ANRV413-BI79-18 ARI 27April2010 21:0 Hydrogenases from Methanogenic Archaea, Nickel, a Novel Cofactor, and H Storage 2 g or s. w viey. Rudolf K. Thauer, Anne-Kristin Kaster, ualree onl Meike Goenrich, Michael Schick, ns w.annal u Takeshi Hiromoto, and Seigo Shima wo ed from w3. For pers MemaaxilP:ltahnacukerI@nsmtitpui-temfaorrbTuregrr.mesptrgi.adleMicrobiology,D-35043Marburg,Germany; d1 wnloa06/10/ Annu.Rev.Biochem.2010.79:507–36 KeyWords 7-536. DoAustin on FMTihrasertcAhpnu1nb7ul,ias2lh0Re1de0voienwlinofeBaisocahRemevisiterwyiisnoAndlivnaenacteon rrHeesv2peaircrstaeitdvoaretylieoccnht,raeoinnn,etrcrghayen-mscfoeiornsvmerottiincgchoyudprliongge,nealseec,trcoonmbpilfeuxrcIaotfiotnh,e 79:50xas - biochem.annualreviews.org Abstract 10.Te Thisarticle’sdoi: v. Biochem. 20y University of A01C00lol6.p1r61yi-gr44hi6g1t/h5sa4trn/e(cid:2)n1csue0rr2/ev00ve71.db00i7ob-cy0h5Ae0mn7n$.0u23a00l.05R00e8v.i1e5w2s1.03 aeaMcsnstoeoirvsctgaiytami-toecendotnhovafne[rNotHgiineF2gn,ei]ct-[hhNaeyryidcFrheuoa]sg-eeheanydrdaeisrfdeofuegrceeenonarCtseO[sN,2miFhweteeihtt]he-ahrnoHyoddp2irhsoutegolnfieandCzaeiHnsee4rs-.e,rdeFnudoacurmtcaitsenhelgye- nu. Reb e[NneiFrgey]--hcoyndvroergteinngase[,NiaFned]-hFy4d2r0o-rgeednuacsiensgar[eNpiFhey]l-ohgyednreotgiceanllayser.elTathede n A to complex I of the respiratory chain. Under conditions of nickel limitation, some methanogens synthesize a nickel-independent [Fe]- hydrogenase (instead of F -reducing [NiFe]-hydrogenase) and by 420 that reduce their nickel requirement. The [Fe]-hydrogenase harbors a unique iron-guanylylpyridinol cofactor (FeGP cofactor), in which a low-spin iron is ligated by two CO, one C(O)CH -, one S-CH -, 2 2 and a sp2-hybridized pyridinol nitrogen. Ligation of the iron is thus similar to that of the low-spin iron in the binuclear active-site metal center of [NiFe]- and [FeFe]-hydrogenases. Putative genes for the synthesis of the FeGP cofactor have been identified. The formation ofmethanefrom4H andCO catalyzedbymethanogenicarchaeais 2 2 beingdiscussedasanefficientmeanstostoreH . 2 507 ANRV413-BI79-18 ARI 27April2010 21:0 Thenamehydrogenasewascoinedin1931by Contents Stephenson&Stickland(2,3)foranactivityin anaerobicallygrownEscherichiacolicellsmedi- INTRODUCTION.................. 508 atingthereversiblereductionofdyeswithH . H ASANINTERMEDIATEIN 2 2 DyereductionwasreversiblyinhibitedbyCO, CH FORMATIONANDTHE 4 indicatingtheinvolvementofatransitionmetal ORGANISMSINVOLVED....... 510 inH activation(4).Thetransitionmetallater HYDROGENASESFOUND 2 turned out to be nickel in a binuclear nickel- INMETHANOGENSAND ironcenterinthecaseof[NiFe]-hydrogenases THEIRFUNCTION............. 511 (5–8),ironinabinucleariron-ironcenterinthe THEFOURSUBTYPES case of [FeFe]-hydrogenases (9–11), and iron OF[NiFe]-HYDROGENASES in a mononuclear iron center in the case of INMETHANOGENS............ 514 [Fe]-hydrogenase(12–14),whicharethethree Energy-Converting org [NiFe]-Hydrogenases........... 514 differenttypesofhydrogenasesknowntodate ws. (Figure1)(15,16). e Heterodisulfide viy. From the work of Stephenson, it became ualree onl R[NediFuec]t-aHsey-dArsosgoecniaatseedMvhADG.. 517 evidentthatmethaneformationfrombiomass nnus in river sediments is at least in part the result ww.aonal Me[tNhainFoep]-hHenydazroingee-nRaesdeuVchintgACG.. 520 of the syntrophic interaction of H2-forming ded from w13. For pers CGoeen[NnezsiyFImnev]e-oHFlv4ye2dd0r-oiRngeednuacsiensgFrhABG.. 521 bmtuaercnttheeardinaooguseutnctshh.aAatsnindEte.inrsdcpoeleiecdiaenisndhlyHadte2rro-cgsoetnunsdutimerasi,nnsig-t 7-536. DownloaAustin on 06/10/ [FeN]-Hic[MkYNeaDiltFuRRereO]a-gtHGiuolyEnadtNi.ro.oAn.g.S.e..En..a..s..e.......................... 552232 t(fcdpeiayorHrnnbiasoimn<nai1acqcn0yuaacaPnelndaert;oikdEtbiaen(cid:4)it(sceHipvthiei+tcale/ybrHiteithmaaest)ops=fnoiasrsc−ttgtahe3ntehn0tae0Hptrmra2fololVccyroe)vnst(hse1cree7iynrn,m1tltor8hoaw)e--. 79:50xas - IWNITMHEOTHUTANCOYGTEONCSHROMES... 524 H2(2seethesidebartitle2dPropertiesofH2)(19, 2010.of Te StructuralProperties............... 525 2tr0o)n,ecvaernriaetrlobwetwcoenecneonrtrgaatnioisnms,sisbaencaiudseealitelceacn- Rev. Biochem. by University H2CGSTaetnCOaeloysRftIaAinccGtvPooErrlovBVpeideIorAsitnyiCenFstHhe.G.e4.sPi.s....................... 552256 fEtisromsenteisslmyoaafdntHidefsf2uuaassrereeedthattnhroonautufugaaehlpllypcmyrfooteorxtmpihmlaeanasdtmoebgliyyecnmm1si5ec(0m1ro7mbo)r.rialgTlnaioehnsne-. nnu. FORMATION.................... 527 combustionof150milliontonsH2yields18 × A 1018 J,anenergyamountthatis3.75%ofthe primaryenergyconsumedin2006bytheworld INTRODUCTION population(455 × 1018J). In 1933, Stephenson & Stickland (1) en- Today on Earth, most of the H used 2 Blackandwhite richedfromriversedimentsmethane-forming by methanogens is of biological origin. Only slimkeoskterursc:tucrhesimfonremy-ed microorganisms that grow on H2 and CO2 some of the H2 that sustains the growth of (Reaction 1) and concluded that these methanogensisgeochemicallygenerated,e.g., aroundhydrothermal vents,where methanogens must contain hydrogenases that inblackandwhitesmokers.However,intheAr- superheatedmineral activateH2(Reaction2). chaeozoic(4to2.5billionyearsback),whenthe richwaterfrombelow 4H +CO →CH +2H O differentlineagesofmicrobesonEarthevolved Earth’scrustcomes 2 2 4 2 andwhenthetemperaturesweremuchhigher throughtheocean (cid:2)G◦(cid:4)=−131kJmol−1. 1. than today, geochemically formed H proba- floor 2 H (cid:2)2e−+2H+ E(cid:4) =−414mV. 2. blypredominatedthatofbiologicaloriginand 2 o 508 Thaueretal. ANRV413-BI79-18 ARI 27April2010 21:0 Large Open subunit Cys N site C Cys S Ni S Fe CN Cys S Cys S C SS Fe S Cys 6 Å Cys S Cys O Cys Fe S Fe S S Cys Open X S S FeS SFe site 4Å S Fe S Fe Fe S S Fe NC CN Fe SSCys Small OC OC CO Cys Cys S subunit [NiFe]-hydrogenase [FeFe]-hydrogenase Cys g O or S ws. OC e Fe viy. N nualrese onl Ositpeen OC HO OGMP nu ww.aonal [Fe]-hydrogenase m wpers ed fro3. For FTihgeumree1talsitesofthethreetypesofhydrogenasesinvolvedininterspecieshydrogentransfer(seeFigure2) 7-536. DownloadAustin on 06/10/1 hhrbeiayolvdasertyeoundgntehauntesasutishaseels(s1l(te25rv)–ue.8clAt)ou,bf[rbFatrhleefeFveieiraa]ttp-uihroriyenmds:raGionrygMcesonPtmra,usgmceutsoua(nnr9e,y–lso1yu1rlc)rah,etasatntsh.dien[ltFerveine]-lshiocyfdCtrhOoegleeinngazanysemds(e1.s2Di–ne1vs4po)iltvaeeredthniinsotftahpcehti,yr[laoNcgtieFivneee]-t-siictaelly 10.79:50Texas - fsuisetleendtlyt,heamgoronwgthreocefntmehthyadnrooggeennos.troCpohnic- ibneeBnafcotuernidaiannAdrlcohwaeear(E15u,k1ar6y)a., have not yet 20of methanogens, there are many hyperther- em. sity mophiles,suchasMethanopyruskandleri(98◦C BiochUniver odopctoicmcuusmjangnroaswchthiit(e8m5◦pCeroaptutirme)uamndgMroewththantoecmal-- PROPERTIESOFH2 Rev. by perature),andthesehyperthermophilesbranch H2isacolorlessgaswithaboilingpointat22.28K(−250.87◦C). u. offthe16Sphylogenetictreerelativelyearly. Its Bunsen coefficient α in water at 20◦C is 0.018 (0.8 mM at n An This review highlights the properties of 1bar),anditsdiffusioncoefficientDw inwaterat20◦Cisnear the five different hydrogenases found in 4 × 10−9m2s−1.ThehomolyticcleavageofH inthegasphase 2 methanogenswithinthecontextoftheirfunc- isendergonicby+436kJmol−1,andtheheterolyticcleavagein tion in metabolism. Four of the enzymes waterat20◦Cisendergonicbyabout+200kJmol−1 (pK near a are[NiFe]-hydrogenaseswithsomeproperties 35) (19). The combustion energy of H is 120 MJ kg−1. The 2 similar and others dissimilar to those of re- activationofH ismechanisticallychallenging,andthecatalytic 2 lated [NiFe]-hydrogenases in bacteria. It was mechanism is of considerable interest. The H generated, e.g., 2 in methanogens that nickel was first found to byelectrolysisorphotolysisofwater,ispresentlydiscussedasan be required for hydrogenase activity (21, 22). environmentallycleanenergycarrierforuseinfuelcell-powered The fifth enzyme is a [Fe]-hydrogenase (23) electricalcars.BeforeH canbeusedinfuelcells,cheapcatalysts 2 that is unique to methanogens and functional still have to be developed, and it is hoped that the active-site in these only under conditions of nickel limi- structureofhydrogenaseswillshowhowtoproceed(20). tation.[FeFe]-hydrogenases,whicharepresent www.annualreviews.org • HydrogenasesfromMethanogens 509 ANRV413-BI79-18 ARI 27April2010 21:0 Anoxic environments CH4 Atmosphere Freshwater and marine sediments, (1.8 ppm) wetlands, swamps, intestinal tracts of ruminants and termites, 0.4 Gt per year hot springs, hydrothermal vents Methanogenic archaea with cytochromes Oxic [NiFe] environments Acetate- Aerobic + H+ bacteria Rate- CO2 limiting Propionate 0.6 Gt per year step Butyrate Acetogenic bacteria CO2 + CH4 Biomass Monomers Lactate CO2 [FeFe] and [NiFe] ~1 Gt per year (~2% NPP) Ethanol Anaerobic H2 + CO2 archaea and (pH2 < 10 Pa) bacteria Bacteria [FeFe] and [NiFe] g Protozoa [FeFe] H2 + CO2 or s. Fungi [FeFe] viewy. Archaea [NiFe] Mwieththoaunto cgyetoncich arorcmheasea w.annualrenal use onl RDeiffauctsiioonns GeochHe2[mNiiFcea]l and [Fe] (>M10e,t0h0a0n Ge th mydertahtaense) wo m wpers ed fro3. For FAipgpurroexi2mately2%ofthenetprimaryproduction(NPP)ofplants,algae,andcyanobacteriaarefermentedin 79:507-536. Downloadxas - Austin on 06/10/1 saraippantubnnoravmobodttoeperxiclneiinvHacovteatinieanas2aanblttictesnvooeo,ditlf,rnimeoctb[rcNhneuseseptumtnihyeFbHtaercresanniat+]etrt,otes/ias[goH,tFHbenelaey2ns2cFr.sacetteoacmrs]toauy,eannnpa,isvnltnaefredensorardbpt[.tiFehnTepleitgoHch]h,waeaarc7nsek0seosiio.tnsp1laceetcniμeatcoeiMttncatiioosvrcene(a−m<lnnyo3ted1fr(0t0ashat0ethnaPiemeonaareFne)Vmrsi(ao.g1obnbTu7dudir,hcyielC1nedm8a1Otui)mh)c..p2rrAiIeocaanetsronettrotdhhygflepaecatscanehieknsniesiltonmbopefgewsrsh.touiwTyHcnsdeieaht2srldhesoctrbgrmaoearyenfceenoctttrahsehoeusneae,fcntshahrteecaoi,ntretshiimtvtnoaaoanittaltsesvet,p,ahestrndeahoanasecbtdreoeresealsiddctoyh-xat 10.Te 20of Biochem. University HCOHR2 AG4SFAOANNRISMIMNASTTIIENORVNMOAELNDVDIEADTTEHEIN dexecgIrrneatdeeaddbrbayyteae-nlxiatmeraricotiebnliglculbasrtaechptey,rditrahoelayntdibciopemrnozatysosmzoeiass Rev. by Approximately2%ofthenetprimaryproduc- tomonomers,whichafteruptakebythesemi- u. tionofplants,algae,andcyanobacteria(70bil- croorganismsareprimarilyfermentedtolactic Ann lion tons C per year) are remineralized via acid,propionicacid,butyricacid,ethanol,and aceticacidwiththeconcomitantformationof methaneinanoxicenvironmentssuchasfresh- CO ,formicacid,andsomeH .Thisprocess waterandmarinesediments,wetlands,swamps, 2 2 alsoinvolvesanaerobicfungiintherumenand sewage digesters, landfills, hot springs, and anaerobicarchaeainhotsprings.Oftheseprod- the intestinal tract of ruminants and termites ucts, lactic, propionic, and butyric acids and (Figure2).Fromthebiomass,whichconsistsof ethanolservesyntrophicbacteriaassubstrates, 60%–70%cellulose,approximatelyonebillion Geochemically which ferment them to acetic acid, CO , H , formedH2: H2 tonsofmethanearegeneratedperyear;60%is andformicacid. 2 2 generatedabiotically oxidizedtoCO bymicroorganisms,and40% 2 fromH2Sorby escapesintotheatmosphere,whereitsconcen- From acetic acid, H2, CO2, and formic reactionofH2Owith trationalmostdoubledwithinthelasthundred acid,methaneisthenformedbymethanogenic ultramaficrocks archaea, of which there are two types, those years(17).Thisisofconcernsincemethaneis (serpentinization) with and those without cytochromes. Acetic aneffectivegreenhousegas. 510 Thaueretal. ANRV413-BI79-18 ARI 27April2010 21:0 acidisconvertedtoCO andmethaneonlyby of glucose from cellulose to three CO and 2 2 the methanogens with cytochromes, and H , three CH involves 12 H as intermediates, 2 4 2 CO and formate are converted to methane which underlines the quantitative importance 2 mainly by those without cytochromes. None of H as electron carrier between fermenters 2 of the methanogens can use lactic, propionic, andmethanogens. or butyric acid as energy substrates. But by All methanogens are known to belong to consuming H , acetic acid and formic acid, the domain of Archaea and to the kingdom 2 themethanogenskeeptheH partialpressure ofEuryarchaeota.Fromthelatterlineage,the 2 between 1 Pa and 10 Pa and the acetic and Methanopyrales branch off first, followed by formicacidconcentrationswellbelow0.1mM, theordersMethanococcalesandMethanobac- enabling the syntrophic bacteria to convert teriales, and then by Methanomicrobiales and lactic,propionic,andbutyricacidandethanol Methanosarcinales. Only the members of the to acetic acid, H , and CO . Only at low Methanosarcinales contain cytochromes and 2 2 org concentrations of H2 and acetic acid are the can use acetic acid as methanogenic sub- ws. fermentations of the syntrophs exergonic strate. Methanogenesis from acetate is there- e viy. enoughtosustaintheirgrowth(18). forebelievedtobealateinvention.Theabil- ualree onl Intheintestinaltractofruminantsandter- ity to use acetate as methanogenic substrate nnus mites,methanogenswithcytochromesarenot was associated with a change in the mecha- w.anal present,andthereforemethanogenesisfromac- nismofenergyconservation,aselectrontrans- wo m wpers etate does not occur. The reason for this is port now involves cytochromes. The altered ed fro3. For pmreotbhaabnloygtehnastisthgeengerroawlltyhlorawteerotfhaancetthoecldaisltuic- mtoecchhroanmisemstoalalolswoeudsethmeemtheatnhoaln,omgeetnhsywlaimthinceys-, d1 wnloa06/10/ ttihoenarcaetteocinlastthiceminettehstainnoagletrnascat,reancdontthinerueofuosrley, aanlsdo mhaedthaylpthriicoels, naasmeenleyrgtyhesulobssstroatfetsh.eBaubtili-t 7-536. DoAustin on weacsaiissdhfbreoudmiolduastc.ueBptiecccoaancuissdiedtoehfreathbceloynla(c>cekn1ot0rfammtiMeotnh)oawnfitoahcgeetthniec- ilwtoyhwictoh10iussPaeacHh(af2roardcotaewnrnisetitxcopolpafnamratteiiatohlna,pnroseegseseunrbseewsloibtwhe)--, 79:50xas - resultthat,forthethermodynamicreasonsdis- outcytochromesthatarespecializedonH2plus 10.Te cussedabove,lactic,propionic,andbutyricacid, CO2 and/orformateasenergysources.Mem- 20of thereforealsoincreaseintheirconcentrations. bers of the Methanosarcinales that can grow v. Biochem. y University Tnusahenedtsfoaornrgdagnilnuicsceoacnctseidofrsgoeamnreetshriseeis(rolairncbtteiecdstaibnnydaltpthrraeocprtisuoamnniidc- oohnfigthHheer2oHatnh2dercCoonOrcd2eenrdtsor,awttihohinsicshontlhlayacnkattchyseitgonmchifiermcoambneetlrsys. Reb acid)andATPsynthesis(aceticacidandbutyric ThisiswhytheMethanosarcinalesdonotcon- nnu. acid). tribute to methane formation from H2 and A In sediments of hot springs, in which cel- CO in most anoxic environments (Figure 2) 2 luloseiscompletelyconvertedtomethaneand (17). CO ,surprisingly,attemperaturesabove60◦C, 2 acetoclasticmethanogensareabsentforreasons HYDROGENASESFOUND notyetfullyunderstood.Methanogenswithcy- tochromesgrowingabove60◦Chaveyettobe INMETHANOGENSAND THEIRFUNCTION found.Inhotsediments,aceticacidisconverted to two CO and four H by bacteria related The genomes of several members of each 2 2 to acetogenic bacteria, and the H and CO of the five known orders of methanogens 2 2 thus formed are then converted to methane have been sequenced, and the genes puta- by methanogens without cytochromes, which tivelyencodinghydrogenaseshavebeeniden- havemanythermophilicandhypothermophilic tified. Biochemical studies of the hydroge- species. Thus, in hot springs, the conversion nases have concentrated mainly on a few www.annualreviews.org • HydrogenasesfromMethanogens 511 ANRV413-BI79-18 ARI 27April2010 21:0 species, namely Methanothermobacter thermau- of methanogens without cytochromes (maxi- totrophicus, Methanothermobacter marburgensis, mally 3 g per mole CH ), indicating that the 4 Methanococcusmaripaludis,Methanosarcinabark- ATP gain per mole methane is approximately EchA-F,EhaA-T, eri, and Methanosarcina mazei. Genetic analy- 0.5 in methanogens with cytochromes and EhbA-Q,and MbhA-N: energy- seshavebeenrestrictedtoMethanococcusvoltae, 1to1.5inmethanogenswithoutcytochromes converting[NiFe]- M. maripaludis, Methanosarcina acetivorans, (17). The low ATP gain of 0.5 allows the hydrogenases M.mazei,andM.barkeri.Fromthesestudies,a methanogenswithoutcytochromestogrowon MvhADG: partiallycoherentpicturehasemerged. H and CO at H partial pressures of 5 Pa 2 2 2 heterodisulfide Four different subtypes of [NiFe]- atwhichmethanogenesisfromCO andH is 2 2 reductase-associated hydrogenases and one [Fe]-hydrogenase exergonicby−25kJpermole,whichisjustsuf- [NiFe]-hydrogenase are found in methanogens. The four [NiFe]- ficienttodrivethesynthesisof0.5moleATP HdrABCand subtypes are (a) the membrane-associated, ((cid:2)G(cid:4) = −50 kJ per mole ATP). Conversely, HdrDE: energy-converting [NiFe]-hydrogenases anATPgainof1to1.5isonlythermodynami- heterodisulfide org reductases (EchA-F, EhaA-T, EhbA-Q, and MbhA-N) callypossibleiftheH2concentrationis>100Pa ws. VhtACG: for the reduction of ferredoxin with H2; ((cid:2)G < −63 kJ per mole CH4). And indeed, e viy. methanophenazine- (b) the cytoplasmic [NiFe]-hydrogenase methanogens with cytochromes are known to ualree onl reducing[NiFe]- (MvhADG) associated with the heterodisul- have a much higher H2 threshold concentra- nnus hydrogenase fide reductase (HdrABC) for the coupled tion(>100Pa)thanmethanogenswithoutcy- ww.aonal FrhABG: anF420- reduction of ferredoxin and of the het- tochromes <10 Pa) (17). The relatively high ed from w3. For pers rheyddurcoignegn[aNseiFe]- emrereodmduicbsiunralgfindee-a[NsCsoioFcMiea]-t-Sehd-yS,d-rCoogmeBneawtsheitahnoH(pVh2he;tnA(ac)CzinGthe)e-; methrearemllsyhbeonrlodstcooifnnvtchoeenlvterMdateiiotnhnafmnoorestHahra2cnicnoaangleeensxepaslriaseinfgrweohnmy- d1 wnloa06/10/ raendduci(ndg) th[NeiFcey]t-ohpyldasrmogiecnacsoeesnzy(FmrehAFB4G20)-. H(F2igaunrde2C)Oan2dinwhmyoisntsmometehamnoemgebneircs,hea.bgi.t,aitns Doon Not all five hydrogenases are found in all M.acetivorans,transcriptionofthegenesforthe 7-536. Austin mreedtuhcainnogg[eNnsi.FeT]-hhuysd,rothgeenmaseethiasnroepshtreinctaezdinteo- hydFroorgeannaseusnadreersptearnmdianngenotflytthuernfeudncotfifo(n24o).f 79:50xas - methanogens with cytochromes, and the thedifferenthydrogenasesintheproposedtwo 10.Te cytoplasmic[Fe]-hydrogenase,whichtogether metabolicschemes(Figure3a,b)theenergetics 20of with F -dependent methylenetetrahy- offerredoxinreductionwithH areofspecial em. sity dromethan42o0pterin dehydrogenase substitute importance.Underphysiologica2lstandardcon- v. Biochy Univer fuonrderthe nFi4c2k0e-lr-eldimucitiinngg [NgiFroew]-thhydrogcoennadsie- tdhiteiornesdu(pcHtio2n=of1f0e5rrPead;opxHin7(;EF(cid:4)odo=x/F−d4re2d0=m1V)), nu. Reb tmioenthsan(soegeenbselowwi)t,hoiustonclyytopchrersoemnets.inGseonmees wgoitnhicHn2or(Ee(cid:4)oxe=rgo−ni4c1.4HmowVe)veisr,nuenitdheerrienndvievro- n A for [Fe]-hydrogenase synthesis are lacking in conditions(pH = 10Pa;pH7;Fd /Fd < 2 ox red methanogens with cytochromes and in most 0.01), the reduction of ferredoxin with H is 2 membersoftheMethanomicrobiales(15,23). strongly endergonic with E(cid:4) of the H+/H 2 The function of the different [NiFe]- couple = −300mVandthatoftheFd /Fd ox red hydrogenasesinmethanogenesisfromH and couple = −500mV.Inmethanogens,fullyre- 2 CO inmethanogenswithcytochromescanbe ducedferredoxinisrequiredforthereduction 2 deducedfromFigure 3aandinmethanogens of CO to formylmethanofuran (CHO-MFR) 2 withoutcytochromesfromFigure3b.Thedif- (E(cid:4) = −500 mV), which is the first step in o ferencesoutlinedinthetwoschemesarebased, methanogenesisfromCO (Figure3),forthe 2 amongmanyotherobservations,onthefinding reduction of CO to CO (E(cid:4) = −520 mV), 2 o thatthegrowthyieldofcytochrome-containing forthereductionofacetylcoenzymeA(acetyl- methanogensonH andCO (maximally6.4g CoA)andCO topyruvate(E(cid:4) = −500mV), 2 2 2 o permoleCH )ismorethantwiceashighasthat and—inmostmethanogens—forthereduction 4 512 Thaueretal. ANRV413-BI79-18 ARI 27April2010 21:0 a b Biosynthesis Biosynthesis CO CO 2 2 2 H+ [NiFe]Fdred2– 2 Na+ [NiFe] Fdred2– EchA-F H2 + Fdox CHO-MFR EhaA-T H2 + Fdox CHO-MFR and/or EhbA-Q + – H2F[rNhiAFeB]G F420HC2H HM4MtdPT+ + – H2F[rNhiAFeB]G F420HC2H HM4MtdPT+ H2F[rNhiAFeB]G F420HC2H2=H4MPT 2N aH++ H2F[rNhiAFeB]G F420HC2H2=H4MPT 2N aH++ VhtACG [2N HiF+e] CH3-H4MPT CH3-H4MPT nualreviews.orgse only. 2 HH+2 HdMP MPHr2DE HSC-oCMo+M- S2 - +HS -+HCSo-BCoCBHC3-HSN4-iCoAATMDPP 24 NH+a+ 2 H2[NiFFe]dCooxMMHvF-dhSdrA-ArSHeHDB-dSSCGC2--–C/oCoBoMBCHC3-HSN4-iCoAAMTDPP 24 NNaa++ nu ww.aonal Reaction Diffusion ed from w3. For pers FTihgeuprero3posedfunctionandlocalizationwithinthecellofthe[NiFe]-hydrogenasesinvolvedin wnload06/10/1 mcmyeatottthceahrnrooofmgdeeinssep.suTisthef,eroacnmadtiHothn2esastnrtoadnicCshlOoioc2mataeerdterysahnoodfwethnleefcoetrrxoamnctebtsihtfouainrccohagitoeiomnnse(itanry)twhoefitthMhcevyhttrAoacDnhsGrloo/cmHatedisoranAnBrdeCa(bcc)toiwomnitpshlaoeruxetrsetmillaains Doon tobeascertained(17).InsomemembersoftheMethanomicrobiales,genesforMvhAandMvhGarenot 7-536. Austin foofutnhdes,eanndoveenlefirgnyd-icnogns,vseeretinthgehsyedcrtioognenHaesetesrootdhiesurltfihdaenREehdauocrtaEseh-bAcssaoncbiaetepdre[sNeniFte(]2-5H).yFdororginentearsperetations em. 2010.79:50sity of Texas - mMrtmraaetevhntthhhesAfyreonDlttrhyemGlattrane,attbhitroeeyantlhdro.ryawAohd.mrybModbemrrteoehmevmatinbhaeeoattirnhposoatneonpsrfot:ienptCrh;tiHeenCr;MOionCB-e(HM-tHSh2FHa4==nMRH,o,cPs4foaoTMerrcn)mPi.znTTyyaml,lhmemeeseetBatwthnhwaodynilpMtoehtnfeeuierttrtihsaneanttshnr;haioCohaclvHyoegdc≡rrcioodaHumelenp4seM;tticChcoPaaonlTnMtfoa+uip-nn,StceHttreiiot,nrnc;aoshCeiynnHdzrC3yo-m1sH-aeur4cnMMiintPawpTitt,ehriitns BiochUniver thhyidorloggreonuaps;eCs;oFMd,-fSe-rSre-CdooxBin,hweittehrotwdiosu[l4fiFdee4;SE]-cchlAus-tFe,rEs;hFarAh-ATB,Gan,dFE42h0b-rAe-dQuc,iennger[Ngyi-Fceo]n-hveyrdtrinogge[nNaisFe;e]- v. y HdrABCandHdrDE,heterodisulfidereductases;MP,methanophenazine;MvhADG,heterodisulfide u. Reb reductase-associated[NiFe]-hydrogenase;VhtACG,methanophenazine-reducing[NiFe]-hydrogenase; n VhtCandHdrE,b-typecytochromes. n A of succinyl-CoA and CO to 2-oxoglutarate complex,themechanismofcouplingisbyelec- 2 (E(cid:4) = −500mV).Inmethanogensgrowingon tronbifurcation(Figure3b). o H and CO , the latter three reduction reac- Whereas the reduction of ferredoxin with 2 2 tions participate in autotrophic CO fixation. H inmethanogensisstronglyendergonic,that 2 2 Alloftheseferredoxin-dependentoxidoreduc- of methanophenazine (E(cid:4) = −170 mV) and o tase reactions are catalyzed by cytoplasmic of the heterodisulfide CoM-S-S-CoB (E(cid:4) = o Electronbifurcation: enzymes.Therefore,itisthereductionofferre- −140 mV) with H2 (E(cid:4)o = −414 mV) is a thedisproportionation doxinwithH thatmustbeenergydrivenand stronglyexergonicreaction(26).Consistently, oftwoelectronsatthe 2 thesiteofenergycoupling.Asoutlinedbelow, methanophenazineandCoM-S-S-CoBreduc- sameredoxpotential tooneelectronwitha inenergy-converting[NiFe]-hydrogenases,the tion with H are coupled with energy con- 2 higherandonewitha mechanismofenergycouplingischemiosmotic servation (Figure 3a,b). Of the hydrogenase- lowerredoxpotential (Figure 3a,b),andintheMvhADG/HdrABC catalyzed reactions, only the reduction of www.annualreviews.org • HydrogenasesfromMethanogens 513 ANRV413-BI79-18 ARI 27April2010 21:0 coenzymeF (E(cid:4) = −360mV)withH isnot between the two subunits and close to the 420 o 2 coupled with energy conversion (27). Under proximal [4Fe4S]-cluster of the small subunit invivoconditions(pH = 10Pa;F /F H (Figure 1a). A gas channel connects the sur- 2 420 420 2 <0.1), the free energy change associated with facewiththeactivesite(30). the reaction is essentially zero. The energetic The large subunit of most [NiFe]- differencesofthehydrogenase-catalyzedreac- hydrogenases is synthesized as a preprotein. tionsinmethanogenesisfromH andCO can The C-terminal extension after H/R of the 2 2 therefore explain why there are at least three DPCxxCxxH/Rmotifisclippedoffproteolyt- different hydrogenases in hydrogenotrophic ically in the maturation process (31–33). The methanogens. gene coding the large subunit of some of the energy-converting hydrogenases (34, 35) and some of the H -sensory [NiFe]-hydrogenases 2 THEFOURSUBTYPES (36) ends with a stop codon directly after the ws.org OINFM[NEiTFeH]-AHNYODGREONGSENASES nmuoctliefo.tTidheerseefqoureen,cseynftohrestihseofDtPhCesxexC[NxxiHFe/]R- e viy. The crystal structures of the [NiFe]- hydrogenases appears to be independent of ualree onl hydrogenases found in methanogens have not thisproteolyticmaturationstep. nnus been determined. Currently, only structures Inthenextparagraphs,wesummarizewhat w.anal of[NiFe]-hydrogenasesfromsulfate-reducing is known about the four different subtypes of wo m wpers bacteria are available (5–8). However, on the [NiFe]-hydrogenases found in methanogens: ed fro3. For bhaysdirsogoefnasseeqsueanpcpeeacromtopabreisopnhsy,loagllen[eNtiicFaell]y- ((ab))heetneerrogdyi-sucolfindveerrteidnugcta[Nse-iFases]o-hciyadterodg[NeniaFsee]s-, d1 wnloa06/10/ riselastoedm,etiamltehsougrehstritchteedsetqouetnhcee sseiqmuielanrcietys h[NydiFroeg]-ehnyadsreo,g(ec)namsee,thaanndoph(de)nazFi4n2e0--rreedduucciinngg Doon around the N-terminal and C-terminal CxxC [NiFe]-hydrogenase. 7-536. Austin mreosptiefcst,ivRelxyC, GinxvColxvxexdHinan[NdiFDeP]-CcexnxtCerxxcHo/oRr-, Energy-Converting 79:50xas - dination.Nevertheless,itisgenerallyassumed [NiFe]-Hydrogenases 10.Te that the active-site structures of all [NiFe]- Energy-converting[NiFe]-hydrogenasesfrom 20of hydrogenases are very similar (Figure 1a); v. Biochem. y University bfervuoitdmeinnRcaoelnstteohnaciataseteuhte(rsoopllihugaba)nl,edth[NestrreiuFicest]u-shpreeycdctrrooougslecdnoapbsieec dma(Elryei(cid:4)zvt≈heenant−bhoye5g0ear0npesvmraoerVrteso)imnbwleoeimrthrsbeorHddauni2ucemt(iaEos(cid:4)insoo=ncoimaf−toef3edtir0var0eneddfmoocVrxacit)ne-, nu. Reb sub[sNtainFteia]-llhyyddirfofegreennats(e2s8,ar2e9).minimally com- (Reaction3)(Figure4)(34,35). An posedoftwosubunits,alargeone(40–68kDa) Fd +H +(cid:2)μH+/Na+(cid:2)Fd 2− +2H+. ox 2 red and a small one (16–30 kDa). The large sub- 3. unit harbors the [NiFe]-binuclear active-site Related enzymes are found in some center. The small subunit generally contains hydrogenotrophic bacteria and in some threelinearlyarrangedandevenlyspacediron- H -forming bacteria and archaea. In the H - 2 2 sulfurclusters,aproximalandadistal[4Fe4S]- formingmicroorganisms,theenzymecatalyzes cluster,andonecentral[3Fe4S]-cluster(8).In the reverse of Reaction 3. Most convincing is energy-converting [NiFe]-hydrogenases, the theenergy-convertingfunctionofthe[NiFe]- small subunit contains only the proximal hydrogenase in the gram-negative Rhodospiril- [4Fe4S]-cluster,whichappearstobenecessary lumrubrum(37)andRubrivivaxgelatinosus(38) and sufficient for [NiFe]-hydrogenase func- aswellasinthegram-postiveCarboxidothermus tion. In the heterodimer, the [NiFe]-center is hydrogenoformans (39). These anaerobic bac- buriedandlocatedclosetothelargeinterface teria can grow chemolithoautotrophically on 514 Thaueretal. ANRV413-BI79-18 ARI 27April2010 21:0 CO,withH andCO beingtheonlycatabolic 2 2 endproductsformed(CO+H O(cid:2)CO +H 2 2 2 (cid:2)G◦(cid:4) = −20 kJ mol−1) (40). The fermen- H2 tation, which involves only a cytoplasmic 31–69 1x carbon monoxide dehydrogenase (CooS), a kDa [4Fe4S] [NiFe] E' = –300 mV cytoplasmic polyferredoxin (electron transfer ΔμH+/Na+ (pH2 = 10 Pa) protein) (CooF), and a membrane-associated, 24–36 2x 2 H+ energy-converting [NiFe]-hydrogenase kDa [4Fe4S] Fd ox (CooHKLMUX), is coupled with chemios- E' ≈ –500 mV motic energy conservation as evidenced by (Fd /Fd < 0.01) ox red growthanduncouplingexperiments(37–39). Fd 2- The energy-converting hydrogenases Cytoplasmic red membrane (EchA-F, EhaA-T, EhbA-Q, and MbhA-N) + – org frommethanogenscontainsixconservedcore ws. subunits (Figure 4) and up to 14 additional e Figure4 viy. subunits.Thesixcoresubunitsshowsequence ualree onl similarity to the six subunits of the carbon Scocnhveemratitnicgr[eNpirFesee]-nhtaytdiroongoefnathseessEtrcuhcAtu-rFe,EanhdaAfu-nTc,tEiohnboAf-Qth,eaennderMgyb-hA-N nnus monoxide dehydrogenase (CooS)-associated foundinmethanogenicarchaea.Theenergy-convertinghydrogenaseEchA-F w.anal [NiFe]-hydrogenase (CooHKLMUX) from iscomposedonlyofthesixconservedcoresubunits,whicharehighlightedin wo ed from w3. For pers bd(HaechytycedCrriDao,gEetFonGatsh)eef-raosfismvoecEia.sutceobldiu,[naNnitdisFteoo]f-shitxhyodefrtofhogeremncoaarsteee cafAuolbsnlobocrrtc.eioovTnniaht.ateTiionehnnse:eesFvregedsry,ua-fblceouhrrnnyedvidtersooraxtpirinhnegoswbyhiimtychdbartonowldgiozehen[yd4adFsbreeoys4paSEhr]hei-laacicsAluws-suTtibet,hruEsnd.hiatbssAhoe-fQdub,noaknundnodwManrbiehsA.-N d1 wnloa06/10/ sduubcutansiets(NoufotAh-eNN)(AcoDmHp:luebxiIqoufinthoenreesopxiirdaotorrey- EchA-F. Genes for this type of energy- Doon chain)fromE.coli(41).Oftheconservedsub- converting [NiFe]-hydrogenase are found in 7-536. Austin u(tnhiets,latrwgeor aorneeinmteogsrtalprmobeambblyraninevoplrvoetdeinins tMiv.orbaanrsk.eTrihaenydarMe.almsoazperiesbeunttninotthine gMen.oamcee- 79:50xas - cationtranslocation),andfourarehydrophilic of all members of the Methanomicrobiales. 10.Te proteins (Figure 4). Of the hydrophilic pro- The enzyme in these organisms is most 20of teins, one is the [NiFe]-hydrogenase large similar to the energy-converting hydrogenase em. sity subunit, one the hydrogenase small subunit CooHKLMUX from R. rubrum (37) and v. Biochy Univer woniteh),oonnlye oanne i[r4oFne-4suSl]f-ucrlusptreorte(tinhewpirtohxitmwaol Cho.whevyderr,ogeinnofonromtanfosrm(3in9g). aEcthigAh-tFcodmiffpelresx, Reb [4Fe4S]-clusters, and one a subunit without withitsferredoxinandfunctionallyassociated nu. a prosthetic group. In complex I, the subunit oxidoreductase.Thelackofcomplexformation n A NuoDhomologoustothe[NiFe]-hydrogenase is because in methanogens the reduced ferre- large subunit lacks the N- and C-terminal doxin, generated by the energy-converting CxxCmotifsfor[NiFe]-centerformation(35). hydrogenase, is used in electron transfer None of the genes encoding energy- to more than one oxidoreductase. A 6 kDa converting[NiFe]-hydrogenasesinBacteriaor 2[4Fe4S]-ferredoxin from M. barkeri, which Archaea show a twin arginine translocation is most probably the ferredoxin reduced by (Tat) motif-encoding sequence. The lack of H via the energy-converting hydrogenase 2 theTatmotif-encodingsequence(42)indicates EchA-F,hasbeencharacterized(43). that the large subunit and the small subunit TheenzymecomplexEchA-Fhasbeenpu- oftheenergy-converting[NiFe]-hydrogenases rified from M. barkeri and is composed of six arenottranslocatedfromthecytoplasmtothe different subunits (Figure 4) encoded by the Tat: twinarginine periplasmandarethereforeorientedtowardthe echA-F operon (44, 45). EchA (69 kDa) translocation cytoplasm. and EchB (32 kDa) are the two integral www.annualreviews.org • HydrogenasesfromMethanogens 515 ANRV413-BI79-18 ARI 27April2010 21:0 membraneproteins.EchAispredictedtohave site-directed mutants (54). Insights into the 17 membrane-spanning α-helices and shows mechanismofiontranslocationcomealsofrom 30% sequence identity to a putative Na+/H+ inhibition experiments with dicyclohexylcar- translocatorcomponentinBacillussubtilis(44). bodiimide (DCCD), which specifically modi- EchE is the large subunit, EchC is the small fies protonated carboxyl residues located in a subunit,andtheseharborthe[NiFe]-centerand hydrophobicenvironment.Labelingstudiesof a [4Fe4S]-cluster, respectively. EchF contains Echwith[14C]-DCCDshowedthattheinhibi- two[4Fe4S]-clusters.EchDisthesolublesub- tionoftheenzymewasassociatedwithaspecific unitwithoutaprostheticgroup.Chemicalanal- labeling of the two integral membrane sub- ysesofthepurifiedcomplexhaverevealedthe units EchA and B, particularly of EchA (35). presence of nickel, nonheme iron, and acid- TheinhibitionofEchbyDCCDindicatesthat labile sulfur in a ratio of 1:12.5:12, substan- theelectrontransferreactioninthisenzymeis tiating the presence of three [4Fe4S]-clusters strictlycoupledtocationtranslocation. org in addition to the [NiFe]-center. Like CooH, ws. thelargesubunitEchEissynthesizedwithouta EhaA-T and EhbA-Q. The [NiFe]- e viy. C-terminalextension;thegeneendsdirectlyaf- hydrogenase EhaA-T and EhbA-Q differ ualree onl ter the DPCxxCxxR motif with a stop codon. from the energy-converting hydrogenase nnus The evidence for reversed electron transfer EchA-Fbyhavingupto14additionalsubunits; ww.aonal in ferredoxin reduction with H2 comes from manyofthesesubunitsareintegralmembrane m wpers biochemical and genetic studies. Cell sus- proteins, and some are iron-sulfur proteins wnloaded fro06/10/13. For pHmtieoi2ncns(CiEooOf(cid:4)onsCd=eOohf2y−dMt4ro1o.4gCbemOanraVks(ee)Er,,i(cid:4)ofiencr=varoteadll−voyinzx5ei2gn0,taahmnecdVytrE)oecpdwhluaiAtcsh--- (doa5lifsf5sofi)u.cbvuAualtnrfiiteutossnoecsnftiigcvooninsmiafigopcefal.entIxhtnlIeytoeafrwdetihdstteihitnoirogeunsltypa,ilartnahsuteoabrnpuyupncmaihtrsbeaneiinrst Doon F. The reaction is driven by a proton motive changeinproperties;thus,complexIinE.coliis 7-536. Austin froeraccetio(4n6,)t.hTehdeehcyedllrsoaglesnoactiaotnalyozfeCtOhetroevCeOrse coofmmpooresetdhaonf4104ssuubbuunniittss(a5n6d,5in7)m. itochondria 10.79:50Texas - aanpdroHto2,nwmhoicthiveisfcoorucepl(e4d7,w4it8h).th(cid:2)eecbhumilduutpanot2sf areGfoeunnesdeinncoMd.inkganEdhlearAi,-Tinaanlld/moremEbhebrAs-Qof 20of did not catalyze the forward or the backward theMethanococcalesandMethanobacteriales, em. sity reaction and also did not catalyze one of the and in some members of the Methanomicro- v. Biochy Univer otitohneerdfaebrorevdeo(x4i9n,-5d0e)p.eTnhdeernetarreedcuocntifloinctsinmgerne-- Mbiaeltehsa(nbouretgnuolatibnooMneeit)h,aannodspehhaaearnudla/oparleuhstbrgiseanneds Reb portswithrespecttothecouplingionusedby arenotfoundinmembersoftheMethanosarci- nu. EchinM.barkeri.Theexperimentsinvestigat- nales.Insomemethanogens,e.g.,inM.marbur- n A ingthereversibleconversionofH andCO to gensis,thegenesareclusteredandformatran- 2 2 COandH Oaremoreinfavorofprotons(46– scriptionunit,andinothers,e.g.,M.jannaschii, 2 48),whereasthoseaddressingthereductionof someofthegenesareinseparateloci. CO withH toformylmethanofuranaremore Theehaoperon(12.5kb)inM.marburgensis 2 2 infavorofsodiumions(51,52). is composed of 20 open reading frames that The iron-sulfur centers in the EchA-F form a transcription unit (55). Sequence complex have been characterized by electron analysisindicatesthatfourofthegenesencode paramagnetic resonance spectroscopy, reveal- proteinswithhighsequencesimilaritytofour ing that two of the [4Fe4S]-clusters show of the six different subunits characteristic for pH-dependent redox potentials (53) and in- energy-converting hydrogenases (Figure 4): dicating that these clusters mediate elec- ehaO encodes the large [NiFe]-center harbor- tronandprotontransfer.The[4Fe4S]-clusters ingsubunitasapreprotein;ehaNencodesthe were assigned to the individual subunits via small subunit with only one [4Fe4S]-cluster. 516 Thaueretal.
Description: