Downloaded from orbit.dtu.dk on: Jan 28, 2023 Hybrid Maritime Satellite Communication Antenna Smith, Thomas Gunst Publication date: 2013 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Smith, T. G. (2013). Hybrid Maritime Satellite Communication Antenna. Technical University of Denmark. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Thomas Gunst Smith Hybrid Maritime Satellite Communication Antenna PhD thesis, May 2013 Hybrid Maritime Satellite Communication Antenna Ph.D. Thesis Thomas Smith May 2013 The present work was carried out at DTU Elektro and Cobham Satcom in partial fulfilment of the requirements for the Industrial Ph.D. degree from the Technical University of Denmark. Supervisors: Ulrich Gothelf, Ph.D. Niels Larsen, Ph.D. Cobham Satcom Olav Breinbjerg, Professor, Ph.D. Oleksiy S. Kim, Associate Professor, Ph.D. Electromagnetic Systems, DTU Elektro, Technical University of Denmark Abstract Hybrid antennas for a maritime satellite communication terminal with simul- taneous operation at L- and Ka-band have been investigated. The frequency bandsofinterestare1,525.0 1,660.5MHz(RX+TX,RHCP),19.7 20.2(RX, − − LHCP) and 29.5 30.0GHz (TX, RHCP), which are all part of the Inmarsat − BGAN and Inmarsat GX services, respectively. The results of this study are three antenna concepts, which demonstrates high performance at both L- and Ka-band. Acombinedsingle/dual-reflectorantennaisdesigned,whichpresentsafavourable way of combining feed antennas for the diverse frequencies1. This antenna en- ables the use of a conventional horn-fed dual-reflector for Ka-band, while a backfire helical antenna is used to form a single-reflector antenna at L-band. Simulations show excellent performance of the L-band backfire helical reflector antenna, due to the utilization of the entire antenna aperture. The Ka-band dual-reflector is inherently a high-gain and low-loss antenna, and investigations show negligible impact of the L-band backfire helical antenna. Therfore, this hybrid single/dual-reflector antenna presents a viable solution to the combined L- and Ka-band antenna. NovelhybridantennasthatuseFrequencySelectiveSurfaces(FSSs)areinves- tigated,suchthatanL-bandantennacanbelocatedbehindandradiatethrough the Ka-band antenna. A planar periodic FSS, that is reflecting at both 20 and 30GHzwhilebeingtransparentatL-band,isdesignedandanalyzednumerically. TheFSSisincorporatedinaparabolicFSSreflectorantennathatisinvestigated by full-wave analysis tools, and the antenna shows performance comparable to conventionalreflectorantennaswithinitsfrequencybandofoperation. Aplanar prototype FSS is manufactured and measured with particular attention to the impact on the performance of an L-band antenna radiating through the FSS. From these investigations, it is concluded that the FSS antenna concept is well suited for hybrid L- and Ka-band operation. 1Patentpending,PCT/EP2013/050259. i ii Abstract AprintedreflectarrayantennawithFSSground-planeisdemonstrated. The reflectarrayproducesacollimatedbeamasacurvedreflector,butitsplanarpro- fileenablesconventionalmanufacturingtechniquesusedforprintedcircuitboard fabrication. For this purpose, a new type of reflectarray element, the concentric dual split-loop element, is devised and investigated. This compact element fa- cilitates phase-adjustment at 20 and 30GHz simultaneously, which is exploited by a developed iterative design procedure. A numerical code is implemented tosynthesizeandanalyzereflectarrays, andtwoprototypereflectarrayantennas are fabricated - the first with a conventional solid ground-plane and the second with an FSS ground-plane. The radiation patterns of the prototype reflectarray antennasaremeasuredattheDTU-ESASphericalNear-FieldAntennaTestFa- cility,aswellastheL-bandtransparencyoftheFSS-backedreflectarrayantenna, andtheresultsdemonstratesthehighperformanceofthisnovelshared-aperture antenna. Resume´ Inærværendeafhandlingbeskrivesstudietafhybridantennertilenmaritimsatel- litkommunikationsterminalmedsamtidiganvendelseiL-ogKa-b˚and. Despeci- fikkefrekvensb˚ander1.525,0 1,660.5MHz(RX+TX,RHCP),19,7 20,2(RX, − − LHCP) og 29,5 30,0GHz (TX, RHCP), som alle er del af Inmarsat BGAN- − samt Inmarsat GX-systemet. Resultaterne af dette studie er tre antennekon- cepter, der viser høj ydelse ved b˚ade L- og Ka-b˚and. En kombineret enkelt/dobbelt-reflektorantenne udvikles, hvor der demon- streres en fordelagtig m˚ade at kombinere fødeantenner til adskilte frekvenser2. Denneantennemuliggørbrugafenkonventionelhorn-fødetdobbelt-reflektorantenne vedKa-b˚and,mensenbagudstr˚alendehelixantenneanvendesienenkelt-reflektorantenne vedL-b˚and. SimuleringerviserfortrineligydelsefordenL-b˚andsbagudstr˚alende helixantenne-fødteenkeltreflektor,daheleantenneaperturenudnyttes. Ka-b˚ands dobbelt-reflektorantennen er naturligt en høj-forstærkning og lav-tabs antenne, og undersøgelser viser begrænset indflydelse af den L-b˚ands bagudstr˚alende he- lixantenne. Derved udgør denne kombinerede enkelt/dobbelt-reflektorantenne et lovende løsningsforslag til en hybrid L- og Ka-b˚ands antenne. Nye hybrid-antenner der anvender frekvensselektive flader (FSSer) udvikles s˚aledes, at en L-b˚ands antenne kan placeres bagved og transmittere igennem en Ka-b˚ands antenne. En plan periodisk FSS, der virker reflekterende ved b˚ade 20 og 30GHz, mens den er gennemsigtig ved L-b˚and, designes og analyseres nu- merisk. FSSen anvendes i en paraboloide-formet FSS-reflektorantenne, der un- dersøges ved brug af integralligningsmetoder, og antennen fremviser ydelse, der ersammenligneligmedkonventionellereflektorantenner. EnplanFSS-prototype fremstillesogm˚alesmedsærligthenblikp˚ap˚avirkningenafenL-b˚andsantenne, der str˚aler gennem FSSen. Af disse undersøgelser konkluderes det, at FSS- antennekonceptet er velegnet til en hybrid L- og Ka-b˚ands antenne. En trykt reflectarray-antenne med FSS-jordplan demonstreres. Reflectar- rayet frembringer en kollimeret str˚ale som en krum reflektor, men dets plane 2Afventerpatent,PCT/EP2013/0502259. iii iv Resum´e profil tillader almindelige produktionsmetoder der anvendes til fremstilling af printplader. Til dette form˚al udvikles og undersøges en ny type reflectarray- element; det koncentriske dobbelt split-ring element. Dette kompakte element muliggør samtidig fase-justering ved 20 og 30GHz, hvilket udnyttes i en it- erativ designproces. En numerisk kode implementeres til at syntetisere samt analysere reflectarrays, og to prototyper af disse reflectarray-antenner frem- stilles - den første med almindeligt jordplan og den andet med et FSS jord- plan. Udstr˚alingsdiagrammer af de to prototype reflectarray-antenner m˚ales i det radiodøde rum ved DTU-ESA Spherical Near-Field Antenna Test Facility, ogligeledesm˚alesL-b˚andsgennemsigtighedenafreflectarray-antennenmedFSS jordplan. Resultaterne fremviser høj ydelse af denne nytænkte aperturdelte an- tenne. Preface The work presented in this thesis was carried out at Cobham Satcom3 and the Electromagnetic Systems Group, Technical University of Denmark (DTU), and was conducted from April 2010 to March 2013. The study was financed by Cobham Satcom with support from the Industrial PhD Programme of the Danish Ministry of Science, Innovation and Higher Education, while prototypes and measurements were provided by DTU. During the study, I have received guidance and support from a number of people to whom I would like to extend my gratitude. Firstly, I thank my super- visors Ulrich Gothelf and Niels Larsen (Cobham Satcom), and Olav Breinbjerg andOleksiy S.Kim(DTU). Theircontinuing inspirationandguidance has been invaluable to the outcome of this study. Min Zhou is thanked for the countless hours of conversation, for proofreading this thesis, and for sharing his expertise within reflectarrays. Martin Nielsen, Jan Mortensen and Frank Persson are all acknowledged for their assitance in practical challenges, and for providing high- precision mounts and support structures for the prototype antennas. Sergey Pivnenkoisalsothankedforsharinghisexpertizewithinantennameasurements, and for conducting these with state-of-the-art accuracy. At Cobham Satcom I have had numerous technical discussions with colleagues in the Antenna R&D division for which I am grateful, and I would particularly like to thank Morten HagensenandJohanGranholmfortheirdirectandindirectcontributionstothis project. Finally, I extend my humble gratitude to my friends and family, for their constant love and support throughout my studies. Thomas Smith, May 2013 3FormerlyThrane&ThraneA/S. v
Description: