Mon.Not.R.Astron.Soc.000,1–14(2011) Printed18January2012 (MNLATEXstylefilev2.2) Hydrodynamical simulations and semi-analytic models of galaxy formation: two sides of the same coin ⋆1 1 1 2 Eyal Neistein, Sadegh Khochfar, Claudio Dalla Vecchia, Joop Schaye 2 1 0 1Max-Planck-InstituteforExtraterrestrialPhysics,Giessenbachstrasse1,85748Garching,Germany 2 2LeidenObservatory,LeidenUniversity,P.O.Box9513,2300RALeiden,theNetherlands n a J 7 1 ABSTRACT In thiswork we developa newmethodto turn a state-of-the-arthydrodynamicalcosmolog- ] ical simulation of galaxy formation(HYD) into a simple semi-analytic model(SAM). This O is achieved by summarizing the efficiencies of accretion, cooling, star formation,and feed- C backgivenbytheHYD,asfunctionsofthehalomassandredshift.TheSAMthenusesthese . functionstoevolvegalaxieswithinmerger-treesthatareextractedfromthesameHYD.Sur- h prisingly,byturningtheHYDintoaSAM,weconservethemassofindividualgalaxies,with p deviations at the level of 0.1 dex, on an object-by-objectbasis, with no significant system- - o atics. This is true for all redshifts, and for the mass of stars and gas components, although r the agreementreaches 0.2 dex for satellite galaxies at low redshift. We show that the same t s levelof accuracyis obtainedevenin case the SAM usesonly one phase of gaswithin each a galaxy.Moreover,wedemonstratethattheformationhistoryofonemassivegalaxyprovides [ sufficientinformationfortheSAMtoreproducethepopulationofgalaxieswithintheentire 2 cosmologicalbox.ThereasonsforthesmallscatterbetweentheHYDandSAMgalaxiesare: v a)Theefficienciesarematchedasfunctionsofthehalomassandredshift,meaningthatthe 5 evolutionwithinmerger-treesagreesonaverage.b)Foragivengalaxy,efficienciesfluctuate 3 aroundthemeanvalueontimescalesof0.2-2Gyr.c)Thevariousmasscomponentsofgalax- 6 iesareobtainedbyintegratingtheefficienciesovertime,averagingoutthesefluctuations.We 4 comparetheefficienciesfoundheretostandardSAMrecipesandfindthattheyoftendeviate . 9 significantly.Forexample,heretheHYDshowssmoothaccretionthatislesseffectiveforlow 0 masshaloes,andisalwayscomposedofhotordilutegas;coolingislesseffectiveathighred- 1 shift;andstarformationchangesonlymildlywithcosmictime.Themethoddevelopedhere 1 can be applied in general to any HYD, and can thus serve as a common language for both : HYDsandSAMs. v Xi Keywords: galaxies:evolution-galaxies:formation-galaxies:haloes-large-scalestructure ofUniverse. r a 1 INTRODUCTION their level of complexity, and in the typical scales that are be- ing resolved or properly modeled. In general, a simple distinc- Theformationand evolution of galaxieswithinour Universe isa tioncanbemadebetweentwodifferentapproaches,namelyhydro- complicatedprocessthatcombinestwoverydifferentmechanisms. dynamical simulations(hereafter HYDs),andsemi-analyticmod- Ontheonehand, thehierarchical growthofdark-matterstructure els (SAMs). HYDs try to follow the evolution of a galaxy, by drivestheaggregationofgalaxies,ontime-scalesthatarepropor- modelling ingreat detailthe hydrodynamics andgravitationlaws tional to redshift (Press&Schechter 1974; Lacey&Cole 1993). that are in play. These models often use more than 106 parti- On the other hand, the baryonic physics determines the interplay cles to describe one galaxy, and thus allow its detailed struc- betweengasandstars,ontimescalesthatareaffectedbylocalpro- ture to be explored. However, HYDs are still limited to a fi- cessesofcooling,starformation(SF)andfeedback(White&Rees nite resolution, which does not allow all the processes men- 1978;Dekel&Silk1986;White&Frenk1991;McKee&Ostriker tioned above to be followed properly. Consequently, HYDs rely 2007).Thecombination ofthesetwodisciplinesshapesthecom- on ‘sub-grid’ analytical laws, that describe SF, feedback, and plexevolutionofgalaxiesovercosmictime. the structure of the inter-stellar medium (ISM). For a few ex- Models that take into account the above processes differ in amples of HYD studies, see Katzetal. (1996); Governatoetal. (1999); Springel&Hernquist (2003); Scannapiecoetal. (2009); Schayeetal.(2010);Agertzetal.(2011). ⋆ E-mail:[email protected] (cid:13)c 2011RAS 2 E. Neisteinet al. Adifferentapproach,adoptedbySAMs,istotreateachgalaxy SAM.Insection6wefurtherdiscussafewadditionaltestsofthe asoneunresolvedobject,usingintegratedpropertiestodescribethe formalism,andtrytopindownthereasonsforitssuccess.Lastly, massofstars,coldgas,hotgas,andtheblackhole.Sinceeachcom- wesummarizeanddiscusstheresultsinsection7. ponent ofthegalaxyisrepresentedbyonenumber, thedynamics withinthegalaxyisnotresolved,andoneneedstocomeupwith lawsforstarformation,cooling,andfeedbackthatarevalidonav- 2 METHODS eragefortheentiregalaxy.1Duetotheirsimplicity,SAMscanpro- videastatisticalsampleofgalaxies,andcanexplorealargeportion 2.1 Thehydrodynamicalsimulation(HYD) oftheirparameterspace.Formoredetails,thereaderisreferredto In this work we use a cosmological hydrodynamical simulation somerecentSAMstudies:Monacoetal.(2007);Somervilleetal. (HYD)basedontheOverWhelminglyLargeSimulations(OWLS) (2008); Benson&Bower (2010); Guoetal. (2011); Wangetal. project (Schayeetal. 2010). This project includes a large set of (2011);Khochfaretal.(2011). HYDs withvarious different physical ingredients that were stud- Inthelasttwodecades,HYDsandSAMshavebeenusedas ied extensively by e.g. Salesetal. (2010); Wiersmaetal. (2011); the two major tools for studying the formation and evolution of vandeVoortetal. (2011); McCarthyetal. (2011). Here we only galaxies. Detailed comparisons between the two approaches are use one simulation setup, the same as the ‘reference model’ de- thus important both for developing better models, and for hav- veloped by Schayeetal. (2010). In brief, this model includes ra- ing a common language to interpret different models. Following diativecoolingbasedonWiersmaetal.(2009),followingthecon- thisreasoning,variouscomparisonsbetweenthetwomethodswere tributions from 11 different elements that are released by stellar madetodate.Mostofthesestudieshavefocusedontheprocesses windsfrommassivestars,AGBstarsandbysupernovaeoftypesIa ofaccretionandcooling, findingsomeagreement atlowredshift, andII,asdescribedinWiersmaetal.(2009).TheSFlawisguided andlargerdeviationsathigh-z.Formoredetails,seeBensonetal. bytheobservedKennicutt-Schmidtlaw,implementedintheform (2001); Yoshidaetal. (2002); Hellyetal. (2003); Cattaneoetal. ofapressurelawasdescribedinSchaye&DallaVecchia(2008). (2007); Violaetal. (2008); Saroetal. (2010); Luetal. (2011); Supernova(SN)feedbackismodeledbyinjectingSNenergyinki- Hirschmannetal. (2011). In each of the above works, both the neticform,followingDallaVecchia&Schaye(2008).Thismodel SAM and the HYD are adopting a specific model with a given includesneitheractivegalacticnuclei(AGN)norblackholes. parametrization. Thus, it is not clear if the discrepancies found WerananewsimulationthatisidenticaltotheOWLSrefer- between theHYD and SAMgalaxiesaredue tothe limitationof encemodelwithaboxsizeof100h−1Mpc,and2 5123particles each methodology, or are just a simple outcome of the specific × of dark-matter, gas and stars. The simulation outputs were saved modelchosen.Afewotherworkshavetriedtoquantifythephysics in 68 snapshots, more than the original run, and approximately of HYDs without using a SAM (e.g. Hernquist&Springel 2003; spacedby200Myr,fromz=20toz=0.Thedark-matterparticle Rasera&Teyssier2006;Dave´etal.2011).Althoughsuchstudies areimportantforunderstandingthephysicsofgalaxyformation,it massequals4.06 108h−1M⊙,andbaryonicparticleshaveinitial isdifficulttoestimatetheaccuracyofthesemodelsforindividual massof8.66 10×7h−1M⊙.Thecomoving(Plummer-equivalent) gravitationals×ofteningis7.8h−1kpc(withamaximumvalueof2 objects. h−1kpc in physical units). The underlying cosmological parame- Recently, Stringeretal. (2010) have tried a different path to attackthisissue,bytryingtotuneaSAMaccordingtothephysics tersare:(Ωm,σ8,ns,Ωb,h)=(0.238,0.74,0.951,0.0418, 0.73), consistentwiththeWMAP5-yeardata(Komatsuetal.2009). of a HYD. These authors managed to modify a SAM based on Boweretal.(2006),sothatitwillroughlyreproducethehistoryof On each output snapshot we have run the FOF algorithm witha linking length of 0.2 (Davisetal. 1985) toidentify haloes onediskgalaxywithinaHYD.Sincetheirworkwasbasedononly onegalaxy,andsincesomedeviationsbetweentheirSAMandthe withmore than20dark-matter particles.The SUBFIND algorithm (Springeletal. 2001) was then used to identify subhaloes with HYDremained,itisstillnotclearhowwellthetwomethodologies more than 20 particles within haloes (i.e. the minimum subhalo agree. Inthisworkwewouldliketotakethisapproachonestepfur- mass ranges between 1 109 to 8 109h−1M⊙, depending on × × ther.WewilldevelopamethodtoextractthephysicsofaHYDus- which particles are included). In our implementation, SUBFIND uses both dark matter and baryonic particles (Dolagetal. 2009). ingthesimulationoutput,inawaythatcanbeusedwithinaSAM. Sincesatellitesubhaloeswithinadenseenvironmentareoftenbe- Weusealargecosmologicalhydrodynamicalsimulation,basedon ingstrippedoftheirdark-matter,subhaloesoccasionallyhostonly state-of-the-art physical modelling, as developed by Schayeetal. star and gas particles. In addition, fragmentation might happen (2010).Ourtaskistoexplorethelevelofcomplexityneededbya withinhaloes,creatingnewsubhaloes,withonlygasandstarpar- SAMinordertofollowaccuratelytheformationhistoriesofgalax- ticles.Wehaveconstructedmerger-treesofsubhaloesinthesame iesasmodeledbytheHYDwithinalargecosmologicalbox. wayasdescribedinSpringeletal.(2001).Thetreesincludeinfor- Thispaperisorganizedasfollows.Insection2wedescribethe HYDandtheSAMusedhere,andthemethodbeingusedtoextract mationonthesubhaloesandtheirhostFOFgroups. SAMingredientsoutoftheHYD.Theseingredientsarepresented in section 3, emphasizing the differences in comparison to stan- 2.2 Thesemi-analyticmodel(SAM) dardSAMs.Thegalaxiesproducedbybothmodelsarecompared insection4.Amodelwithonegasphaseispresentedinsection5, Herewedescribethesemi-analyticmodel(SAM)usedinthiswork. showingasimilarmatchtotheHYDasinthecaseofthestandard Formoredetailsonthemodel,includingvariousspecificscenarios forgalaxyevolution,seeNeistein&Weinmann(2010).Themodel followsgalaxiesinsidethecomplexstructureofmerger-trees,and 1 InmoredetailedSAMs,thatmodele.g.theSFrateasafunctionofthe usessimplelawsforcooling,SF,accretion,merging,andfeedback. diskradius(Dutton&vandenBosch2009;Fuetal.2010)oneneedstoas- Unlike other SAMs, these laws are simplified to be functions of sumeanad-hocdensityprofilewithinthedisk. onlythehostsubhalomassandredshift. (cid:13)c 2011RAS,MNRAS000,1–14 Hydrosimulationsandsemi-analyticmodels 3 2.2.1 Quiescentevolution Similartotheotheringredients,feedbackismodeledbyafunction ofthehalomassandredshiftf =f (M ,z). Galaxiesthatdonotexperiencemergereventsaretermedtoevolve d d h Alltheprocessesabovecanbeunitedintoasetofdifferential ‘quiescently’.Eachgalaxyismodeledbythreephasesofbaryons, equations, a galaxy: (mstar,mcold, mhot) . (1) m˙star=fs mcold · The definitions of mcold and mhot are motivated by the HYD: m˙cold= (fs+fdfs) mcold+fc mhot (6) mstacrosld(teismtpheeramtuarsessmofatlhleer1co0l5dKa,nddendseitnyslearggaesrtthhaatni0s.1abclme3t)o,mform m˙hot=−fdfs·mcold−·fc·mhot+·fa·M˙h. hot isalltherestofthegaswithinthehostsubhalo,includinggasthat Eachphysicalprocessisdescribedbyonefunction(fx),resulting waspreviouslyinsidethesubhalobutwaslaterejected.Theexact inasetoflinearinhomogeneousdifferentialequations.Thehotac- definitionsofthedifferentgasphasesaregiveninthenextsection. cretion,fa M˙h,isthe‘sourceterm’thatgovernsthetotalbaryonic · Wenote that there exist various different definitionsfor cold and masswithineachgalaxy. Theotherthreeefficiencies(fs, fc, fd) hotgasintheliterature.Althoughourdefinitionagreeswiththeap- definethecomplexevolutionofgasandstarswithinagalaxy. proachadoptedbySAMs,itisdifferentfromrecentstudiesbased onHYDs,aswillbediscussedbelow.Inadditiontoourstandard 2.2.2 Satellitegalaxies model,wewilltestvariousscenarioswithdifferingnumberofgas phases. Inthisworkweassumethateachsubhaloincludesonlyonegalaxy. Inthefollowingwelayoutthebasicsetofdifferentialequa- Sincesubhaloesmightcontainonlystarparticles,smallsubhaloes tionsthatdescribetheevolutionofthesephasesusingasmallset insidemassive FOFgroupscansurvivelongerthanindark-matter of a priori physical assumptions. These equations have been the only simulations. We note that although our SAM uses only the basis for the standard paradigm of galaxy formation for over 30 dark-mattermassforeachsubhalo,thelocationofthesubhaloand yearsnow(Rees&Ostriker1977;Silk1977;White&Rees1978; its merging time are affected by the dynamical processes within White&Frenk1991). theHYD,including contributionsfromthegasand starparticles. Afreshsupplyofgasintothegalaxyisprovided bysmooth SatellitesubhaloesaredefinedasallsubhaloesinsideaFOFgroup accretion along with the growth of the host dark-matter subhalo. exceptforthecentral(mostmassive)subhalo.Becausegalaxiesand Theefficiencyofhotaccretedgasismodeledby subhaloeshaveaone-to-onecorrespondence,weusethesameter- minologyforcentralandsatellitegalaxies. fa·M˙h ifM˙h >0 WhilesatellitegalaxiesmovewithintheirFOFgroup,theysuf- [m˙hot]accretion = (2) ferfrommasslossduetotidalstripping.Thisismodeledbyaddi- 0 otherwise tionaltermsinthedifferentialequationsabove: Here M is the subhalo mass, defined as the total mass of dark- matterpharticleswithinthesubhalo.M˙ isthegrowthrateofdark- m˙star=fs·mcold h matter coming from particles that are not included in other sub- m˙cold= (fs+fdfs+αc) mcold+fc mhot (7) − · · haloes(notmergers).Squarebracketsareusedtoidentifyindivid- m˙hot=fdfs mcold (fc+αh) mhot+fa M˙h. · − · · ualprocesses,inthiscaseitisthecontributiontom˙ duetoac- hot Theadditionaltermsincludingα , α arecomputedonlyforsatel- cretion.Weallowfatobeafunctionofthehalomassandredshift, litegalaxies,anddescribethestrhippincgofhotandcoldgasrespec- althoughinstandardSAMs(e.g.Crotonetal.2006)itisaconstant tively. In general, a similar parameter for stellar stripping can be thatequalstheuniversalbaryonicfraction,2Ω /Ω =0.1756.In b m added,butitisnegligibleintheanalysisdonehere.Ourmodelal- general,asimilarcomponent ofcoldaccretionmight exist.How- lowsforthestrippedmasstobeaddedtothecentralobject,orto ever,aswillbediscussedbelow,coldaccretionisnegligibledueto belosttotheinter-galacticmedium. Forsatellitegalaxies, allthe ourdefinitionofcoldgas,whichincludesathresholdindensity. Hotgasmayradiateandcoolaccordingto efficiency values fc, fd, fs are based on the subhalo mass at the lasttimethesubhalowascentralwithinitsFOFgroup. [m˙cold]cooling =−[m˙hot]cooling =fc·mhot. (3) Thecooling efficiency, fc = fc(Mh,z),isafunction ofthehost 2.2.3 Mergers halo mass M and the redshift only, and is written in units of h Incaseasubhalo mergesintoamoremassiveone, wemergethe Gyr−1.WeassumethattheSFrateisproportionaltotheamountof correspondinggalaxiesaswell,andatthesametime.Mergerscan coldgas, triggerSFbursts,withanefficiencythatdependsonthemassratio [m˙star]SF=−[m˙cold]SF=fs·mcold, (4) ofthetwogalaxies: wherefs = fs(Mh,z)hasunitsofGyr−1.Gascanbeheateddue ∆mstar =0.56(m2/m1)0.7×mcold, (8) to SN explosions and move from the cold phase into the hot. In where m1,m2 are the baryonic mass of the central and satellite theHYDusedhere,corecollapseSNeventsfollowstarformation galaxyrespectively, and m isthesumof thecoldgas masses cold after a short delay of 30 Myr. Therefore, the feedback should be of the two galaxies. This recipe follows the results of hydrody- proportionaltotheSFrate, namical simulations by Mihos&Hernquist (1994) and Coxetal. [m˙ ] = [m˙ ] = (5) (2008),andwasadoptedbyvariousSAMs(Somervilleetal.2001; hot feedback − cold feedback Crotonetal. 2006; Khochfar&Silk 2009; Neistein&Weinmann fd[m˙star]SF =fdfs·mcold. 2010).However,aswillbeexplainedbelow,wedonotfindastrong evidence that these bursts are necessary to reproduce the HYD 2 Forlowmasshaloes,reionization introducesafilteringmassscalethat galaxies, and we therefore do not include bursts in our final im- giveslowerbaryonfractions(e.g.Somerville2002). plementationofthemodel. (cid:13)c 2011RAS,MNRAS000,1–14 4 E. Neisteinet al. 2.3 HowtoturnaHYDintoaSAM for the remnant galaxy. This means that our rates reflect the qui- escentevolutiononly,anddonotincludemergersexplicitly.How- Wewouldliketoextracttheeffectivelawsthatgoverntheevolu- ever,mergersmightstillinduceburstsbothintheHYDandSAM, tionofgalaxieswithintheHYD.InthelanguageofourSAM,we following,e.g.,Eq.8.Mergerscanalsoaffectotherprocessesindi- needtoidentifythefunctionsfc,fs,fd,fathatsummarizethepro- rectly,likeheating,coolingorSFwithintheHYD.Thisissuewill cessesofcooling,SF,feedback,andaccretion.Forsatellitegalax- bediscussedbelow. ies, we need to determine the constants α , α that describe the c h Theefficienciesforeachgalaxyiaredefinedbynormalizing stripping rates of cold and hot gas. In order to do so we follow therates: eachsubhalowithintheHYDalongwithitsmerger-treeovertime, andkeeptrackofalltheparticleinformation.AsintheSAM,we fi= R→i hot , (10) assumeeachsubhaloincludesexactlyonegalaxy. a M˙i h Ateachsnapshot wedefinethreedifferentmasscomponents Ri foreachgalaxy: fci= hmot→i cold , (11) hot • The stellar mass, mstar, defined as the total mass of all star fi= Rciold→stars , (12) particleswithinthesubhalo. s mi cold Themassofcoldgas,m ,isthemassofallparticlesthatare abl•etoformstarswithinthesucoblhdalo.AccordingtotheSFlawbeing fi= Rciold→hot . (13) d Ri used by the HYD, these are all particles with local gas densities cold→stars largerthan0.1cm3andtemperatureslowerthan105K. Inordertoobtaintheglobalefficiencylaw,forthefullcosmological The component of hot gas, mhot, includes all gas particles box, weconsider onlycentral subhaloes withintheir FOF groups. • thatdonotbelongtom ,aswellasallparticlesthatwereonce Wethensplitthesampleof subhaloes intobinsof different mass cold withinthesubhalo, butwereejectedlater.Theseejectedparticles andredshift.Foreachbintheaverageefficiencyisdefinedbyaver- areassignedtothesamesubhaloonlyiftheydidnotbecomepart agingthenominatoranddenominatorseparately.Forexample, of other subhaloes. Note that usually in SAMs the ejected gas is Ri treatedasadifferentgascomponent. fs(Mh,z)≡ h cmoldi→stari. (14) h coldi Wekeeptrackofallparticlesthatbelongtosubhaloeswithin HereaveragingisdoneoverallgalaxieswithinthesameM andz h theHYD,andcheckwhichofthemhavechangedtheirphase(i.e. bin.Quitearbitrarily,wechoosebinsof0.2dexinM ,and7bins h mcold, mstar, mhot) between two subsequent snapshots, or were in cosmic time, spaced by 2 Gyr. We have checked that finer accreted/stripped. Foreachgalaxy iwedefineallpossible transi- bins do not modify the resu∼lts of this work.4 Thebins in cosmic tionratesofthekindRi ,Ri ,Ri ,wealso cold→star cold→hot hot→cold timearemuchwiderthanthetimebetweentwosubsequentsnap- checkedthatotherrates,likeRi arenegligible.Forexam- hot→star shots.Consequently,thetimeaveragetypicallyincludes10differ- ple,inordertocomputetheSFrateweusethefollowingsum: entsnapshots. 1 Whencomputingtheaccretionefficiency,weusethefactthat Ri = m . (9) cold→star ∆t j withintheSAM,negativedark-matteraccretioneventsaretreated Xj aszero,andarenotinducingnegativegasaccretion.Tomakethis Here mj isthe mass of the particlej, and the sum goes over all approach consistent with the average value of fa measured from particles that started as m at the beginning of the time-step, theHYD,wesetallnegativevaluesofM˙ tozerofirst,onlythen cold h and ended as stellar particles. ∆t is the time inGyr between the doweaverageM˙handcomputefa: twosnapshotsconsidered.Inordertocomputecooling(orheating) Ri rates we use a similar sum, taking into account all particles that fa(Mh,z) h →hoti . (15) startedashot(cold)particlesatthebeginningofthetime-step,and ≡ max M˙h,0 endedascold(hot).3 h (cid:16) (cid:17)i This way of averaging guarantees that the total baryonic mass For the accretion rate, Ri , we use the sum over all par- →hot withinourSAMgalaxieswillagreewiththeHYD. ticlesthatjoinedthehotcomponent of thesubhalo, andwerenot Wehavesavedstrippingandaccretionratesforsatellitegalax- identifiedinsideother subhaloes before. Inaddition, wetakeinto ies,andrecordedtheamountofmassflowingintothecentralsub- account the mass of particles that were exchanged between sub- halo,incomparisontothetotalmassbeingstripped.Ingeneral,the haloesthatbelongtodifferent FOFgroups.Thismeansthatparti- strippedmassisbestdescribedbyanormalizedefficiency,i.e.the clesthatarestrippedintoadifferentFOFgrouparesubtractedfrom ratioα = ∆m /m ,aswasdefinedinEq.7.However, we theaccretionrate.Ontheotherhand,particlesthatjointhecentral h hot hot foundthatbothα andα arechanging asafunctionofthehost subhalocomingfromsatellitesubhaloeswithinthesameFOFgroup h c subhalomassandredshift.Inaddition,theefficienciesoffeedback arenotaccountedforinaccretionrates. andcoolingforsatellitegalaxiesaresomewhatdifferentthanthose Wheneverwehaveamergerevent,wefirstsumupthecom- forcentralgalaxies.Thispartiallydependsonthedefinitionsofthe ponentsoftheprogenitorgalaxies,andonlythencomputetherates variousgasphases,andhoweachisbeingstripped.Inthisworkwe havechosenthesimplestmodelpossible,takingintoaccountonly constants α and α . Furthermore, we use the same cooling and c h 3 Multipletransitionsofthetypehot→cold→hotmightexistbetweentwo feedback efficienciesasforcentral galaxies.Wewillshow below snapshots,butthesearenegligibleaccordingtothecoolingtime-scalesthat willbeshownbelow.Incasemultipletransitionsexist,notincludingthem willmodifytherateswemeasure.However,thesemodificationsshouldnot 4 TheSAMusedhere (Neistein&Weinmann2010)automatically inter- changethemasscomponentsoftheSAMgalaxies.Thisissuereflectsthe polatestheinputvaluesoffs,fa,fc,fdintoafinegridinhalomassand inherentdegeneracyofthemodelequations. time. (cid:13)c 2011RAS,MNRAS000,1–14 Hydrosimulationsandsemi-analyticmodels 5 14 3 10 stars cold 100× fs [1/Gyr] 13 hot 2 10 ] ⊙ M 12 [ m 1 10 fd og 11 L 0 10 10 y c n 9 cie 10−1 0.1× fa 0 L5ookback time [Gy1r0] 15 Effi −2 Figure2.Thebaryonic components forthemain-progenitor historyofa 10 specificgalaxy.Solidlines showthemassofstars,coldgas,andhotgas asmeasuredfromtheHYD.Dashedlinesrepresentthesamecomponents withinourSAM,usingthesamedark-mattersubhaloes(seesection4).The −3 efficienciesofcooling,accretion,SF,andfeedbackforthesamegalaxyare 10 plottedinFig.1. −4 10 For completeness, we show in the Appendix all the efficiencies 0.01× f [1/Gyr] from the HYD when using the proper mass for each particle, as c wasusedinthesimulation. In Fig. 1 we show the different efficiencies for the main- 0 5 10 progenitorhistory5ofonemassivegalaxywithintheHYD,incom- Lookback time [Gyr] parison to the global averages using all central subhaloes of the same mass and time within the HYD. It seems that the random- nessintheefficienciesofonegalaxyisnottoobig,andisaveraged outovertime(exceptforafewnarrowpeaksthatshouldnotaffect themassesofstarsandgassignificantly).Forexample,fc andfa Figure1.Theefficienciesofcooling,accretion,SF,andfeedbackfollowing show deviations on time-scales of one snapshot (200 Myr), with themain-progenitorhistoryofaspecificgalaxywithintheHYD,hostedby nosignificanttrendsoverlargertime-scales.Ontheotherhand,f d asubhaloofmass∼ 1014M⊙ atz = 0.Solidlines showthedifferent andfs showdeviationsfromtheaverageefficienciesthatarelast- efficiencies for this galaxy as measured from the HYD at all snapshots. ingfor 2Gyr.Overall,thebehaviourofonegalaxyseemstobe Thethickdashedlinescorrespondtotheaverageefficiencyforallgalaxies ∼ veryregular,and doesnot show significantdeviations larger than withintheHYD,includingonlycentralgalaxieswiththesamehostsubhalo thestandarddeviation(STD)computedusingallthegalaxiesinthe massandatthesameredshiftasthegalaxyplottedinsolidlines.Thethin dashedlinesshowthestandarddeviationforthesamesampleofgalaxies HYD.Thetotal massinstars, coldgas,and hot gasfor thesame above.ThemasscomponentsofthisgalaxyareshowninFig.2. galaxyareplottedinFig.2.Wewillshowbelowthatonceweuse theSAMoverthesamemerger-trees,theagreementbetweenHYD andSAMisverygood,alsowhencomparingindividualobjects. that this solution isreasonably accurate for satellitegalaxies. We plantoinvestigatethisissuemorecloselyinafuturework. Inthehydrodynamicalsimulation,starparticlescanlosesome 3 THEPHYSICSOFTHEHYD oftheirmassduetostellarwindsandSN.Thismasslossiscom- puted using a stellar population synthesis model and is added to ThedifferentefficienciesextractedfromtheHYDshoulddescribe thesurroundingparticles(seeWiersmaetal.2009).Althoughthis thevariousphysicalprocessesinvolvedinforminggalaxies.Aswe processcanbeeasilymodeledwithintheSAM,itcomplicatesthe will see below, they allow the SAM to accurately reproduce the interpretationoftheresults.Thisismainlybecausethestellarmass populationofgalaxiesintheHYD.Thismeansthatwehaveareli- lossatagivenepochistheoutcomeoftheSFhistoryoverafew ableestimateoftheneteffectthatheating,cooling,accretion,and Gyr. Therefore, the rates measured from the HYD would not be SFhaveongalaxieswithintheHYD. instantaneous, and might include less scatter with respect to the SAM.Wethereforeassumethatallparticleshaveafixedmass,and compute all ratesand efficienciesusing thisassumption. Thisas- 5 The main-progenitor history is defined by following back in time the sumptionisalsobeingusedwhencomparingtheresultsoftheHYD mostmassiveprogenitorineachmergerevent.Notethatathighredshift, against the SAM. Consequently, the total baryonic mass within thesubhalo that belongs tothe main-progenitor branch mightnot bethe galaxiesissometimeshigherthantheuniversalbaryonicfraction. mostmassivewithinitsmergertree. (cid:13)c 2011RAS,MNRAS000,1–14 6 E. Neisteinet al. 1 10 z =3 z =2 z =1 0 10 z =0 ] 10−1 1− r a y10−1 f G [ c f z =3 10−2 z =2 smooth accretion z =1 cooling z =0 10−2 10−3 11 12 13 14 15 11 12 13 14 15 Log Mh [M⊙] Log Mh [M⊙] Figure3.Thesmoothaccretionrateofbaryonsasderivedfromthehydro- Figure4.Thecoolingefficiencies extractedfromtheHYD,andaveraged dynamicalsimulation.faisdefinedastheratioofthesmoothedhotaccre- asafunctionofhalomassandtime.fcisdefinedastheratioofthecooling tion,overthedark-mattersmoothaccretion,averagedinbinsofhalomass rateoverthemassofhotgas.Plottedlinesareusingthesamedefinitionsas andtime.Eachsolidlinerepresents adifferent redshiftbin, alltheother inFig.3.Dashedlinesonthebottomrightareproportionaltooneoverthe linesareshownonlyforz=1:Thedashedlineshowstheaverageplusone cosmictime. standarddeviationinfa;Thedotted-dashedlineshowstheaverageminus onestandarddeviation,afteraveragingoutfaforalltheprogenitorswithin eachtree,andat∼ 10differentsnapshots(allthemerger-treesarerooted subhaloesarecompensatingforthenegativeaccretionevents.Mod- atz = 0);Thedotsrepresenttheaverageplusonestandarddeviation of elsbasedonaverage dark-matter accretionratesshould therefore fa afteraveragingoverdifferentprogenitors withinatree,butnotwithin usetheefficienciesquotedintheAppendix.Wehavealsochecked differentsnapshots.Thethickdashedlineistheuniversalbaryonicfraction, thatthetotalbaryonicfractionwithingalaxiesagreeswiththeac- Ωb/(Ωm−Ωb)=0.213. cretion rates given in the Appendix. In terms of the comparison madehere,onceweincludeamechanismforgasstrippingwithin centralgalaxies,followingthedark-matterevolution,wedonotget 3.1 Smoothaccretion abetteragreementbetweentheHYDandSAM.Wethereforeadopt thesolutionofpositiveaccretiononly,asitismoresimpletoim- Thevalues of theaccretionrate, fa,that wereextractedfromthe plement. HYD areshown inFig. 3. Weplot only the‘hot accretion’ com- Aswasdiscussedinsection2.3,theaccretionratesshownhere ponentaswedonotdetectanaccretionofcoldgasintogalaxies. arebasedonafixedparticlemass,withouttakingintoaccountthe Although this seems to be in conflict with various recent studies mass loss due to stellar winds and SN within the HYD. Conse- (e.g.Keresˇetal.2005,2009;Dekeletal.2009;vandeVoortetal. quently,accretionratescanhavevalueslargerthantheequivalent 2011)itisaresultofthedifferentdefinitionsof‘coldgas’thatare cosmicvalue,Ω /(Ω Ω ).IntheAppendixweplotalltheeffi- beingusedintheliterature.Herewedefinecoldgasasthegasthat b m− b cienciesusingtheproper massforeachparticlewithintheHYD. isabletoformstars,requiringhighdensities(largerthan0.1cm3), This effect changes the overall normalization of each efficiency andnotonlylowtemperatures.Thisisadifferentdefinitionfrom slightly, but it does not change the trends withsubhalo massand mostotherstudiesbasedonHYDs,thatoftendefineagasparticle time. tobecoldifitwasnotpreviouslyheatedtothevirialtemperatureof itshalo.Hereweadoptamorestraight-forwarddefinitionofcold gas,basedontheSFlaw.Usingourdefinition,thereisnoevidence 3.2 Cooling for‘coldaccretion’atallredshiftsandforallsubhalomasses.This factisreasonable,becausestar-forminggasmightformstarsbefore Thenextprocessforwhichtheefficienciesarerequirediscooling. it joinsthesubhalo, and willtherefore be identifiedasa separate InFig.4weshowaveragecoolingefficienciesforallthegalaxies galaxy. withintheHYD.Hereweshouldkeepinmindthatthecomponent UnlikeinstandardSAMs,wherefa isassumedtobeacon- of‘hotgas’includesgasparticlesthatwereejectedoutofthesub- stant,herefashowsasignificantdependenceonthesubhalomass, halo.Therefore,thecoolingefficienciesarenormalizedbythesum decreasing by a factor of 10 from subhalo masses of 1013 to of both ejected and hot gas, according to Eq. 11. For a different 1011M⊙ atz = 0.Thisis∼surprising,consideringthefactthatall definitionofcoolingefficiencies,wherehotandejectedphasesare galaxiesusedherearethecentralobjectsinsidetheir FOFgroups. treated separately, we refer the reader to the Appendix. We note Wehavechecked thiseffect further, and testedamodel inwhich that the dip in the cooling efficiencies seen at a subhalo mass of negative gas accretion (stripping) is allowed whenever the dark- 7 1011M⊙ isduetothecombinationofbothhotandejected ∼ × matter mass decreases. Using this new assumption, the accretion phases. efficienciesbecomemuchclosertoaconstant,withdeviationsofa In general, cooling efficiencies are showing a roughly con- factorof 2,consistentwithvandeVoortetal.(2011)(theequiv- stantbehaviourasafunctionofsubhalomassesforsubhaloeslower alentplot∼offainthiscaseisshownintheAppendix,Fig.A1).Our than 1012M⊙,andgodownformoremassivesubhaloes.Thisis ∼ conclusionisthatthelowaccretionratesshownhereforlow-mass qualitativelyinagreementwithsemi-analyticmodels.However,the (cid:13)c 2011RAS,MNRAS000,1–14 Hydrosimulationsandsemi-analyticmodels 7 ∝ v−3/2 1 10 ] 1− 100 r y d G f [ s 100 f z =3 z =3 z =2 z =2 star−formation z =1 feedback z =1 z =0 z =0 10−1 10−1 11 12 13 14 15 11 12 13 14 15 Log Mh [M⊙] Log Mh [M⊙] Figure5.Star-formationefficiencieswithintheHYD,definedastheratio Figure6.FeedbackefficienciesmeasuredfromtheHYD,andaveragedas oftheSFrateoverthemassofcoldgas.ForthelinedefinitionsseeFig.3. afunctionofhalomassandtime.fdistheratiobetweentheheatingrate andtheSFrate.Thethickgraylineisproportionaltothevirialvelocityof subhaloestothepowerof-3/2,otherlinesaredefinedasinFig.3. 3.3 Starformation dependence ofthecoolingefficienciesoncosmictimeisstronger thanasimplelineardependence.Sincethedynamicaltimewithin Fig.5showstheSFefficienciesfoundwithintheHYD.Thetime- subhaloes is proportional to the cosmic time, cooling cannot be scalesforconvertingthecoldgasintostarsrangefrom 3Gyrfor ∼ modeledonlybytheinfalltimeofgasintothecentreofhaloes.This lowmasssubhaloesatz=0,to 1Gyrformassivesubhaloesat ∼ mightbearesultofthecoolingprocessitself,anditsdependence z=3.Thelow-redshiftvaluesareroughlyconsistentwiththeob- onthehotgasproperties(e.g.McCarthyetal.2008;Wiersmaetal. servational constraints (Schiminovichetal. 2010; Saintongeetal. 2009). 2011). However, the dependence on redshift found here is much In the terminology of ‘cold accretion’ mode, where all the smallerthanwhatisusuallyassumedinSAMs,wheretheconver- accreted gas is assumed to be falling in narrow streams (e.g. sion efficiency is proportional to the cosmic time (see, however, Dekeletal. 2009), the process of ‘cooling’ describes the time it Khochfar&Silk 2009). For example, Wangetal. (2011) showed takesthestreamtoreachthecentraldisk,andbecomedenseenough theSFefficienciesasafunctionofsubhalomassforvariousmod- tobeapart ofour definitionofm .Astronger dependence of els, where in standard SAMs the difference between z = 3 and cold coolingonthecosmictimemightmeanthataccretionthroughfila- z=0reachesanorderofmagnitude. mentsismorerelevant at highredshift (vandeVoortetal.2011). Interestingly,theSFefficienciesshowadoublepower-lawbe- A different option is that trajectories of streams are more ra- haviour asafunction of subhalo mass, where thepeak efficiency dial at high-redshift. This last fact was already pointed out by is located at 1012 1013M⊙, depending on the specific red- ∼ − Weinmannetal.(2011),andisinagreementwiththeorbitsofsub- shift.Forhigh-masssubhaloestheSFisnotsignificantlyreduced. haloeswithincosmologicaldark-mattersimulations(Wetzel2011; Consequently,thehighfractionofpassivegalaxieswithinmassive Hopkinsetal.2010). subhaloesisnotrelatedtoareducedSFefficiency,butrathertogas Thecoolingefficienciesshownherecanbecomparedtostan- consumption, environmental effects (Khochfar&Ostriker 2008), dard SAM algorithms, which are usually following the spirit of orAGNfeedback(e.g.Crotonetal.2006). White&Frenk(1991).Thisissuewasinvestigatedbyvariousstud- iesinthepast(Bensonetal.2001;Yoshidaetal.2002;Hellyetal. 3.4 Feedback 2003;Cattaneoetal.2007;DeLuciaetal.2010;Crainetal.2010; Luetal. 2011), mostly claiming some agreement between differ- The feedback efficiencies extracted from the HYD are plotted in entSAMsandHYDs,andsomenoticeabledeviations(especially Fig.6.Theseseemtofollowapower-lawofthetypev−3/2below athighredshift).Forexample,Crainetal.(2010)showedthatthe subhalomassof 1013M⊙,wherev isthevirialvelocityofthe ∼ algorithm of White&Frenk (1991) strongly overpredict cooling subhalo.Abovethismass,thefeedbackefficiencyshowsamodest rates due to the specific entropy profiles of gas within haloes. In upturn.Thefeedbackefficiencyrepresentsgasthatisheatedfrom addition, various SAMs that are based on White&Frenk (1991) thecoldphaseintothehotcomponent,andpossiblyejectedoutof canshowsignificantdeviationsincoolingratesduetothedetailed the subhalo. Within the OWLS reference model, SN feedback is implementationofthealgorithm(DeLuciaetal.2010). implementedinkineticformusingaconstantwindvelocityof600 We find significant differences when comparing the cooling km s−1. This causes the feedback to become inefficient for halo efficiencieshereagainsttheoneusedbyDeLucia&Blaizot(2007) massesgreaterthanafewtimes1011M⊙(DallaVecchia&Schaye andsummarizedinNeistein&Weinmann(2010).Forexample,at 2008;Crainetal.2009;Schayeetal.2010;Haas2010). z=1,DeLucia&Blaizot(2007)predictcoolingefficiencyof 1 SAMs usually assume a power-law efficiency withvery dif- Gyr−1 atsubhalomassof1011M⊙,roughlyafactorof10hig∼her ferentindexes.Forexample,DeLucia&Blaizot(2007)assumeda thanwhatisfoundhere. constant;Coleetal.(2000)haveusedapowerof-2,followingthe (cid:13)c 2011RAS,MNRAS000,1–14 8 E. Neisteinet al. 14 14 13 13 mstar mcold mstar mcold 12 12 ] ⊙ ] M 11 ⊙ 11 z=0.0 M z=0 [ m 10 centrals [ 10 satellites m g 14 14 o g L o D, 13 mhot mtotal L 13 mhot mtotal Y 12 D, 12 H Y 11 H 11 10 10 9 9 9 10 11 12 13 14 10 11 12 13 14 9 10 11 12 13 14 10 11 12 13 14 SAM, Log m [M⊙] SAM, Log m [M⊙] Figure7.Comparingthemassesofindividualgalaxies,SAMagainstthe Figure 8. Comparing the mass of individual galaxies, SAM against the HYD.Eachpanelrepresentsadifferentmasscomponentaslabeled,using HYD.Data was derived inthe sameway as inFig. 7,butfor thepopu- only central subhaloes at z = 0. The panels show the two dimensional lationofsatellitegalaxiesatz=0.Mean(STD)differencesbetweenSAM histogramofthepairs(mSAM,mHYD),describingthemassofthesame andHYDreach0.1(0.2)dexforbothmstarandmtotal,and0.3(0.5)dex objects in both models. The pixels are color-coded according to the log formhot. ofthe number ofobjects. Themean difference between HYD and SAM islowerthan0.08dexforallmasscomponents.STDsare0.08formstar a(enxdcmepttoftoarl∼the1S0T1D1Msta⊙rt,sfaotr∼wh0i.c0h8tdheexSfTorDlogwoemsatoss0g.a1l3axdieexs)a.nFdorremachhoets massesbelow 1010M⊙ includelessthan100 particlesandsuffer ∼0.04formassivegalaxies.TheSTDformcoldisaround0.2dex. fromvariousnumericalartifacts,alsowithintheHYD. Wefoundthatdeviationsbetweenm intheSAMandthe total HYDcorrelatestronglywithdeviationsinm ,andarethereason hot formostofthescatterfoundinm .Thisisaconsequenceofthe potentialofthehosthalo;andGuoetal.(2011)assumedapower hot fact thatmost of thebaryonic massislocatedinm .A similar of-3.5.Alltheseareverydifferentfromwhatisfoundhere.The hot (but weaker) correlation exists between deviations in m and feedback efficiency within a model that includes three phases of total gas(mcold,mhot,andmejc)isplottedintheAppendix. mstar.Eventhoughthestellarmassisaffectedfromvariousaddi- tionalprocessesthatseemtobemorecomplicatedthanaccretion, the deviations in fa between the HYD and the SAM still affect mstar. This fact can also be seen in Figs. 3-6. In these plots we showtheSTDofeachefficiencyatz = 1,afteraveragingoutall 4 COMPARINGMODELGALAXIES progenitors of thesame galaxy atz = 0(dotted-dashed lines). It InthissectionwecomparetheresultsoftheSAMwiththeHYD. isevidentthatthescatterinfabetweendifferentgalaxiesissignif- The SAM uses only the physical ingredients that were described icantlyhigherthanthescatterinotherefficiencies.Thismightbe above, i.e.,fa,fc,fs andfd,andwasrunusingmerger-treesex- aresultofdifferentmerger-historiesforsubhaloesthatliveinside tractedfromthesameHYD.Wespecificallyusethesamevalues differentenvironmentdensities(theassemblybiaseffect,Gaoetal. plottedinFigs.3–6,usingthreemorebinsincosmictime.Aswas 2005). explainedinsection2.3,inordertokeepthemodelsimplewedo The small scatter in mstar between the HYD and the SAM notattempttomodelsatellitegalaxieswithfullaccuracy.Wesetthe (0.08dex)isinterestinginviewofthelargerscatterinm (0.2 cold valuesofαcandαhto0and0.3respectively,becausetheyprovide dex). Although themasses of mcold are usually below 1010M⊙, an effective behaviour which is similar to that of the HYD. The and are therefore not numerically reliable, these masses are re- stripped gasisadded tothe central galaxy withinthe FOF group. sponsiblefor making stars,andsomehow produce asmallscatter Other than that, the SAM has no free parameters, and no tuning in mstar. This issue will be discussed in section 6.3. A different wasdone. contributiontothescatterinm comesfrommergers,andwill cold The model galaxies from the HYD and our SAM are com- bediscussedinsection4.1. paredinFig.7.BymatchingthesamesubhaloesfromtheHYD& Wehaveexploredthelargerscatterinmstaratvaluesof1011 SAM,weareabletoshowtheagreementbetweenthemodelsonan byrunningadifferentHYD,withadifferentfeedbackmodel(Dalla object-by-objectbasis.Unlikeinpreviousstudiesthatshowedlarge Vecchia&Schaye,inpreparation),andbyincreasingtheresolution deviationsbetweenSAMandHYDgalaxies(e.g.Hirschmannetal. oftheefficiencybins(bothinmassandtime).Thehigh-resolution 2011),herethetwomodelsagreequitewell.Forcentral galaxies efficiencieswerenotmakinganynoticeablechange,buttheHYD the STD of differences is less than 0.1 dex, for all redshifts and withadifferentfeedbackmodelresultsinasignificantsmallerscat- forthevarious galaxycomponents (except formcold,whichusu- teratmstar =1011M⊙.Itmightbethatthekineticfeedbackpre- allyincludesonlyafewtensofparticleswithinagalaxy).Thetotal scriptionusedbytheHYDaffectsthehydrodynamicalstateofthe massinbaryons,mtotal mstar+mcold+mhot,isshownasa gasinawaythatisdifferentthanothercoolingandheatingchan- ≡ probeoftheaccuracyoftheaccretionrates,fa.Notethatthemass nels.Thesechangesmightcomplicatethesimpledistinctiondone of gas particles within the simulation is 8.64 107 h−1M⊙, so here between cold and hot gas. In addition, it might be that the × (cid:13)c 2011RAS,MNRAS000,1–14 Hydrosimulationsandsemi-analyticmodels 9 0 14 10 stars 13 mstar mcold cold 12 1] hot − ] x M⊙ 11 de10−2 m[ 10 zc=en2trals −3pc 14 M Log 13 M [ D, 12 mhot mtotal dlog10−4 Y N/ H 11 d 10 −6 9 10 9 10 11 12 13 14 10 11 12 13 14 9 10 11 12 13 14 Log m [M ] SAM, Log m [M ] ⊙ ⊙ 14 Figure10.Themassfunctions ofmstar,mcold,andmhot intheHYD (solidlines)andintheSAM(dashedlines).Allgalaxiesatz = 0arese- 13 mstar mcold lected. 12 ] ⊙ 11 M because these galaxies had much less time to evolve within their z=2 m[ 10 satellites group,anddeviationshavenotaccumulatedyet. 14 Themassfunctionsformstar,mcold,andmhotusingboththe og HYDand theSAMareshown inFig.10. Overall,theagreement L 13 mhot mtotal between the two models is very good for all mass components. D, 12 Thisisexpected, astheagreement forindividual objectsisgood. HY 11 Formhot < 1010M⊙ thesensitivityoftheHYDtoresolutionef- fectsseemstobehigh.Thisprobablyhintstothedependenceofthe 10 coolingmechanismsonresolution.Fig.10includesallthegalaxies within each model. We note that the other figures in this section 9 9 10 11 12 13 14 10 11 12 13 14 only show galaxies that exist both in the SAM and in the HYD. SAM, Log m [M ] Duetoourdefinitions,galaxiesthatjustemergedwithintheHYD ⊙ (anddonothaveanyprogenitors)arenotincludedintheSAM.On Figure 9. Comparing the mass of individual galaxies, SAM against the theotherhand,theSAMkeepsasmallpopulationofgalaxiesthat HYD.HistogramsarethesameasinFig.7,butforthepopulationofcen- donothavedescendantsubhaloes.Thesetwopopulationsarequite tralandsatellitegalaxiesatz=2.Forcentralgalaxies,themeanandSTD smallanddonotaffectthemassfunctions. ofdifferencesbetweenHYD&SAMaresimilartothenumbersquotedin TheSFratesforindividual objects arecompared inFig.11. Fig.7.Forsatellitegalaxiestheagreementisroughlytwotimesbetterthan Unlike the integrated properties shown above, the SF rates show inFig.8(indexunits). strongerdeviationsbetweenthetwomodels,withaSTDof 0.5 ∼ dex. The scatter in m is about 0.2 dex, meaning that the de- cold viationsintheSFratearedominatedbyvariationsintheSFeffi- transitionbetweeneffectiveandineffectivefeedbackissensitiveto ciency.Inaddition,mostofthepopulationofgalaxiesatlowred- otherpropertiesofthesubhaloesotherthanthesubhalomass. Acomparisonforsatellitegalaxiesatz=0isshowninFig.8. shiftformstarsatalowrate,∼1 M⊙yr−1.Thisratecorresponds tojustafewgasparticleswithinasnapshot,increasingthescatter HerethedeviationsbetweentheSAMandtheHYDarelargerthan betweenHYDsandSAMs.AscanalsobeseeninFig.5,thescat- mfoordceelnitnrawlhgiaclhaxsitersip,prienagchoifngsat0e.l2litdeexgafloaxrimessftoarll.oWwsethhaevsetrtirpipedinga terinfsbetweenallgalaxiesislarge,reachingafactorof3forlow of dark-matter, according to Weinmannetal. (2010). This model masssubhaloes.However,whenfsisaveragedoveralltheprogen- itorswithinatree,andoverafewsnapshots,thescattergoesdown didnotimprovethematchbetweentheHYDandtheSAM,prob- dramatically.Apparently,thedeviationsinSFratesresultinmuch ablybecausesatellitegalaxiesexperienceonaveragedifferenteffi- smallerdeviationsforstellarmasses.Wewillexaminethisissuein cienciesofcoolingandfeedback,aswasdiscussedinsection2.3. section6.3. ThiscanbeseeninFig.8,wherem forsatellitegalaxiesbe- total havesbetterthanmstar andmhot,hintingthatthetotalamountof strippingismodeled properly. Thephysics of satellitegalaxies is 4.1 Howimportantaremerger-inducedbursts? complicated, and deserves more attention than we give it in this work. OurSAMdoesnotincludeanymerger-inducedprocesses,likeSF InFig.9wecomparegalaxiesatz=2,findingsimilartrends bursts,heatingorcooling.Wehavetestedthecontributionofmerg- toz=0asdiscussedabove.Themassofcoldgasismuchhigherat ers to the models in various ways. First, we have computed the thisredshift,sotheagreementanddeviationsareclearer.Forsatel- average baryonic efficiencies after excluding galaxies that had a litegalaxiestheagreementismuchbetterthanatz = 0,probably majormergereventinthelast0.5Gyr,orthathaveamajorsatellite (cid:13)c 2011RAS,MNRAS000,1–14 10 E. Neisteinet al. 102 z=0 σm =vuuXi>0(cid:18)mmstiar(cid:19)2 . (16) t r] If thestellar massof agalaxy isbuilt fromNs equal values /y⊙101 oonfmmai,nythmenerσgmerwevoeunltds,ewquhaille1h/i√ghNvsa.luLeosw(cvloaslueetsooufnσitmy)iinnddiiccaattee M thatthegalaxyisbuiltfromonebranchonly.Themeaningofusing [ R σ canberelatedtothecomparison wemakebetweentheHYD m F andtheSAM.AssumethateachprogenitorgalaxywithintheSAM S D100 includes some random, normally distributed error in stellar mass Y (withrespecttotheHYD),thatisproportionaltoitsmass,m .In i H thiscasetherelativeerrorinthesumofallmasses(i.e.theerrorin centrals theSAMpredictionformstar)willequalσm. satellites Wehavecomputedσm foreachgalaxywithinourSAM,and −1 10 −1 0 1 2 measuredthecorrelationbetweenσm andthedeviationsbetween 10 10 10 10 the SAM and HYD galaxies. We found that the mass within the SAM SFR [M /yr] ⊙ SAM galaxies is higher than within the HYD for galaxies with 102 moremergers(galaxieswithlowerσm).Thiseffectistrueforall masscomponents(mstar,mcold,andmhot),butitisstrongestfor z=2 mcold.ThismeansthatgalaxieswithintheHYDlosesomeoftheir massineachmerger event, or thatsatellitegalaxieslosesomeof r] the stripped mass to the inter-galactic medium. This effect is not y /⊙101 modeledbyourcurrentSAM,butitshouldbestraightforwardto M addit,oncethetreatmentofsatellitegalaxiesismoreaccurate. [ To conclude, we do not find any significant evidence for R merger-inducedSFburstswithintheHYDusedhere. Thisseems F S to be in conflict with previous simulations of galaxy mergers D100 (e.g.Mihos&Hernquist 1994;Coxetal.2008).However,aswas Y suggested by Mosteretal. (2011), it might be that the presence H of hot gas in subhaloes regulates the efficiency of bursts within centrals our simulation. It might also be that the mass gained in bursts satellites doesnot contributemuch tothetotalstellarmasswithingalaxies −1 10 −1 0 1 2 (Khochfar&Silk2006),andthatmergersaretoorare(Lotzetal. 10 10 10 10 SAM SFR [M /yr] 2008; Hopkinsetal. 2010). On the other hand, we do find sig- ⊙ nificant evidence for mass loss within mergers, as was pointed out by previous studies (Monacoetal. 2006; Purcelletal. 2007; Figure11.ComparisonofSFratesforindividualgalaxieswithinthemod- Conroyetal.2007;Yangetal.2009). els,SAMagainsttheHYD.Centralandsatellite subhaloesareplotted in dotsandcircles respectively. Thesolidlineshowsthevalues whereboth SFratesagree.Topandbottompanelsshowresultsforz = 0andz = 2, respectively. 5 THEONE-PHASEMODEL The analysis above was based on a SAM with two different gas galaxy at a distance smaller than 0.5 Mpc (‘major mergers’, and phaseswithinagalaxy,m andm .Asanalternative,thissec- cold hot ‘major satellite’aredefined tohaveamassratiolargerthan 0.2). tiondescribesamodelwithonlyonephaseofgas,allowingusto Applyingthisselectioncriteriondoesnotchangetheresultsofthe studytheuniquenessoftheSAMequations.Theone-phasemodel efficienciesinanoticeableway.TheagreementbetweentheSAM hasbeenexploredbyotherstudiesinthepast.Inoneoftheearliest and HYD galaxies does not change either. Thereis only a minor SAMworks,Cole(1991)usedmodellingofcoldgasinhaloesto change intheaverageagreement inm .However, itmight be total predict the galaxy luminosity function. Although SAMs are usu- thatthenumberofmergereventsissmall,andcannotaffectthefull allybasedonthreephasesofgasingalaxies,theone-phasemodel populationofgalaxieswithinacosmologicalbox. wasrecentlyexploredbyBouche´etal.(2010);Krumholz&Dekel AsecondtestwecarriedoutistorunourSAMwithanaddi- (2011); Khochfar&Silk (2011); Dave´etal. (2011). In what fol- tionalrecipeformerger-inducedSFbursts.Wehaveusedthestan- lows,wewilltrytoemphasizethepointsofsimilarityanddiffer- dardrecipegiveninEq.8above.However,intermsofthecompar- encewithrespecttothesepreviousworks. isonmadehere,thisrecipedoesnotchangetheagreementbetween theHYDandtheSAM. Since the effect of mergers might accumulate withtime, we 5.1 ASAMwithonephaseofgas wouldliketodefineaquantitythatisrelatedtothenumberofmerg- ersagalaxyhadinitspast.Consideragalaxyatz=0,anddefine Foreachgalaxywedefine themassinstars,m (i > 1),thatwasaccretedfromeach satel- i mgas =mhot+mcold. (17) litegalaxyiwithinthemergertree.Allthestarsthatwereformed withinthemain-progenitorbrancharetermedm0.Usingmstar,the Thus, mgas includes all gas particles within the subhalo, as well stellarmassofthegalaxytoday,wedefine: as gas particles that were ejected from the halo. In this case, the (cid:13)c 2011RAS,MNRAS000,1–14