ebook img

Hybrid Micro-Machining Processes PDF

76 Pages·2019·1.626 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Hybrid Micro-Machining Processes

SPRINGER BRIEFS IN APPLIED SCIENCES AND TECHNOLOGY Sumit Bhowmik Divya Zindani Hybrid Micro- Machining Processes 123 SpringerBriefs in Applied Sciences and Technology SpringerBriefs present concise summaries of cutting-edge research and practical applications across a wide spectrum offields. Featuring compact volumes of 50 to 125 pages, the series covers a range of content from professional to academic. Typical publications can be: (cid:129) A timely report of state-of-the art methods (cid:129) Anintroductiontooramanualfortheapplicationofmathematicalorcomputer techniques (cid:129) A bridge between new research results, as published in journal articles (cid:129) A snapshot of a hot or emerging topic (cid:129) An in-depth case study (cid:129) Apresentation ofcore conceptsthatstudents mustunderstand inordertomake independent contributions SpringerBriefs are characterized by fast, global electronic dissemination, standard publishing contracts, standardized manuscript preparation and formatting guidelines, and expedited production schedules. On the one hand, SpringerBriefs in Applied Sciences and Technology are devoted to the publication of fundamentals and applications within the different classical engineering disciplines as well as in interdisciplinary fields that recently emerged between these areas. On the other hand, as the boundary separating fundamental research and applied technology is more and more dissolving, this series isparticularlyopentotrans-disciplinary topics between fundamentalscience and engineering. Indexed by EI-Compendex, SCOPUS and Springerlink. More information about this series at http://www.springer.com/series/8884 Sumit Bhowmik Divya Zindani (cid:129) Hybrid Micro-Machining Processes 123 Sumit Bhowmik DivyaZindani Department ofMechanical Engineering Department ofMechanical Engineering National Institute ofTechnology Silchar National Institute ofTechnology Silchar Silchar, Assam, India Silchar, Assam, India ISSN 2191-530X ISSN 2191-5318 (electronic) SpringerBriefs inApplied SciencesandTechnology ISBN978-3-030-13038-1 ISBN978-3-030-13039-8 (eBook) https://doi.org/10.1007/978-3-030-13039-8 LibraryofCongressControlNumber:2019931521 ©TheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerlandAG2019 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseof illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Contents 1 Overview of Hybrid Micro-manufacturing Processes . . . . . . . . . . . . 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Classification of Hybrid Micro-manufacturing Processes. . . . . . . . 2 1.2.1 Compound Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.2 Energy-Assisted Micromachining Processes. . . . . . . . . . . . 4 1.2.3 Combined Hybrid Micromachining Processes . . . . . . . . . . 8 1.3 Future Research Opportunities. . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 Laser-Assisted Micromachining . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Conceptual Framework to Laser Beam Micromachining (LBMM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Mechanism and Principle of Laser Ablation. . . . . . . . . . . . . . . . . 17 2.3.1 Laser Ablation Process Through Nanosecond Laser. . . . . . 17 2.3.2 Laser Ablation Process Through Picosecond Laser . . . . . . 18 2.3.3 Laser Ablation Process Through Femtosecond Laser . . . . . 18 2.4 Laser-Assisted Variant of Hybrid Micromachining Process . . . . . . 20 2.4.1 Laser Beam Assisted Water Jet Micromachining . . . . . . . . 20 2.4.2 Laser Beam Assisted Jet Electrochemical Micromachining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4.3 Laser Beam Assisted Micro-milling/Grinding Process . . . . 22 2.5 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3 Magnetic Field Assisted Micro-EDM . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2 Electrical Discharge Machining (EDM) and Micro-EDM Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 v vi Contents 3.3 Micro-EDM Process and Its Mechanics . . . . . . . . . . . . . . . . . . . . 29 3.3.1 Mechanism of Material Removal . . . . . . . . . . . . . . . . . . . 29 3.3.2 Process Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.4 Working Mechanism of Magnetic Field Assisted Micro-EDM Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.5 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4 Electrorheological Fluid-Assisted Micro-USM. . . . . . . . . . . . . . . . . . 39 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2 Overview of Micro-USM Process . . . . . . . . . . . . . . . . . . . . . . . . 40 4.3 Chippings and Their Generation . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.4 Electrorheological Fluid-Assisted Micro-USM . . . . . . . . . . . . . . . 42 4.5 Other Fluid-Assisted Micromachining Techniques . . . . . . . . . . . . 44 4.5.1 Chemical-Assisted Micromachining . . . . . . . . . . . . . . . . . 44 4.5.2 Gas-Assisted Variant of Hybrid Micromachining. . . . . . . . 45 4.5.3 Water-Assisted Micromachining . . . . . . . . . . . . . . . . . . . . 46 4.6 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5 Other Assisted Hybrid Micromachining Processes . . . . . . . . . . . . . . 49 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.2 Vibration-Assisted Micromachining. . . . . . . . . . . . . . . . . . . . . . . 50 5.2.1 Tool Vibration Assisted Variant of Hybrid Micromachining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.2.2 Workpiece Vibration Assisted Micromachining . . . . . . . . . 52 5.2.3 Work Fluid Vibration Assisted Micromachining . . . . . . . . 53 5.2.4 Objective Lens Vibration Assisted Micromachining. . . . . . 53 5.3 External Electric Field Assisted Variant of Hybrid Micromachining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.4 Carbon Nanofibre-Assisted Micromachining. . . . . . . . . . . . . . . . . 55 5.5 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6 Combined Variant of Hybrid Micromachining Processes . . . . . . . . . 61 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.2 Laser Micro-drilling and Jet Electrochemical Machining. . . . . . . . 62 6.3 Micro-electrochemical Machining Combined with Micro-mechanical Grinding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 6.4 Micro-electrochemical Discharge Machining . . . . . . . . . . . . . . . . 64 6.5 Simultaneous Micro-electrical Discharge Machining and Micro-electrochemical Machining . . . . . . . . . . . . . . . . . . . . . 65 Contents vii 6.6 Micro-electrical Discharge Machining Combined with Electrorheological Fluid-Assisted Polishing. . . . . . . . . . . . . . 65 6.7 Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6.8 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Chapter 1 Overview of Hybrid Micro-manufacturing Processes 1.1 Introduction There has been a burgeoning demand for micro-components/products in various industrieswithvarieddomainsofinterestsuchasoptical,aviation,electronics,avi- ation, and biomedical (Nguyen 2013). The major features characterizing a micro- componentormicro-productare:sizerangingfromfewmicrometersupto100µm, tolerancesbetterthan1µm,complicated3Dstructure,excellentsurfacefinishwith surfaceroughnesslesserthanhalfµmandfabricatedusingmultiplematerialssuch as titanium alloys, ceramics, hard steels, etc. (Chang 2012). A number of fabrica- tion techniques have been proposed to meet the aforementioned requirements and massfabricatethemicro-components ormicro-products.Theproposedtechniques arebasedontransfer,printing,assembly,etching,andlithography(Rai-Choudhury 1997;Madou2009).Thevariousfabricationtechniqueshavethepotentialitytofabri- catemicro-sizedcomponentsusinginorganicaswellasorganicmaterialsandlending themthedesiredcomplex3Dshapes.Themicromachiningtechniquesofferapromis- ingapproachforbridgingthegapbetweenmacroandmicro/nanodomains(Cardoso andDavim2012;Piljeketal.2014;Leondes2007). Theuseofsinglemachiningprocesstomanufacturethemicro-componentshas anumberoflimitationssuchaspotentialitytoproducethedesiredcomplexshapes with the desired accuracy, capability to mass produce such components, and pre- dictability(Luoetal.2005).Tominimizethelimitationsassociatedwiththestand- alonesystems,machineswithmultifunctionalcapabilitieshavebeendevelopedthat havethepotentialitytoimplementseveralmachiningmechanismsononemachine. Themultifunctionalmachining mechanismaidsinrapidandeconomic fabrication of micro-components. Integration of conventional and nonconventional microma- chining process has been the focal point of the research community recently. The integrationisoftenreferredtoashybridmicromachiningprocesses(El-Hofy2005). Therecentapplicationsofhybridmicromachiningprocesseshavedemonstratedtheir capabilitytoeffectivelymachinehard-to-machinematerialswithhighergeometrical ©TheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerlandAG2019 1 S.BhowmikandD.Zindani,HybridMicro-MachiningProcesses, SpringerBriefsinAppliedSciencesandTechnology, https://doi.org/10.1007/978-3-030-13039-8_1 2 1 OverviewofHybridMicro-manufacturingProcesses accuracy and surface integrity. The tool life has also been revealed to increase in tandemwiththeefficiencyofthemachiningprocesses. However,therehasbeennoexactdefinitiontoproperlydescribeahybridmachin- ingprocess(Zhuetal.2013).Pastresearchershavegiventheirdefinitionsfromtime to time (Rajurkar et al. 1999; Aspinwall et al. 2001; Curtis et al. 2009; Lauwers 2011). As for instance, Aspinwall et al. (2001) have described hybrid machining processesasacombinationofmachiningprocessesthatareappliedindividuallyand independentlyonasinglemachine.Theyhavealsodescribedthehybridprocesses as assisted processes wherein two or more processes are applied simultaneously. InanotherdefinitionproposedbySheandHung(2008),themachinescarryingout differentoperationsatoneplaceareregardedashybridmachinesandtheprocesses carriedoutbythemarereferredtoashybridmachiningprocesses.Anarrowerdef- initionwasprovidedbyCurtisetal.(2009)whohavedescribedtheterm“hybrid” asamachiningmethodwheretwoormorematerialremovalprocessesworksimul- taneously. Following definition has been put forth by College International Pour la Recherche en productique (CIRP): the interaction of various machining mech- anisms/tools/energy sources simultaneously and in a controlled manner results in hybrid machining processes. The simultaneous and controlled interaction signifies thatthedifferentmechanismsofenergy/processesmustactinaparticularprocessing zoneandatthesametime.Thehybridizationthereforecanhavesignificanteffecton themachiningperformanceandtherelatedvariables. 1.2 ClassificationofHybridMicro-manufacturing Processes Thehybridmicromachiningprocessescanbeclassifiedonthebasisofthefollowing: (cid:129) TypeI:Combinationoftwoormoreprocesseswhereinthematerialremovaltakes placebecauseofthesimultaneousactionoftheprocessesinacontrolledmanner. Theresultingmaterialremovalisthenetobtainedfromtheindividualprocesses. (cid:129) Type II: Additional usage of energy sources aiding in the net material removal, resultinginanenhancedmachiningperformance. (cid:129) TypeIII:Usageoftoolsthatcansimultaneouslymachinetwoormoresurfaces. Electro-discharge micro-grinding (EDG) is one of the examples for the Type I category. In EDG process, material removal takes place as a combined effect of electro-dischargephaseandduetoabrasionresultingfromgrinding.Thecombina- tionresultsinimprovedflushingandhenceenhancedmaterialremovalrateincom- parisontotheelectro-dischargemachining.Laser-assistedmicro-millingmachining processfallsunderTypeIIcategorywhereinthematerialisheatedusinglaserenergy whichaidsinenhancingthematerialremovalrateofthemillingprocess.Theenergy- assistedhybridprocessescanbeusedforhard-to-machinematerials.Theprocesses fallingunderTypeIIIcategoryensurethatthesinglepassmachiningissufficientfor machiningtwoormoresurfacessimultaneously.Abriefdiscussionontheclassifi- cationschemeensuesnext.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.