ebook img

Hydrologic Evaluation of Six High Resolution Satellite Precipitation Products in Capturing Extreme PDF

17 Pages·2017·6.06 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Hydrologic Evaluation of Six High Resolution Satellite Precipitation Products in Capturing Extreme

water Article Hydrologic Evaluation of Six High Resolution Satellite Precipitation Products in Capturing Extreme Precipitation and Streamflow over a Medium-Sized Basin in China ShanhuJiang1,2,ShuyaLiu1,2,LiliangRen1,2,*,BinYong1,LinqiZhang2,MenghaoWang2, YujieLu2andYingqingHe3 1 StateKeyLaboratoryofHydrology-WaterResourcesandHydraulicEngineering,HohaiUniversity, Nanjing210098,China;[email protected](S.J.);[email protected](S.L.); [email protected](B.Y.) 2 CollegeofHydrologyandWaterResources,HohaiUniversity,Nanjing210098,China; [email protected](L.Z.);[email protected](M.W.);luyujiefi[email protected](Y.L.) 3 NanjingBranch,Huai’anSurveyingandDesignInstituteofWaterResourcesCo.,Ltd.,Nanjing210008, China;butterfl[email protected] * Correspondence:[email protected];Tel.:+86-25-8378-7480 Received:22November2017;Accepted:25December2017;Published:29December2017 Abstract:Satelliteprecipitationproducts(SPPs)arecriticaldatasourcesforhydrologicalprediction andextremeeventmonitoring,especiallyforungaugedbasins.Thisstudyconductedacomprehensive hydrologicalevaluationofsixmainstreamSPPs(i.e.,TMPA3B42RT,CMORPH-RT,PERSIANN-RT, TMPA3B42V7,CMORPH-CRT,andPERSIANN-CDR)overhumidXixianbasinincentraleastern Chinaforaperiodof14years(2000–2013). Theevaluationspecificallyfocusedontheperformance of the six SSPs in capturing precipitation and streamflow extremes. Results show that the two post-real-time research products of TMPA 3B42V7 and CMORPH-CRT exhibit much better performancethanthatoftheircorrespondingreal-timeSPPsforprecipitationestimationatdailyand monthlytimescales.Bycontrast,thenewlyreleasedpost-real-timeresearchproductPERSIANN-CDR insignificantlyimprovesprecipitationestimatescomparedwiththereal-timePERSIANN-RTdoesat daily time scale. The daily streamflow simulation of TMPA 3B42V7 fits best with the observed streamflow series among those of the six SPPs. The three month-to-month gauge-adjusted post-real-time research products can simulate acceptable monthly runoff series. TMPA 3B42V7 andCMORPH-CRTpresentgoodperformanceincapturingprecipitationandstreamflowextremes, although they still exhibit non-ignorable deviation and occurrence time inconsistency problems comparedwithgauge-basedresults. CautionshouldbeobservedwhenusingthecurrentTMPA, CMORPH,andPERSIANNproductsformonitoringandpredictingextremeprecipitationandflood at such medium-sized basin. This work will be valuable for the utilization of SPPs in extreme precipitationmonitoring,streamflowforecasting,andwaterresourcemanagementinotherregions withsimilarclimateandtopographycharacteristics. Keywords: satelliteprecipitationproduct;streamflowsimulation;extremeprecipitation;extreme streamflow;statisticalevaluation 1. Introduction Extreme precipitation and flood often exert serious impacts on human society and infrastructure[1]. AccordingtoGlobalAssessmentReportonDisasterRiskReduction,floodsaffect peopleworldwidemorethananyothernaturalhazards,withanestimatedglobalannualaverageloss Water2018,10,25;doi:10.3390/w10010025 www.mdpi.com/journal/water Water2018,10,25 2of17 of$104billion[2]. Accurateprecipitationestimatesandreliablefloodmodelingarecriticaltonumbers ofnationalandregionalagenciesfordisastermonitoring,mitigation,andmanagement[3–6]. Inrecent decades,satelliteprecipitationproducts(SPPs)havebecomenewalternativeprecipitationdatasetsfor globalhydrometeorologicalresearchandapplications[7–9]. Forexample,thePrecipitationEstimation fromRemoteSensingInformationusingArtificialNeuralNetwork(PERSIANN)[10], theClimate PrecipitationCenter(CPC)MorphingTechnique(CMORPH)byNationalOceanicandAtmospheric Administration(NOAA)[11],theTropicalRainfallMeasuringMissionMulti-satellitePrecipitation Analysis(TMPA)[12],andtheGlobalPrecipitationMeasurement(GPM)[13],haverecentlybeenmade operationallyavailable. AmongsuchSPPs,TMPA,CMORPH,andPERSIANNplayimportantroles owingtotheirlong-termseriesdatasetsandadequateretrievalexperiencesandtechniques. Beforeand after the GPM mission implemented on 27 February 2014, the TMPA, CMORPH, and PERSIANN systemshavebeencontinuouslyupgradingtheirretrievalalgorithmsandreleasingtheirlatestsatellite precipitationproducts[14–16]. Inrecentyears,manyworkshavebeenmadetoanalyzetheaccuracyandhydrologicalutilityof thelatestSSPsoverdifferenttopographicorclimaticregionsallovertheworld,andtheyfoundthat theerrorsofdifferentSPPsdependsignificantlyontheprecipitationretrievalalgorithm,geographical location, topography condition (plain or mountainous), and seasonality [17–24]. For example, Yongetal. [17] compared the precipitation products of TMPA over two different latitude basins withindependentgaugeobservationsandconcludedthatTMPAexhibitmuchbetterperformanceover thelowlatitudeMishuibasinthanoverthehighlatitudeLaohahebasin. Zhuetal.[18]evaluatedthe hydrologicalutilityofTRMM3B42V7,PERSIANN-CDR,andNCEP-CFSRovertwoChinesehumid watershedsandfoundthatTMPA3B42V7andPERSIANN-CDRpresentgoodperformancefordaily andmonthlystreamflowsimulations. Hussainetal.[22]assessedsixSPPs(real-timeandbias-adjusted TMPA, CMORPH, and PERSIANN) over plain, mountainous, and glacial regions in Pakistan and concludedthatTMPA3B42V7andCMORPH-CRTshowthebestagreementwithinsitudataoverthe entirestudyarea. Some efforts have also been made to evaluate the utility of these SPPs in capturing extreme precipitation and streamflow over different spatial scales [25–34]. Huang et al. [26] evaluated the utility of TMPA 3B42RT and 3B42V7 in capturing one typical extreme rainfall event in Beijing in 21 July 2012 and emphasized that both SPPs present large deviations from the temporal variation in rainfall and underestimate the storm. Miao et al. [27] evaluated PERSIANN-CDR in capturing the extreme precipitation over China and found that PERSIANN-CDR underestimates the values of extreme heavy precipitation. Shah and Mishra [29] analyzed uncertainty and bias in five SPPs overIndiansub-continentalbasinsandhighlightedthatbiasinSPPsaffectstheinitialconditionand precipitationforcing,therebyaffectingfloodpeaktimingandmagnitudes. Meietal.[31]analyzed error in SPPs-driven flood simulations in complex alpine terrain in Italy and found a dampening effectinbothsystematicandrandomerrorcomponentsofthesatellite-drivenhydrographrelative tothesatellite-retrievedhyetograph. Thesepreviousresearchesprovidedimportantreferencesfor application on SPPs in flood hydrology. However, the further researches of uncertainties of these SPPsincapturingextremeprecipitationintermsofrainfallamountdeviationandoccurrencetime inconsistencyindifferentregionsandtheirerrorpropagationcharacteristicsinfloodsimulationare stillneeded. Thisstudyfocusesoncomprehensivehydrologicalevaluationofsixlong-termseriesSPPs(i.e.,TMPA 3B42RT,CMORPH-RT,PERSIANN-RT,TMPA3B42V7,CMORPH-CRT,andPERSIANN-CDR)inhumid XixianbasinincentraleasternChina.Thisstudymainlyaimsto(1)evaluatetheaccuracyofsixmainstream SPPs with rain gauge observations, (2) validate the hydrological simulation utility of the SSPs via hydrologicalmodeling,and(3)analyzetheuncertaintiesoftheSSPsincapturingextremeprecipitation and extreme streamflow. This work is valuable for the utilization of SPPs in extreme precipitation monitoring,streamflowforecasting,andwaterresourcemanagementincentraleasternChinaandother regionswithsimilarclimateandtopographycharacteristics. Water2018,10,25 3of17 2. StudyAreaandData 2.1. StudyArea XixianBasin,theupstreamcatchmentofHuaiRiver,wasselectedasourcasestudyarea(Figure1). Extendedfromlongitudes113.25◦ Eto115◦ Eandlatitudes31.5◦ Nto32.75◦ N,theXixianbasinhas adrainageareaof10,191km2 abovetheXixianhydrologicstation. Theelevationwithinthebasin rangesfrom33mto1110m. ThelanduseandlandcoverageinXixianbasinis54.4%forestandshrubs, 33.5%grassland,11.8%cropland,and0.3%urbanandwater. Thebasinliesinthetransitionzoneof themid-latitudehumidclimateandsemi-aridclimate. Thelongtermmeanannualprecipitationand temperatureare1145mmand15.2◦C,respectively. Theseasonaldistributionoftheprecipitationin thebasinismainlyaffectedbymonsoonclimateandthevastmajorityoftheannualprecipitationfalls inthesummerseason. Duringthesemonths,particularlyinJuneandJuly,basin-wideheavyrains continuouslyoccur,therebyresultinginfloods. Thelongtermmeanannualcumulativeflowrateis 3.58×109m3atXixianhydrologicstation. Figure1.MapofXixianBasininupstreamofHuaiRiverBasin. 2.2. Data 2.2.1. SatellitePrecipitationProducts TheSPPsusedinthisstudyarethreepurereal-timeSPPs,namely,TMPA3B42RT,CMORPH-RT, andPERSIAN-RT,andthreepost-real-timeresearchSPPs,namely,TMPA3B42V7,CMORPH-CRT, andPERSIANN-CDR. The TMPA combines the low-orbit satellite microwave (MW) data where available and the MW-calibrated geostationary infrared (IR) data elsewhere to produce quasi-global (50◦ N-S) precipitationdataset[12].TheTMPA3B42RTandTMPA3B42V7precipitationproductswereproduced Water2018,10,25 4of17 bythelatestTMPAVersion7algorithmsupgradedon28January2013[14]. Duringthepastyears, hydrologistsandmeteorologistshavewidelyevaluatedandappliedtheTMPAproducts[17,18,20–26]. While, the utility of the latest version 7 TMPA products in capturing extreme precipitation and streamflowhasnotbeenfullyevaluatedatriverbasinscale. TheCMORPHisprimarilybasedonlow-orbitsatelliteMWobservations,andthegeostationary IRdataareusedonlytoderivethemovementofprecipitationsystems[11]. AtNOAACPC,CMORPH reprocessedanewdatasetnamedCMORPHVersion1.0in2014. CMORPHVersion1.0includesthe raw,satellite-onlyprecipitationestimates(CMORPH-RT)andthenewbias-correctedprecipitation products(CMORPH-CRT).CMORPH-CRTadjustsprecipitationestimatethroughmatchingthePDFof dailyCMORPH-RTagainstthatfortheCPCunifieddailygaugeanalysisateachmonthoverland[15]. The PERSIANN derives the relationships between IR and MW data by a neural network approachandthenapplytherelationshipstotheIRdatatogeneratereal-timeprecipitationproducts (PERSIANN-RT) [10]. PERSIANN-CDR is a newly developed bias-adjusted satellite precipitation productthatcoversfrom1January1983topresent[16]. InPERSIANN-CDR,theIRdataarefirstly appliedinthePERSIANNmodeltoproducehistoricalrainfallestimates,thentheseestimatesarebias adjustedbyusingtheGlobalPrecipitationClimatologyProject2.5◦ monthlydata[16]. Currently,the availablePERSIANN-CDRisdailytemporalresolutionand0.25◦spatialresolutionforthe60◦ S–60◦ N latitudeband. 2.2.2. GaugedPrecipitationandDischargeData Daily precipitation data for the year of 2000–2013 were obtained from 22 rain gauge stations in Xixian Basin (Figure 1). The same long-term series daily streamflow and meteorological data wereobtainedfromtheXixianhydrologicstationandXinyangevaporationstation,respectively. The Penman–Monteithequationwasusedtocalculatedailypotentialevapotranspirationasoneforcing input data for the hydrological model [35]. The inverse distance weighting method was used to interpolate the rain gauge data into the spatial distribution [36]. The 30 arc-second global digital elevationmodeldatawascollectedfromtheU.S.GeologicalSurvey[37]. Thevegetation-typedata werecollectedfromtheModerateResolutionImagingSpectroradiometerlandcoverdatausingthe InternationalGeosphere–BiosphereProgramclassificationsystem[38]. 3. Methodology 3.1. EvaluationStatistics Inthepresentstudy,threestatisticalindiceswereadoptedtoqualitativelyevaluatetheprecision of the six SPPs. The Person correlation coefficient (CC) assesses the correlation between satellite precipitationproductsandraingaugeobservations. Theroot-mean-squareerror(RMSE)measuresthe averageerrormagnitudeofsatelliteprecipitation. Inaddition,therelativebias(BIAS)demonstrates the systematicbias ofsatellite precipitation. Twocategorical statisticalindices, namedprobability ofdetection(POD)andfalse-alarmrate(FAR),representthecorrespondencebetweenSPPsandrain gaugedata[39]. POD,alsonamedhitrate,showshowoftenrainoccurrencesarecorrectlydetectedby satellite. FARdenotesthefractionofcasesinwhichsatelliterecordsprecipitationwhenraingauge doesnot. Aprecipitationthresholdof1.0mmwasusedtodefinerainorno-raineventsinthisstudy. TheCC,BIAS,andNash–Sutcliffecoefficient(NSE)comprehensivelyreflectthehydrologicmodel performanceonthebasisoftheobservedandsimulatedstreamflow[40]. Formulastocalculatethe indicesmentionedabovearelistedinTable1. Water2018,10,25 5of17 Table1.StatisticalevaluationindicesforevaluatingtheSPPsandtheirhydrologicalutility. EvaluationIndices Unit Formulas PerfectValue ∑n (Gi−G)(Si−S) Correlationcoefficient(CC) NA CC= (cid:118)(cid:117)(cid:117)(cid:116)∑ni=(G1i−G)2(cid:115)∑n (Si−S)2 1 i=1 i=1 (cid:115) n Root-mean-squareerror(RMSE) mm RMSE= n1 ∑ (Si−Gi)2 0 i=1 ∑n (Si−Gi) Relativebias(BIAS) % BIAS= i=1 ×100% 0 ∑n Gi i=1 Probabilityofdetection(POD) NA POD= tH 1 tH+tM False-alarmrate(FAR) NA FAR= tF 0 tH+tF ∑n (Qsim(i)−Qobs(i))2 Nash–Sutcliffecoefficient(NSE) NA NSCE=1−i=1 1 ∑n (Qobs(i)−Q−obs)2 i=1 Notes:wherenisthetotalamountofsamples;SiandGiaretheithvaluesoftheevaluateddataandreferencedata, respectively;SandGarethemeanvaluesoftheSiandGi,respectively.H,M,andFaredifferentcases:H,observed raincorrectlydetected;M,observedrainnotdetected;F,raindetectedbutnotobserved. tH,tM,andtFarethe timesofoccurrenceofthecorrespondingcase.ThedetailsoftheseparameterscanbefoundinEbertetal.[39]. 3.2. HydrologicalModelandCalibration Xinanjiangmodel(XAJmodel)isafamousphysically-basedconceptualrainfall-runoffmodel developedbyZhao[41]. IthasbeenwidelyusedindifferenthumidriverbasinsoverChina[42,43]. Inthecurrentstudy,agrid-basedXAJmodelwasconstructed. Themodelcalculatedthetotalrunoff withineachgridunitusingthesaturationexcessrunoffscheme. Thetotalrunoffwasdividedinto surfacerunoff,soilrunoffandundergroundrunoffusinganoverflowreservoirwithbottomandside holes. ThenthelinearreservoirwasusedtoperformthesloperunoffconvergenceandtheMuskingum segmentationfloodroutingwasusedtoperformtherivernetworkrunoffconvergence. Themodel contains15parameters(seeTable2), andtheywereautomaticallycalibratedthroughtheShuffled Complex Evolution (SCE-UA) global optimization algorithm proposed by Duan et al. [44]. In the currentstudy,theXAJmodelwascalibratedwithraingaugeprecipitationdataatdailytimescaleand 0.25◦ ×0.25◦ spatialresolution. Inaddition,themodelrunswerethenrepeatedwiththesixSPPsas inputs. WedeterminedtheJanuary2000toDecember2006ascalibrationperiodandJanuary2007to December2013asvalidationperiod. Table2.ParametersoftheXAJmodelandtheirpriorranges. Parameter PhysicalMeaning PriorRange Kc ratioofpotentialevapotranspirationtopanevaporation 0.5–1.5 WUM watercapacityintheuppersoillayer 10–40 WLM watercapacityinthelowersoillayer 50–90 WDM watercapacityinthedeepersoillayer 10–70 B exponentoftensionwatercapacitycurve 0.1–0.5 C coefficientofdeepevapotranspiration 0.1–0.3 EX exponentoffreewatercapacitycurve 1–1.5 SM freewatercapacityofsurfacesoillayer 10–60 KI0 outflowcoefficientsoffreewaterstoragetointerflow KI+KG=0.7 KG0 outflowcoefficientsoffreewaterstoragetogroundwater 0.1–0.5 CI0 recessionconstantofthelowerinterflowstorage 0.1–0.9 CG0 dailyrecessionconstantofgroundwaterstorage 0.9–0.999 CS0 recessionconstantforchannelrouting 0.1–0.5 KE slotstoragecoefficient 20–24 XE flowproportionfactor 0.1–0.5 Water2018,10,25 6of17 4. ResultsandDiscussion 4.1. EvaluationofSatellitePrecipitationProducts TheselectedsixSPPscoveringtheentireXixianBasinfrom1January2000to31December2013 (inwhichTMPA3B42RTandPERSIANN-RTwerefrom1March2000)wereevaluatedintermsof errorsindailyprecipitation,extremeprecipitation,andmonthlyprecipitation. 4.1.1. DailyPrecipitationEvaluation Scatterplots of the basin average daily precipitation estimates of six SPPs versus rain gauge observationsareshowninFigure2, andthestatisticalmeasuresofsixSPPsforthedailyscaleare summarizedinTable3. Amongthethreereal-timeSPPs,CMORPH-RTexhibitsthebestperformance with the highest CC of 0.79 and CSI of 0.55 and lowest RMSE of 5.42 mm, BIAS of −12.60, and FAR of 0.26. TMPA 3B42RT presents a performance comparable to that of CMORPH-RT, except for a large overestimation of precipitation estimates, with BIAS of 23.75%. The performance of PERSIANN-RT is the worst among those of the three real-time SPPs. For the three post-real-time researchSPPs,TMPA3B42V7andCMORPH-CRTpresentbetterperformancethanthatofthelatest PERSIANN-CDR. As documented in many prior studies, the two post-real-time research SPPs of TMPA and CMORPH exhibit much better performance than that of their corresponding real-time satelliteprecipitation[18,21]. WithregardtoPERSIANNproducts,thenewlyreleasedpost-real-time researchversionPERSIANN-CDRinsignificantlyimprovesprecipitationestimatescomparedwith thereal-timePERSIANN-RTdoesatdailytimescale. Therefore,cautionshouldbeexercisedwhen applyingthenewlyreleasedPERSIANN-CDRfordailyquantitativeprecipitationestimationatsimilar riverbasins. Ingeneral,TMPAandCMORPH(especiallythetwopost-real-timeresearchSPPs)show goodperformancefordailyprecipitationestimatesoverXixianBasin. Figure2.ScatterplotsofthebasinaveragedailyprecipitationbetweenSPPsandraingaugeobservations for Xixian Basin: (a) TMPA 3B42RT; (b) CMORPH-RT; (c) PERSIANN-RT; (d) TMPA 3B42V7; (e) CMORPH-CRT;(f)PERSIANN-CDR. Water2018,10,25 7of17 Table3.StatisticalmeasuresoftheSPPsforthedailyprecipitationestimates. Products CC RMSE(mm) BIAS(%) POD FAR TMPA3B42RT 0.76 6.17 25.25 0.75 0.36 CMORPH-RT 0.76 5.65 −11.87 0.67 0.28 PERSIANN-RT 0.59 7.06 −17.20 0.62 0.47 TMPA3B42V7 0.78 5.71 15.10 0.76 0.30 CMORPH-CRT 0.77 5.84 9.20 0.73 0.31 PERSIANN-CDR 0.60 7.15 19.04 0.76 0.56 4.1.2. ExtremePrecipitationEvaluation Threeextremeprecipitationindices,namely,annualmaximum1-dayprecipitation(R×1d),3-day precipitation(R×3d),and5-dayprecipitation(R×5d)[27],wereadoptedtoevaluatetheperformance ofthesixSPPsincapturingthebehaviorofprecipitationextremes.ThestatisticalmeasuresoftheSPPsfor R×1d,R×3d,andR×5daresummarizedinTable4,andtheboxplotsoftheBIASvaluesofR×1d,R ×3d,andR×5dofthesixSPPsareshowninFigure3.Amongthethreereal-timeSPPs,TMPA3B42RT exhibitsthebestperformanceincapturingthebehaviorofprecipitationextremeswithcomparableCCand thelowestRMSE,andBIAS,whereasTMPA3B42RTstillshowsseriousoverestimationofR×1d,R×3d, andR×5dforsomeyears(Figure3). Notably,theBIASvaluesofthethreenear-real-timeproducts, asshownintheboxplotsofFigure3,aredistributedinawiderrangethanthatoftheircorresponding post-real-timeproducts.Thisresultindicatesthegreatuncertaintyofthenear-real-timeSPPsincapturing thebehaviorofprecipitationextremes. Forthethreepost-real-timeresearchSPPs,TMPA3B42V7and CMORPH-CRTpresentmuchbetterperformancethanthatofthelatestPERSIANN-CDRwhichseriously underestimatesprecipitationextremesprecipitationextremes. Withregardtothemultipleindicators, TMPA3B42V7andCMORPH-CRTexhibitgoodperformanceincapturingthebehaviorofprecipitation extremesoverXixianBasin,whereastheystillpresentcertainunderestimationsofprecipitationextremes. Thisfindingisconsistentwiththatofafewpreviousworks[18,32].Othertimeconsistencyuncertainties areobservedintheperformanceofSPPsincapturingprecipitationextremes.Table5showstheoccurrence dateofR×1ddetectionbyraingaugeobservationsandsixSPPsfortheperiodof2000–2013.Amongthe sixSPPs,TMPA3B42RTandCMORPH-RTshowthebestperformanceintimeconsistencyfordetecting the occurrence date of R × 1 d. The two SPPs are followed by TMPA 3B42V7 and CMORPH-CRT. ThePERSIANNproductsexhibittheworstperformance.Ingeneral,mostoccurrencedatesofR×1d detectionbySPPsarestillinconsistentwiththedatedetectedbygaugeobservations. Thus,owingto theunderestimationinprecipitationextremesandtheinconsistencyofoccurrencetimewithraingauge observations,cautionshouldbeexercisedwhenapplyingthecurrentTMPA,CMORPH,andPERSIANN productsinpredictingextremeprecipitationatsuchmedium-sizedhumidbasin. Table4.StatisticalmeasuresoftheSPPsforannualmaximum1-,3-,and5-dayprecipitation. ExtremePrecipitationIndices Products CC RMSE(mm) BIAS(%) TMPA3B42RT 0.74 22.05 −5.90 CMORPH-RT 0.73 26.06 −15.36 PERSIANN-RT 0.76 29.34 −23.70 R×1d TMPA3B42V7 0.88 19.99 −14.54 CMORPH-CRT 0.84 18.99 −3.64 PERSIANN-CDR 0.74 34.21 −30.29 TMPA3B42RT 0.67 44.76 4.82 CMORPH-RT 0.71 46.06 −16.55 PERSIANN-RT 0.67 59.76 −31.52 R×3d TMPA3B42V7 0.87 30.41 −8.92 CMORPH-CRT 0.79 35.55 −1.42 PERSIANN-CDR 0.87 49.89 −27.91 TMPA3B42RT 0.71 47.31 4.91 CMORPH-RT 0.75 50.87 −20.35 PERSIANN-RT 0.56 67.00 −28.52 R×5d TMPA3B42V7 0.88 31.24 −7.27 CMORPH-CRT 0.85 34.11 −7.53 PERSIANN-CDR 0.78 47.95 −18.27 Water2018,10,25 8of17 Figure 3. Box plots of the BIAS index of the annual maximum (a) 1-day precipitation; (b) 3-day precipitationand(c)5-dayprecipitationforthesixSPPsversusraingaugeobservationsover14years. Theupperandloweredgesoftheboxmarktheupperandlowerquartiles(75%and25%,respectively); thesolidlineintheboxmarksthemedianvalue;theupperandlowerhorizontallinesoutofthebox markthe90%and10%quartiles,respectively;thepointsmarkthemaximumandminimumvalues. Table5.Occurrencedateofannualmaximum1-dayprecipitation(R×1d)detectionbyraingauge observationsandsixSPPsfortheperiodof2000–2013.GrayboxesindicatethedateofR×1ddetected bySSPsisconsistentwiththedatedetectedbyraingaugeobservations. TMPA TMPA Year Gauge CMORPH-RT PERSIANN-RT CMORPH-CRT PERSIANN-CDR 3B42RT 3B42V7 2000 8/18 6/1 6/1 6/1 6/1 6/1 6/1 2001 6/17 7/29 8/7 7/21 10/25 10/25 7/26 2002 6/22 2003 6/29 7/20 4/17 4/17 10/10 8/24 8/28 2004 8/4 7/16 2005 7/9 6/25 6/25 6/25 8/28 6/25 2006 9/4 6/29 5/4 7/21 5/4 5/4 7/21 2007 7/13 5/30 5/30 5/30 7/8 7/8 7/4 2008 7/22 8/13 8/13 7/17 8/13 8/13 7/17 2009 8/28 6/27 6/27 7/21 5/27 8/17 5/27 2010 7/16 5/3 9/6 2011 7/26 6/13 2012 9/7 8/26 7/7 8/26 8/26 8/18 2013 8/22 4.1.3. MonthlyPrecipitationEvaluation The daily precipitation estimates from the six SPPs were aggregated to monthly time series andwerethencomparedwiththeraingauge-observedmonthlyprecipitation. Figure4depictsthe scatterplotsofthebasinaveragemonthlyprecipitationfromSPPsandraingaugeobservations. Similar tothedailyresults,amongthethreereal-timeSPPs,CMORPH-RTpresentsthebestperformancewith thehighestCCof0.91andthelowestRMSEof39.78mm,andBIASof−12.60%.TMPA3B42RTexhibits Water2018,10,25 9of17 aperformancecomparabletothatofCMORPH-RTexceptforalargeoverestimationofprecipitation estimates. PERSIANN-RTtakesthelastplacebecauseofthelowestCCof0.82andthelargestRMSE of57.51mm. Forthethreepost-real-timeresearchSPPs, TMPA3B42V7andCMORPH-CRTshow muchbetterperformancethanthatofthenewlyreleasedPERSIANN-CDR.Atmonthlytimescale, allthreepost-real-timeresearchproductsofTMPA3B42V7,CMORPH-CRT,andPERSIANN-CDR outperformtheircorrespondingreal-timeestimates(Figure4),suggestingthatthemonthlytimescale gaugeadjustmentsappliedtotheTMPA,CMORPH,andPERSIANNsystemssubstantiallyimprove themonthlydataaccuracyofretrievals. Themonth-to-monthgauge-adjustedpost-real-timeresearch productsaresuggestedasidealSPPsformonthlywaterresourceconditionanalysis. Figure 4. Scatterplots of the basin average monthly precipitation between SPPs and rain gauge observationsforXixianBasin: (a)TMPA3B42RT;(b)CMORPH-RT;(c)PERSIANN-RT;(d)TMPA 3B42V7;(e)CMORPH-CRT;(f)PERSIANN-CDR. 4.2. EvaluationofStreamflowSimulations Thestreamflowsimulationaccuracywhenthemodelwascalibratedonthebasisofraingauge data was analyzed to evaluate the streamflow simulation utility of the six SPPs. The simulated streamflowusingthesixSPPsasinputswerecomparedwiththeobservedstreamflowinthefollowing threeaspects. 4.2.1. DailyStreamflowEvaluation Figure 5a compares the rain gauge data-simulated daily hydrograph with that observed streamflowandsummarizesthestatisticalmeasuresoftheraingaugedata-simulatedresults. Thereare Water2018,10,25 10of17 goodagreementsbetweentheobservedandsimulateddailystreamflowseries. Thestatisticalindices, withdailyCCof0.92and0.90,NSEof0.85and0.81,andBIASof−2.54%and9.71%forthecalibration andvalidationperiods,respectively,demonstratethattheXAJmodelcanhavegoodsimulationsof thestreamflow. Figure5. ObservedandXAJmodel-simulateddailystreamflowsfromtheraingaugeobservations andthethreereal-timeSPPsfor(a)raingaugeprecipitation;(b)TMPA3B42RT;(c)CMORPH-RTand (d)PERSIANN-RT. ThecalibratedXAJmodelwasthenforcedbythesixSPPsasinputsintheperiodof2000–2013. Figure 5b–d show the XAJ model-simulated daily streamflows from the three real-time SPPs, and Figure6a–cdepictstheXAJmodel-simulateddailystreamflowsfromthethreepost-real-timeresearch SPPs. Forthethreereal-timeSPPs,thesimulationsofTMPA3B42RThavesignificantoverestimation of most streamflow series for its systematic overestimation of precipitation. On the contrary, the simulations of CMORPH-RT and PERSIANN-RT significant underestimation of most streamflow series for their systematic underestimation of precipitation. The streamflow simulation of TMPA 3B42RTpresentsdailyCCof0.74, dailyNSEof0.44, andBIASof32.68%fortheentiresimulation period. The streamflow simulation of CMORPH-RT exhibits daily CC of 0.70, daily NSE of 0.46,

Description:
hydrological modeling, and (3) analyze the uncertainties of the SSPs in APHRODITE) in driving lumped and distributed hydrological models in a
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.