HybridOrganic-InorganicPerovskites Hybrid Organic-Inorganic Perovskites WeiLi AlessandroStroppa Zhe-MingWang SongGao Authors AllbookspublishedbyWiley-VCH arecarefullyproduced.Nevertheless, Prof.WeiLi authors,editors,andpublisherdonot NankaiUniversity warranttheinformationcontainedin SchoolofMaterialsScienceand thesebooks,includingthisbook,to Engineering befreeoferrors.Readersareadvised 38TongyanRoad tokeepinmindthatstatements,data, 300350Tianjin illustrations,proceduraldetailsorother China itemsmayinadvertentlybeinaccurate. Dr.AlessandroStroppa LibraryofCongressCardNo.: CNR-SPIN appliedfor UniversityofL'Aquila c/oDepartmentofPhysicaland BritishLibraryCataloguing-in-Publication ChemicalScience Data ViaVetoio Acataloguerecordforthisbookis 67100Coppito(AQ) availablefromtheBritishLibrary. Italy Bibliographicinformationpublishedby Prof.Zhe-MingWang theDeutscheNationalbibliothek PekingUniversity TheDeutscheNationalbibliotheklists CollegeofChemistryandMolecular thispublicationintheDeutsche Engineering Nationalbibliografie;detailed ChengfuRoad292 bibliographicdataareavailableonthe 100871Beijing Internetat<http://dnb.d-nb.de>. China ©2020Wiley-VCHVerlagGmbH& Prof.SongGao Co.KGaA,Boschstr.12,69469 PekingUniversity Weinheim,Germany CollegeofChemistryandMolecular Engineering Allrightsreserved(includingthoseof ChengFuRoad292 translationintootherlanguages).No 100871Beijing partofthisbookmaybereproducedin China anyform–byphotoprinting, microfilm,oranyothermeans–nor and transmittedortranslatedintoa SouthChinaUniversityofTechnology machinelanguagewithoutwritten SchoolofChemistryandChemical permissionfromthepublishers. Engineering Registerednames,trademarks,etc.used 381WushanRoad inthisbook,evenwhennotspecifically 510640Guangzhou markedassuch,arenottobe China consideredunprotectedbylaw. CoverImages: PrintISBN: 978-3-527-34431-4 HybridOrganic-Inorganic ePDFISBN: 978-3-527-34436-9 CourtesyofWeiLi,Abstractalter ePubISBN: 978-3-527-34434-5 hintergrund©Pexels/9151 oBookISBN: 978-3-527-34433-8 Bilder/Pixabay Typesetting SPiGlobal,Chennai,India PrintingandBinding Printedonacid-freepaper 10 9 8 7 6 5 4 3 2 1 v Contents Preface ix Acknowledgements xi 1 IntroductiontoHybridOrganic–InorganicPerovskites 1 1.1 PerovskiteOxides 1 1.2 EvolutionfromPerovskiteOxidestoHybridOrganic–Inorganic Perovskites 3 1.3 ClassificationandChemicalVariationsofHOIPs 4 1.4 Structure,Symmetry,andPropertyFeaturesofHOIPs 5 1.4.1 GeneralTrend 5 1.4.2 IonRadiusMatchabilityandToleranceFactor 7 1.4.3 PhaseTransitions 10 References 12 2 HybridHalidePerovskites 15 2.1 SynthesisandChemicalDiversity 15 2.2 SymmetriesandStructures 19 2.3 PhaseTransitions 24 2.4 PhysicalProperties 29 2.4.1 SemiconductivityandBandgapStructures 29 2.4.2 TransportPropertiesandPhotovoltaics 32 2.4.3 LaserPhysics 49 2.4.4 Light-EmittingDiodes 54 2.4.5 Photodetectors 59 2.4.6 FerroelectricityandRashbaEffect 63 2.4.7 MechanicalProperties 66 2.4.8 ThermalConductivity 70 2.4.9 CaloricEffects 71 2.4.10 OtherPropertiesandApplications 73 References 73 3 HybridFormatePerovskites 79 3.1 SynthesisandChemicalDiversity 79 3.2 SymmetriesandStructures 82 vi Contents 3.3 PhaseTransitionsandOrder–Disorder 91 3.4 PhysicalProperties 94 3.4.1 Magnetism 94 3.4.1.1 Spin-CantingandJTEffect 94 3.4.1.2 Spin-Flop 98 3.4.1.3 QuantumTunnelling 101 3.4.2 Dielectricity 102 3.4.3 Ferroelectricity 105 3.4.4 Ferroelasticity 114 3.4.5 Multiferroicity 118 3.4.6 MechanicalProperties 125 3.4.7 ThermalExpansion 134 3.4.8 CaloricEffects 139 References 145 4 HybridAzidePerovskites 151 4.1 SynthesisandStructures 151 4.2 PhaseTransitions 156 4.3 PhysicalProperties 164 4.3.1 Magnetism 164 4.3.2 Dielectricity 167 4.3.3 Anti-ferroelectricityandFerroelasticity 174 4.3.4 ThermalExpansion 176 4.3.5 MechanicalProperties 177 References 178 5 HybridDicyanamidePerovskites 181 5.1 SynthesisandStructures 181 5.2 PhaseTransitions 185 5.3 PhysicalProperties 188 5.3.1 Dielectricity 188 5.3.2 OpticalPropertiesandSecondHarmonicGeneration(SHG) Effects 190 5.3.3 Magnetism 191 5.3.4 MechanicalPropertiesandThermalExpansion 193 5.3.5 CaloricEffects 195 References 197 6 HybridCyanidePerovskites 199 6.1 SynthesisandStructures 199 6.2 PhaseTransitions(PT) 204 6.3 PhysicalProperties 211 6.3.1 SecondHarmonicGeneration(SHG) 211 6.3.2 Dielectricity 211 6.3.3 Ferroelectricity 215 References 217 Contents vii 7 HybridDicyanometallateandBorohydridePerovskites 219 7.1 HybridDicyanometallatePerovskites 219 7.1.1 Synthesis,Structures,andPhaseTransitions 219 7.1.2 PhysicalProperties 222 7.2 HybridBorohydridePerovskites 223 References 223 8 HybridHypophosphitePerovskites 225 8.1 Synthesis 225 8.2 SymmetriesandStructures 227 8.3 PhaseTransitions 229 8.4 PhysicalProperties 231 8.4.1 MechanicalProperties 231 8.4.2 Magnetism 231 References 233 9 OtherPerovskite-LikeHybridMaterialsandMetal-Free Perovskites 235 9.1 HybridOrganic–InorganicPerchlorates 235 9.1.1 Synthesis,Structures,andPhaseTransitions 235 9.1.2 PhysicalProperties 239 9.1.2.1 MechanicalProperties 240 9.1.2.2 DielectricProperties 243 9.1.2.3 HighEnergeticProperties 244 9.2 HybridOrganic–InorganicTetrafluoroborates 246 9.2.1 Synthesis,Structures,andPhaseTransitions 246 9.2.2 PhysicalProperties 248 9.3 Metal-FreePerovskites 249 9.3.1 Synthesis,Structures,andElectronicProperties 249 9.3.2 PhaseTransitions 255 9.3.3 PhysicalProperties 255 9.3.3.1 Photoluminescence 255 9.3.3.2 FerroelectricityandDielectricity 256 9.3.3.3 MechanicalProperties 260 References 265 10 ConcludingRemarksandFuturePerspectives 267 Index 271 ix Preface Hybridorganic–inorganicperovskiteshaveattractedsubstantialinterestduring the past decade because of their chemical variability, structural diversity, and remarkable physical properties. However, to date, there has been no book that covers the synthesis, structures, and functionalities of these fascinating materials. This important book, by Wei Li, Alessandro Stroppa, Zhe-Ming Wang,andSongGao,whoareinternationalleadersinthefield,fillsthisgapby summarizing the recent advances in all the known 3D hybrid perovskite sub- classes,whichincludehalides,azides,formates,hypophosphites,dicyanamides, cyanides,dicyanometallates,andevensomemetal-freesystems.Italsopresents a comprehensive account of their intriguing physical properties, including photovoltaicandoptoelectronicproperties,magnetism,dielectricity,ferroelec- tricity,ferroelasticity,andmultiferroicity.Suchatimelybookwillgivereadersa comprehensivesummaryofthecurrentlyknown3Dhybridperovskitesandalso illustratethemanyopportunitiesthatliebeyondthepopularhalidematerials. SantaBarbara,May2020 AnthonyK.Cheetham,KBEFRS xi Acknowledgements ThisbookwassupportedbytheNationalNaturalScienceFoundationofChina (grantnos21571072,21671008,21975132,and21991143)andtheFundamental ResearchFundsfortheCentralUniversities(no.63196006).Theauthorsarealso grateful to Nankai University, CNR-SPIN, Peking University, and South China UniversityofTechnologyfortheirfinancialsupport. 1 1 IntroductiontoHybridOrganic–InorganicPerovskites 1.1 PerovskiteOxides Perovskiteisacalciumtitaniumoxidemineral,whichhasthechemicalformula of CaTiO . It was discovered in 1839 by the Prussian mineralogist Gustav 3 Rose in a piece of skarn collected from the Ural Mountains and named in honour of the Russian Count, Lev A. Perovskiy [1]. Nowadays, perovskites broadly denote any materials that have the same type of structure as CaTiO , 3 and their general chemical formula can be expressed as ABX [2]. The A and 3 B represent two metal ions that have different ionic radii, and the X denotes an anion that is six-coordinated to the B-site. Adjacent BX octahedra are 6 three dimensionally linked via sharing their corners to generate a framework structure in which the A-site counterbalancing cations are located in the frameworkcavities(Figure1.1).Theperovskitestructurecanalsobeconsidered as a cubic close-packed system in which the A- and X-sites are stacked in a cubic-close-packedmanneralongthebody-diagonaldirection. Perovskiteoxideshavediversecompositions,whichcanaccommodateagreat dealofelementsintheperiodictable,andthecorrespondingchemicalvariations enable many physical properties that have important industrial applications [3].Perovskitematerialswereonlylimitedtoapplicationsaspigmentsinitially; however,thesurgeofmilitaryneedforferroelectricmaterialsduringthe1940s ledtotheinventionofBaTiO andthestartoftheelectroniceraofperovskites 3 [4].ThecrystalstructureofBaTiO wassolvedbyHelenD.Megawin1945,and 3 thisseminalworkinitiatedthefundamentalunderstandingofstructuralevolu- tion and associated properties of synthetic perovskite oxides [5]. As illustrated inFigure1.2a,theB-siteTi4+ displacesfromthecentreofTiO intheambient 6 trigonalphase ofBaTiO (R3m),which inducestheoccurrence ofspontaneous 3 polarization and therefore ferroelectric ordering. BaTiO is one of the most 3 commonlyusedferroelectricceramicsinavarietyofindustrialfieldsnowadays. Researchin1950sledtotheinventionofanotherimportantperovskiteceramic, leadzirconatetitanate(PbZr Ti O ,PZT,0<x<1),whichisasolidsolutionof x 1−x 3 PbZrO andPbTiO (Figure1.2b)[6].PZTshowsastrikingpiezoelectriceffect 3 3 in addition to its intrinsic ferroelectricity and has been being widely utilized as transducers, capacitors, and actuators in industry. Lanthanum manganite (LaMnO , Figure 1.2c) is another very important perovskite oxide, which 3 HybridOrganic-InorganicPerovskites,FirstEdition. WeiLi,AlessandroStroppa,Zhe-MingWang,andSongGao. ©2020Wiley-VCHVerlagGmbH&Co.KGaA.Published2020byWiley-VCHVerlagGmbH&Co.KGaA.