ebook img

Hybrid design combining position and rate control allows intuitive workspace extension for ... PDF

67 Pages·2015·10.99 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Hybrid design combining position and rate control allows intuitive workspace extension for ...

Hybrid design combining position and rate control allows intuitive workspace extension for teleoperation Maria J. Voskuil t f el D t ei t si r e v ni U e h c s ni h c e T H YBRID DESIGN COMBINING POSITION AND RATE CONTROL ALLOWS INTUITIVE WORKSPACE EXTENSION FOR TELEOPERATION by MariaJ.Voskuil inpartialfulfillmentoftherequirementsforthedegreeof MasterofScience inAppliedPhysics attheDelftUniversityofTechnology, tobedefendedpubliclyonWednesdayJune3,2015at10:00AM. Supervisor: Dr.ir.D.A.Abbink Thesiscommittee: Ir.R.J.Kuiper, TUDelft Ir.J.G.W. Wildenbeest, TUDelft Dr.Ir.R.vanPaassen TUDelft Anelectronicversionofthisthesisisavailableathttp://repository.tudelft.nl/. P REFACE ThismasterthesisisthefinalresearchformymasterinMechanicalEngineeringandisdevelopedincooper- ationwithandundersupervissionofthetheHapticsLabfromtheTUDelft. Inmybachelor,Ilearntalotof theorythatshouldeducatemetoaengineer.Therefore,mymasterthesiswasverychallengingforme:using mytheoreticalknowlegdetobuilda“real”measurementset-upandalsomakethisrobustforthedifferent tacticshumansuse. Stepbystep, Igotmorefamiliarwiththematerialandtheexperimentalset-upandI alongtheprocesIgotmoreandmoreenthousiasticformyresearch. Therefore,Iamproudtopresentmy results. Thegoalofmyresearchwastodetermineifahybriddesign,combiningbothpositionandratecontrol withinonedesign,improvesperformanceforataskcombininglargeaccuratefree-spacemotionandaforce taskwithrespecttoindexingorratecontrol. Thefocusofthisresearchwasimplementingthehybriddesign anddevelopingawithinsubjecthuman-in-the-loophapticteleoperationexperiment. Thepaperprovidesa conciseinformationaboutthegoal,thehybriddesign,theexperimentalset-upandtheresultsandispre- sentedaccordingtotheIEEEWorldHapticsConference2015lay-outbecausethispaperwillbesubmitted aftermygraduation. Theappendicesincludemoredetaileddescriptionofthesectionsinthepaper. Thisis meantforresearcherswhowanttoobtainmoreinsightinmyresearchandresults,orwanttoreproduceor continuewithmyresearch. WorkpresentedinthismasterthesiswasmadepossiblebytheHapticsLabfromtheTUDelft. Iwould like to thank my supervisors: David Abbink, Roel Kuiper en Jeroen Wildenbeest for their help throughout the process. Besides interesting conversations about the goal and content of this research and providing constructivefeedback, theyalsoprovidedsupportduringthementalupanddownsthatarepartofdoing yourmasterproject. IalsowouldliketothankSuzanneWeller,MarleenvanCharlottePaiman,Nienkevan DrielandIngeKalsbeekfortheirhelpandsupport. Forayear,weconductedresearchformasterthesisat 3Me.andthisreallygavememotivationtokeepupthehardwork. MariaJ.Voskuil Delft,June2015 iii C ONTENTS 1 Paper:Hybriddesigncombiningpositionandratecontrolallowsintuitiveworkspaceextension forteleoperation 1 A AppendixA:Threeworkspaceextensiondesigns:free-spacemotionandforcefeedback 11 A.1 Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 A.2 Ratecontrol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 A.3 Hybriddesign. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 A.3.1 Additionsmadetoselectedhybriddesignsfromliterature. . . . . . . . . . . . . . . . . 14 B AppendixB:Modelinginteractionbetweenvirtualslaveandenvironment 19 B.1 Schematicmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 B.2 Assumptionsformodelsimplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 C AppendixC:Definitiontaskexperimentandparameters 23 C.1 Definetaskexperiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 C.2 DefinealltaskandWESdesignparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 C.2.1 Taskspecificparameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 C.2.2 ConstantparametersWESdesigns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 C.2.3 Constantparametersdynamicsproperties . . . . . . . . . . . . . . . . . . . . . . . . 26 D AppendixD:ImplementationallthreeWESdesignsinSimulink 27 D.1 Subsystem1:CalculatepositionslaveforallthreeWESdesigns. . . . . . . . . . . . . . . . . . 28 D.1.1 Positionslaveforindexing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 D.1.2 Positionslaveforratecontrol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 D.1.3 Positionslaveforhybriddesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 D.2 Subsystem2:ImplementationinteractionforceslaveandvirtualenvironmentF . . . . . . . . 35 e D.3 Subsystem3:Implementationtaskcriteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 D.4 Subsystem4:ImplementationForcefeedback . . . . . . . . . . . . . . . . . . . . . . . . . . 36 D.5 Subsystem5:Implementationsafety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 E AppendixE:Experimentalset-up 39 E.1 Experimentalset-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 E.2 Visualfeedback. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 F AppendixG:PilotExperiment 43 F.1 Experimentalprotocolpilotexperiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 F.2 Resultspilotexperiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 F.3 Discussionandconclusionpilotexperiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 F.4 Consequences/discussionforfinalexperiment. . . . . . . . . . . . . . . . . . . . . . . . . . 49 G AppendixH:ResultsExperiment 51 G.1 Rawdatafromexperiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 G.2 Definitionandcalculationmetrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 G.3 Resultsmetricsforeachtrial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 G.4 Resultsone-wayrepeatedAnova . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 G.5 Posthoc:Taskperformanceandeffort. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 G.5.1 Posthoc:Subtaskfree-spacemotionmetrics. . . . . . . . . . . . . . . . . . . . . . . . 56 G.5.2 Posthoc:Subtaskexertingaforcemetrics . . . . . . . . . . . . . . . . . . . . . . . . . 57 G.5.3 Posthoc:Totaltaskmetrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Bibliography 59 v 1 Hybrid design combining position and rate control allows intuitive workspace extension for teleoperation Maria J. Voskuil, Roel J. Kuiper, Jeroen G.W. Wildenbeest, David A. Abbink Abstract— Acommonmethodtoobtainworkspaceextensionoftheslave’sworkspaceisthroughratecontrolbecauseithasanunlimited workspaceoftheslave.However,whencontactinteractionwiththeremoteenvironmentisneeded,positioncontrolisoftenproposed duetotheforcefeedback.Tobenefitfromthestrengthsofbothofthesecontroltypes,hybriddesignshavebeenproposedwhich combinebothpositionandratecontrolwithinonedesign.Humanfactorsevaluationislackingtocomparebenefitsandlimitationsof hybriddesignsagainstthetwocommonappliedworkspaceextensiondesigns:indexingandratecontrol.Noneofthehybriddesigns wereevaluatedforvarioustaskssuchasaforcetask.Therefore,theobjectiveofthisstudyistoevaluateifahybriddesigncan combinethestrengthsoflargefree-spacemotionforratecontrol,andaccuratepositioningandexecutingaforcetaskforindexing.In thisresearch,ahybriddesignwasdeveloped(basedonexistingdesigns)inwhichforcefeedbackforratecontrolwasadded.Awithin subjecthuman-in-the-loophapticteleoperationexperiment(N=12)wasperformedtocompareperformanceforthishybriddesign againstindexingandratecontrolforataskincludingtraversingasubstantialdistance(free-spacesubtask)andexertingaconstant forceagainstaremoteenvironment(forcesubtask).Theresultsshowthatthehybriddesignallowedsubjectstorealizesimilar performanceforthesubtaskfree-spacemotionasforratecontrol,incombinationwithsimilarperformanceforthesubtaskexertinga forceasforpositioncontrolwithclutching.Thisindicatesthatthishybridworkspaceextensiondesignenablestheoperatortousethe benefitsofpositionandratecontrol. IndexTerms—Teleoperation,Indexing,positioncontrolClutching,Ratecontrol,Hybriddesign,Hapticexperimentaldesign F 1 INTRODUCTION master, controller and the slave and is shown in Figure 1. In this example of a teleoperation system the Workspace Teleoperationenablehumanstoperformataskinaremote Extension Subsystem (WES) is included in the controller. or hazardous environment at different scales and finds its The WES determines how the dimensions of the masters’ applicationindifferenttypeoffieldssuchasinhealthcare, workspacecommandtheslaves’workspace. nuclearpowerplantsorindeepsea[11][16].Inmanycases The two common used control methods to extend the forfree-spacemotion,theslaveneedstobeabletotraverse workspace of the slave with respect to the master are largermotionsthanthemasterdeviceallows.Teleoperation position control and rate control. For position control, the can be used for different type of tasks such as free-space position of the master commands the position of the slave. motion, contact transition tasks, constrained position tasks For rate control, the position of the master commands the andforcetasks[22].Anexampleofataskincludingmultiple velocityoftheslave[15]. types of tasks is a robot that performs maintenance in a nuclear power plant. The robot needs to traverse large dis- tancetowardsthecomponentrequiringmaintenance.Once therobothasarrivedatthatcomponent,accuratemotionis required in which the interaction force between the robot andtheenvironmentshouldbecontrolledsotherobotdoes not damage its environment [5]. Another similar example combiningmotionandaforcetask,butonverysmallscale, is surgery. Even though the scale is different, accurate free- spacemotionshavetobecombinedwithaccuratelyexerting Fig. 1: System model with five subsystems of a human operator forcesagainstthetissue[1]. controllingateleoperatorthatinteractswiththeenvironment,in To understand how teleoperation works, one should whichtheworkspaceextension(WES)includesacontroller,based understandthethreemainsubsystemsofateleoperator[22]. on[8][23] Thetotalsystemconsistofthehuman,theteleoperatorand the environment. The human controls the master, which Ingeneral,positioncontrolisusedforshortandprecise configuration is transformed to the configuration of the movement, accurate placing task or for performing a task slavebythecontroller,theslaveinteractswiththeenviron- that requires contact of the slave with an object in the ment[8].Theteleoperatorconsistsofthreesubsystems:the environment. The advantage of position control is that it 2 provides natural force feedback about the interaction force ofthemasterdeviceis,thehigherthescalingfactor.Conse- of the slave with the environment [21] due to the cou- quentlyfinemovementscanbeaccomplishedbymovingthe pling between the master and the slave. This natural force master with a low rate. On the other hand, coarse motions feedback has been proven to improve task performance, can be accomplished by high rates of the master [9] [15]. sinceoperatorscanmakeamoreaccurateestimationofthe Conti implemented a drift to shift the physical workspace exerted force by the slave in its environment [20] [21]. The ofthemasterdevicewithrespecttothevirtualenvironment disadvantageofpositioncontrolisthattheworkspaceofthe of the slave without the human operator consciously per- slave is limited due to limitations of the workspace of the ceiving this drift [9]. The higher the rate of the master, the master [15]. Position control can also include an additional largerthedriftcanbewithouttheoperatornoticingthedrift. mode, called clutching, in which the master and the slave Both designs have the disadvantage that large workspaces are decoupled. This decoupling enables the operator to of the slave can only be achieved at high speeds of the move the master back to its origin without moving the master. To make results applicable for both fast and slow slave, restore the coupling between the master and slave, dynamic systems, therefore this category was not used in and repeat the motion of the master to further extend thisresearch. the workspace of the slave [15]. This type of workspace Inthesecondcategory,thepositionofthemasterdeter- extensiondesignisreferredtoasindexing.. mineswhichtypeofcontrol,positionorrate,thatisusedto Rate control is commonly applied for achieving large commandtheslave.Differentapplicationsofthishavebeen workspace extension of the slave [9] [17]. Since the master developed and all validation experiments only included commandsthevelocityoftheslave,aconstantvelocitycan free-space motion and positioning of the slave. Dominjon be achieved for large motions of the slave. However, con- [10] compared performance of such a hybrid design with trollingthevelocityoftheslavemakesaccuratepositioning scaling and indexing (both position control WES designs) more difficult because there is no direct coupling between inanexperimentincludingmotionandpaintingaface.The the motion of the master and slave. Most applications of totaltasktime(paintingandnotpainingtimetogether)was rate control do not include natural force feedback but co- higher for indexing than for scaling and the hybrid design ordinated force feedback [20]. Co-ordinated force feedback andscalinghadlessaccuratemotions.Therefore,Dominjon enables the operator to perceive the position of the master didnotprovethathishybriddesignoutperformedscaling. in which the commanded velocity of the slave is zero and Barrios [3] performed a similar experiment to Dominjon is implemented as a static spring around the origin of the andperformedtheexperimentforthehybriddesignversus workspace of the master. This co-ordinated force feedback scaling.BarriodrewsimilarconclusionsasDominjons. doesnotincludeinformationabouttheinteractionforceFe Casiez[?Casiez2007a]alsodevelopedasimilardesign so the operator cannot perceive trough the force feedback asDominjon,butwithaverystiffspringforthepartofthe howmuchforcehe/sheisexertingwiththeslaveagainstthe workspace of the master in which rate control is used. The environment. The proposed force feedback about Fe from experiment and the results did not show significant results literatureforratecontrolisthederivativeoftheinteraction comparing the hybrid design with scaling. Forlines [12] force F˙e [20]. Another option for the force feedback is developed a hybrid design on a touch screen. What object natural force feedback, the interaction force Fe, also used onthescreenwaspointedat,determinedthetypeofcontrol for position control. Since rate control is a basic reference usedtocommandthevirtualslave.Thishybriddesignwas in this experiment, to use as a comparison for the hybrid proventooutperformindexingbutnotratecontrolforfree- design, the proposed force feedback from literature F˙ is space motion. None of these four hybrid designs included e used. forcefeedbackabouttheinteractionforceforratecontrol. For both control methods, increasing the scaling factor Summarizing, this research focused on the category between the position of the master and slave decreases of hybrid designs in which the position of the master completion time and decreases achieved accuracy of the determines the type of control used to command the slave free-spacemotionsubtask[15].Adecreaseintheachieved because that also works for slow dynamic system. The accuracy of the free-space motion results in a higher hybrid designs of Barrio [3], Dominjons [10] and Forlines variationintheexertedforce,solowertaskperformancefor [12]wereproventohavealowercompletiontimecompared theforcesubtask.Thusthereisatrade-offbetweenthetotal to indexing for free-space motion. Scaling was proven to timeofthefree-spacemotion,andtheachievedaccuracyof have a lower completion time, but also lower accuracy of the free-space motion [5] as well as the performance of a themotionbyDominjon[10]. forcetask. None of these designs were validated for a contact Preliminary research tried to combine the strengths of transition or a force task and no design included force thetwocontrolmethods,thestrengthsofperformingaforce feedbackforratecontrol.Furthermore,noresearchhasbeen task and achieving accurate positioning of position control done to validate the hybrid design for a task combining with the strength of large free-space movements of rate free-space motion with a force task. Due to the different control, within one design. These designs combining both modes of the hybrid design, performance of large motion position and rate control were called hybrid designs and and a task requiring a contact force with the environment weredividedintotwocategories. might influence each other. Performing such a task would The first category, combines both position and rate con- enable research to evaluate performance for both free- trolatthesametime.Forballisticcontrol,thescalingfactor space motion, a force task and a combination altogether dependsontherateofthemasterdevice.Thehighertherate for a hybrid design. Furthermore, no research measured

Description:
this research, a hybrid design was developed (based on existing designs) in which force feedback . the two control methods, the strengths of performing a force . Same reasoning for the bias force, that enabled the In case of a stiff environment (ke = 1400N/m), the rate of the environment ˙xe = 0.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.