representative electron microprobe analyses of illite ................................103 Table 3-3 Representative electron microprobe analyses of chlorite ...........................104 Table 3-4 Representative analytical electron microscopy analyses of illite 2M .........111 Table 3-5 Representative analytical electron microscopy analyses of illite 1M .........111 Table 4-1 Model parameters for equilibration with rhyolitic mudstone .....................146 Table 4-2 Model parameters for equilibration with bimodal mudstone ......................150 Table 4-3 Model parameters for seawater mixing models ..........................................154 x

Description:
Locally, potassium feldspar alteration of the mudstone is strongly indicative for a hydrothermal overprint of the carbonaceous mudstone that can be Ghiara, M.R., Franco, E., Petti, C., Stanzione, D., and Valentino, G.M., 1993,
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.