ebook img

Hydraulic stability of Cubipod armour units in Breakingconditions Lien Vanhoutte PDF

149 Pages·2009·11.6 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Hydraulic stability of Cubipod armour units in Breakingconditions Lien Vanhoutte

Hydraulic stability of Cubipod armour units in Breakingconditions Lien Vanhoutte Promotor: Prof. Josep Medina (UPV Valencia) Co-Promotor: . Prof. dr. ir. Julien De Rouck Masterthesis to obtain the degree: Master of Science in Civil Engineering Laboratory of Ports and Coasts, Polytechnic University of Valencia Departement of Civil Engineering, Ghent University Academic year 2008-1009 i Preface I would like to thank my tutor of this project Prof. Medina for giving me the great opportu- nity to make my (cid:28)nal year project at the Laboratory for Ports and Coasts of the Polytechnic University of Valencia, and for his guidance throughout the project. Special thanks also to Prof. De Rouck as my Erasmus-coordinator and co-tutor of this thesis for providing the possibility of this abroad experience. Deep gratitude goes to Guille, for his guidance throughout the project, for sharing his ex- perience, for helping me with every single doubt, for encouraging me and helping me out in the stressful moments. A warm thanks as well to Jorge, Vicente, Kike, Mireille, Steven, CØsar and Pepe, for providing a very nice working space in the laboratory. Finally I want to thank my parents, my sisters, friends, and (cid:29)at mates in particular, for their support and many hours of listening during this thesis. COPYRIGHTS The author grants the permission for making this thesis available for consultation and for copying parts of this thesis for personal use. Any other use is subject to the limitations of the copyright, speci(cid:28)cally with regards to the obligation of referencing explicitly to this thesis when quoting obtained results. 1st of June 2009, Lien Vanhoutte ii Overview Hydraulic stability of Cubipod armour units in breaking conditions Author: Lien Vanhoutte Master thesis to obtain the degree of Master of Civil Engineering Academic year 2008-2009 Tutors: Prof. Josep R. Medina, Laboratory of Ports and Coasts, Polytechnic University of Valencia Prof. Julien De Rouck, Department of Civil Engineering, Ghent University Summary In this report, the study of the new armour unit, Cubipod, designed by the Laboratory of Ports and Coastas of the Politecnic University of Valencia, is described. The general stability of mound breakwaters are discussed and an overview of di(cid:27)erent existing armour elements is given. Further, the wave height distribution in shallow water is analysed theoretically and compared with the obtained results. An experimental study of the Cubipod armour unit is carried out on a physical scaled mound breakwater model in breaking conditions. Results on re(cid:29)ection and damage progression are presented and compared with previous similar tests in deepwater conditions. A (cid:28)rst estimation of the hydraulic stability coe(cid:30)cient of the Cubipod in breaking conditions is proposed. The results show that the Cubipod has low re(cid:29)ection and high hydraulic stability. Keywords: Cubipod - armour unit - mound breakwater - hydraulic stability - breaking conditions H C YDRAULIC STABILITY OF UBIPOD ARMOUR UNITS IN BREAKING CONDITIONS L.Vanhoutte1 Supervisor(s): J.R.Medina2,J.DeRouck3 1Masterthesisstudent,FacultyofEngineering,GhentUniversity,Belgium 2Professor,Lab.ofPortsandCoasts,PolytechnicUniversityofValencia,Spain 3Professor,FacultyofEngineering,GhentUniversity,Belgium Abstract—InthisMasterthesisanexperimentalstudyoftheCubipodar- TheCubipodarmourunitisdesignedtobenefitfromthead- mourunitwascarriedoutonaphysicalmodelbreakwaterinshallowwater. vantages of the traditional cube, but to correct the drawbacks. TheCubipodisanewarmourunit,designedbytheLaboratoryofPortsand Therefore,thedesignoftheunitisbasedonthecubeinorderto CoastsoftheUniversidadPolitcnicadeValencia. Asthewaveheightisan obtainhisrobustness. TheprotuberancesoftheCubipodavoid importantvaluewhendesigningmoundbreakwaters,theoriesestimating themaximumwaveheightinbreakingconditionswerestudiedandcom- face-to-face settlement and increase the friction with the filter paredwiththemeasuredresultsintheLaboratory. Resultsonreflection layer as can be seen in figure 1. They avoid sliding of the ar- anddamageprogressionwerepresentedandcomparedwithprevioussim- mourelementsandthus,HeterogeneousPackingandlossofel- ilartestsindeepwaterconditions. Anestimationofthehydraulicstability KD coefficientoftheCubipodinbreakingconditionswasproposedusing ementsabovethestillwaterlevelisreduced. Allthisindicatesa theVirtualNetMethod[2]. TheresultsshowthattheCubipodhaslowre- higherhydraulicstabilityofCubipodsincomparisonwithcube flectionandahighhydraulicstability. elements,whichwasprovedinearlierexecutedtests[3]. Keywords—Cubipod-armourunit-moundbreakwater-hydraulicsta- bility-breakingconditions I. INTRODUCTION Mound breakwaters play an important role in the protection of harbours. They have many failure modes, but the most im- portantoneisthelossofhydraulicstabilityofthearmourlayer under wave attack. This can be caused by direct extraction of armourunits,orbyexcessivesettlementcausingHeterogeneous PackingofthearmourlayerasdescribedbyGomez-Marton& Medina[2]. Generally, mound breakwaters are placed in shallow water Fig.1. Thenewarmourunit:theCubipod and thus subjected to breaking conditions. An important fac- tor influencing the hydraulic stability is the maximum incident III. EXPERIMENTS wave height. Hydraulic stability of armour layers has been in- tensively studied in literature and several formulae have been Regular experiments on five different physical model break- proposedforpredictingarmourdamage. Thefirstmodelswere waterswerecarriedoutinthe2Dwaveflumeofthelaboratory onlyvalidforstationaryconditions. In1988,VanderMeer[8] ofPortsandCoastsinthePolytechnicUniversityofValencia.A proposed a first formula for irregular waves. Medina [7] pro- sectionwithadoublelayerofCubipods,onewithasinglelayer posed a method applicable to nonstationary conditions, based ofCubipods,eachwithandwithouttoebermwereconsidered. onanexponentialmodelforindividualwavesofthestorm. The Finally,experimentswerecarriedoutonasectionconsistingof mostfrequentlycitedarmourstabilityformulawaspublishedby acubelayercoveredbyaCubipodlayer. Hudsonin1959[4]forregularwaves,andlaterpopularizedfor The unit weight of the Cubipods is 128g, and they have a irregularwavesbySPMusingtheequivalencesH1/3 andH1/10 densityof2300kg/m3. Thewaterdepthchangesfrom30cmto asrepresentativeofthewaveheight. 42 cm near the model. For every water depth different periods wereconsidered,lancingwaveswithincreasingwaveheightfor II. ARMOURUNITS everyperiod. Thewaveheightwasincreaseduntilbreakingoc- Originally, harbours were built with wooden or stone con- cured. Registered wave heights were separated in incident and structions. The continuous growing of the harbours meant a reflectedwaveswiththeLASAV-method(Figueres&Medina need for higher stones and design of artificial concrete armour [1]), and the reflection coefficient was obtained as CR [%] = units was forced. Many different breakwater armour units ex- H /H . Damage progression was analysed visually, establish- r i ist, each with their own advantages and disadvantages. Their ing the damage levels Initiation of Damage, Iribarren Damage characteristicshaveanimportantinfluenceonthehydraulicsta- andDestruction,aswellasquantitatively,usingtheVirtualNet bilityofthemoundbreakwaterandexplainswhyimprovement MethodproposedbyGmez-Martn&Medina[2],whichallows anddevelopmentofarmourunitsisstillanimportantsubjectof tomeasurealsothefailuremodeofHeterogeneousPacking,and research. notonlyextractionofarmourunits. IV. RESULTS for a double layer of Cubipods with toe berm and KD=23 for a single layer were found. K =18 was found for a combined A. Breakingwaveheight D armour layer with cubes and Cubipods. Comparison between The incident wave height is an important factor influencing thedamageprogressionindeepwaterconditionsandinshallow thedesignofcoastalstructures. Anoverlyconservativeestima- watershowsusthatK inshallowwaterislessthanindeepwa- D tion of this value can greatly increase costs and make projects terconditions. Waveswithhigherenergyreachthebreakwater, uneconomical, whereas underestimation could result in struc- whichmeansthatthedamage willinitiateearlierthanindeep- turalfailureorsignificantmaintenancecosts.Ashortstudycon- waterconditions. InFig. 3,thedamageprogressionforthedif- cerning the maximum wave height in breaking conditions was ferent breakwater sections are shown, with D the linearized 0,2 executed. dimensionless damage proposed by Medina [6] and indication Different theories exist to estimate this maximum value. oftheInitiationofdamageandInitiationofIribarrendamage. Many theories however, overestimate this value. Further, they suppose mostly that the energy from the broken waves is con- centratedinthebreakingwaveheight,whichmeansthatallthe brokenwaveshavethebreakingwaveheightinthesurfingzone. Thisstatementhoweverdidn’tcorrespondwiththereality. The energy from the broken waves was distributed back over the smallerwaveheightsinthedistribution. InFig. 2isthetheory ofLeRoux(2007)[6]showntoestimatetherealwaveheights. The estimation is similar to the measured values, however, he underestimates the breaking wave height and supposes a con- stant wave height after breaking, independent of the wave pe- riod. Fig.3. Lineariseddimensionlessequivalentdamageasafunctionofdimension- lesswaveheightforthedifferentstudiedbreakwatersections V. CONCLUSION Calculatingamoundbreakwaterinbreakingconditions,spe- cial attention has to paid to the maximum wave height. Many existing theories overestimate this wave height, which can re- sult in uneconomical results. According to the executed tests, theCubipodprovestohaveahighhydraulicstabilityinbreak- ing conditions and shows to be a very promising armour unit, withasimpleandrobustshape,aneasyplacementpatternanda highhydraulicstabilitycomparedwithotherarmourunits,also inbreakingconditions. VI. BIBLIOGRAPHY (1)Figueres,M.&Medina,J.R.:Estimationofincidentandreflectedwaves Fig.2. GraphicshowingthetheoryofLeRoux(2007)[5]toestimatethewave usingafullynonlinearwavemodel. Proc. ofthe29thCoast. Eng. Conf.,pp. height,comparedwiththemeasuredresultsintheLaboratory 594-603,2004. (2)Gomez-Martin,M.E.&Medina,J.R.:Analisisdeaverasdediquesentalud B. Hydraulicstability conmantoprincipalformadoporbloquesdehormigon.VIIIJorn.Espaolasde Ing.deCostasyPuertos,2005. The reflection coefficient differs between 10% and 30% for (3)Gomez-Martin, M.E.&Medina, J.R.: Cubipodconcretearmourunitand HeterogeneousPacking.ProcofCoast.Structures,ASCE,2007. kh>1,5andincreasesuntil50%forsmallkhvalues. Forhigh (4)Hudson:Laboratoryinvestigationofrubblemoundbreakwaters. J.Wtrwy., kh values, the type of armour layer has a big influence on the Port,Coast.andOc.Division,85(3):93-121,1959. reflectioncoefficientandasinglelayerreflectslessenergythan (5)LeRoux,L.: Asimplemethodtodeterminebreakerheightanddepthfor a double layer. For small values of kh, however this influence differentdeepwaterheight/lengthratiosandseafloorslopes. CoastalEngr. 54, 271-277,2007. decreases and becomes nil. Reflections coefficients in shallow (6)Medina,J.R.,Hudspeth,R.T.andFassardi,C.: Breakwaterarmordamage water is lower than in deepwater conditions because the crest duetowavegroups.J.Wtrwy.,Port,Coast.andOc.Engrg.,ASCE,120(2),pp. breaksandalotofenergyisdissipatedwhichmeanslessreflec- 179-198,1994. (7)Medina,J.R.:Waveclimatesimulationandbreakwaterstability.Proc.ofthe tion. 25thCoast.Eng.Conf.,ASCE,pp.1789-1802,1996. Damage analysis resulted in a higher hydraulic stability for (8) Van der Meer, J.W.: Suitable wave-height parameter for characterizing sectionswithtoeberm,becausethereisnoincreaseofporosity breakwaterstability.J.ofWaterw.,Port,Coast.andOc.Eng.,ASCE,114(1):66- 80,1988. at the bottom of the breakwater. Those are the common built breakwatersections. HydraulicstabilitycoefficientsofK =28 D Contents Extended abstract ii List of Figures ix List of Tables xiii 1 Introduction 1 2 Stability of Mound Breakwaters 4 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 A Short History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Analysis of the stability of a mound breakwater . . . . . . . . . . . . . . . . . . 9 2.3.1 General stability of a mound breakwater . . . . . . . . . . . . . . . . . . 9 2.3.2 Heterogeneous packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3.2.2 Heterogeneous packing. . . . . . . . . . . . . . . . . . . . . . . 12 2.3.3 Damage criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4 Quantization of the stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4.1 Formula to calculate the stability of a mound breakwater . . . . . . . . 16 v Contents vi 3 Armour Units 18 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2 History: the armour units since the 50’s . . . . . . . . . . . . . . . . . . . . . . 19 3.3 Classi(cid:28)cation of armour units . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4 A new armour unit: The Cubipod . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.4.2 Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.4.3 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4 Wave height in breaking conditions 33 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2 The surf zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.3 Types of breaking waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.4 Models to estimate the wave height distribution . . . . . . . . . . . . . . . . . . 36 4.5 Maximum wave height in breaking conditions . . . . . . . . . . . . . . . . . . . 38 5 Experimental setup 43 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.2 The Test Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.2.1 2D Wave Flume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.2.2 Wave Generation System . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.2.3 Wave Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.2.4 Energy dissipation system . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.2.5 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.3 Calibration of the wave (cid:29)ume . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.4 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Contents vii 5.4.1 Physical characteristics of the studied model . . . . . . . . . . . . . . . . 50 5.4.2 Construction of the physical model . . . . . . . . . . . . . . . . . . . . . 54 5.4.2.1 Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.4.2.2 Control of the material characteristics . . . . . . . . . . . . . . 56 5.4.2.3 Construction of the model . . . . . . . . . . . . . . . . . . . . . 59 5.4.2.4 Reconstruction of the model . . . . . . . . . . . . . . . . . . . 61 5.4.2.5 Placement of the sensors . . . . . . . . . . . . . . . . . . . . . 63 5.4.3 Experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.4.3.1 Realized experiments . . . . . . . . . . . . . . . . . . . . . . . 64 5.4.3.2 Experimental procedure . . . . . . . . . . . . . . . . . . . . . . 65 5.4.4 Procedure to analyse the data . . . . . . . . . . . . . . . . . . . . . . . . 66 5.4.4.1 Separating the incident and re(cid:29)ected waves: LASA V . . . . . 66 5.4.4.2 Analysis of the waves: LPCLAB 1.0. . . . . . . . . . . . . . . . 67 5.4.4.3 Analysis of the re(cid:29)ection coe(cid:30)cient . . . . . . . . . . . . . . . 69 5.4.4.4 Analysis of the damage progression. . . . . . . . . . . . . . . . 70 6 Results 77 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6.2 Calibration of the wave (cid:29)ume . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.3 Interpretation of the theories calculating the maximum wave height . . . . . . . 80 6.4 Hydraulic stability of the mound breakwater . . . . . . . . . . . . . . . . . . . . 85 6.4.1 Wave re(cid:29)ection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.4.1.1 The re(cid:29)ection coe(cid:30)cient in function of kh . . . . . . . . . . . . 85 6.4.1.2 The re(cid:29)ection coe(cid:30)cient in function of Ir . . . . . . . . . . . . 87 6.4.1.3 Comparing with the re(cid:29)ection coe(cid:30)cient in deepwater . . . . . 88 Contents viii 6.4.2 Damage analysis on the armour layer . . . . . . . . . . . . . . . . . . . . 93 6.4.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.4.2.2 Qualitative analysis . . . . . . . . . . . . . . . . . . . . . . . . 93 6.4.2.3 Quantitative analysis . . . . . . . . . . . . . . . . . . . . . . . 96 7 Conclusions 102 A Terminology of the experiments 104 B Wave (cid:29)ume 106 C Working of the AWACS 108 D Seperation of incident and re(cid:29)ected waves 113 E Calculation of the initial porosity 115 F Example of a test report 116 G Test results 119 Bibliography 130 List of Figures 2.1 Mound Breakwater failure modes de(cid:28)ned by Bruun . . . . . . . . . . . . . . . . 10 2.2 The two most important failure modes by mound breakwaters: extraction of armour elements and heterogeneous packing. The classical view vs. the hetero- geneous packing view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1 Face to face (cid:28)tting by cubes reducing the friction with the (cid:28)lter layer . . . . . . 19 3.2 A selection of the existing concrete armour units . . . . . . . . . . . . . . . . . 23 3.3 A new armour element: the Cubipod . . . . . . . . . . . . . . . . . . . . . . . . 28 3.4 Drop test results of Cubipods compared with cubes showing the lost weight . . 30 3.5 Penetration of the Cubipods in the armour layer . . . . . . . . . . . . . . . . . 30 3.6 The separating e(cid:27)ect of the protuberances avoiding the face-to-face arrangement 31 3.7 Example of placement in a depository of Cubipods . . . . . . . . . . . . . . . . 32 3.8 The casting system designed by SATO and the tongs for movement and man- ufacture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.1 Types of breaking waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.2 Distribution of the wave heights by breaking, concerning that all the broken wave heights will have the breaking wave height in the sur(cid:28)ng zone . . . . . . . 37 4.3 Distribution of the breaking wave heights over the distribution of the unbroken waves (Goda [46]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.